// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___STOP_TOKEN_ATOMIC_UNIQUE_LOCK_H
#define _LIBCPP___STOP_TOKEN_ATOMIC_UNIQUE_LOCK_H
#include <__bit/popcount.h>
#include <__config>
#include <atomic>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_BEGIN_NAMESPACE_STD
#if _LIBCPP_STD_VER >= 20
// This class implements an RAII unique_lock without a mutex.
// It uses std::atomic<State>,
// where State contains a lock bit and might contain other data,
// and LockedBit is the value of State when the lock bit is set, e.g 1 << 2
template <class _State, _State _LockedBit>
class _LIBCPP_AVAILABILITY_SYNC __atomic_unique_lock {
static_assert(std::__libcpp_popcount(static_cast<unsigned long long>(_LockedBit)) == 1,
"LockedBit must be an integer where only one bit is set");
std::atomic<_State>& __state_;
bool __is_locked_;
public:
_LIBCPP_HIDE_FROM_ABI explicit __atomic_unique_lock(std::atomic<_State>& __state) noexcept
: __state_(__state), __is_locked_(true) {
__lock();
}
template <class _Pred>
_LIBCPP_HIDE_FROM_ABI __atomic_unique_lock(std::atomic<_State>& __state, _Pred&& __give_up_locking) noexcept
: __state_(__state), __is_locked_(false) {
__is_locked_ = __lock_impl(__give_up_locking, __set_locked_bit, std::memory_order_acquire);
}
template <class _Pred, class _UnaryFunction>
_LIBCPP_HIDE_FROM_ABI __atomic_unique_lock(
std::atomic<_State>& __state,
_Pred&& __give_up_locking,
_UnaryFunction&& __state_after_lock,
std::memory_order __locked_ordering) noexcept
: __state_(__state), __is_locked_(false) {
__is_locked_ = __lock_impl(__give_up_locking, __state_after_lock, __locked_ordering);
}
__atomic_unique_lock(const __atomic_unique_lock&) = delete;
__atomic_unique_lock(__atomic_unique_lock&&) = delete;
__atomic_unique_lock& operator=(const __atomic_unique_lock&) = delete;
__atomic_unique_lock& operator=(__atomic_unique_lock&&) = delete;
_LIBCPP_HIDE_FROM_ABI ~__atomic_unique_lock() {
if (__is_locked_) {
__unlock();
}
}
_LIBCPP_HIDE_FROM_ABI bool __owns_lock() const noexcept { return __is_locked_; }
_LIBCPP_HIDE_FROM_ABI void __lock() noexcept {
const auto __never_give_up_locking = [](_State) { return false; };
// std::memory_order_acquire because we'd like to make sure that all the read operations after the lock can read the
// up-to-date values.
__lock_impl(__never_give_up_locking, __set_locked_bit, std::memory_order_acquire);
__is_locked_ = true;
}
_LIBCPP_HIDE_FROM_ABI void __unlock() noexcept {
// unset the _LockedBit. `memory_order_release` because we need to make sure all the write operations before calling
// `__unlock` will be made visible to other threads
__state_.fetch_and(static_cast<_State>(~_LockedBit), std::memory_order_release);
__state_.notify_all();
__is_locked_ = false;
}
private:
template <class _Pred, class _UnaryFunction>
_LIBCPP_HIDE_FROM_ABI bool
__lock_impl(_Pred&& __give_up_locking, // while trying to lock the state, if the predicate returns true, give up
// locking and return
_UnaryFunction&& __state_after_lock,
std::memory_order __locked_ordering) noexcept {
// At this stage, until we exit the inner while loop, other than the atomic state, we are not reading any order
// dependent values that is written on other threads, or writing anything that needs to be seen on other threads.
// Therefore `memory_order_relaxed` is enough.
_State __current_state = __state_.load(std::memory_order_relaxed);
do {
while (true) {
if (__give_up_locking(__current_state)) {
// user provided early return condition. fail to lock
return false;
} else if ((__current_state & _LockedBit) != 0) {
// another thread has locked the state, we need to wait
__state_.wait(__current_state, std::memory_order_relaxed);
// when it is woken up by notifyAll or spuriously, the __state_
// might have changed. reload the state
// Note that the new state's _LockedBit may or may not equal to 0
__current_state = __state_.load(std::memory_order_relaxed);
} else {
// at least for now, it is not locked. we can try `compare_exchange_weak` to lock it.
// Note that the variable `__current_state`'s lock bit has to be 0 at this point.
break;
}
}
} while (!__state_.compare_exchange_weak(
__current_state, // if __state_ has the same value of __current_state, lock bit must be zero before exchange and
// we are good to lock/exchange and return. If _state has a different value, because other
// threads locked it between the `break` statement above and this statement, exchange will fail
// and go back to the inner while loop above.
__state_after_lock(__current_state), // state after lock. Usually it should be __current_state | _LockedBit.
// Some use cases need to set other bits at the same time as an atomic
// operation therefore we accept a function
__locked_ordering, // sucessful exchange order. Usually it should be std::memory_order_acquire.
// Some use cases need more strict ordering therefore we accept it as a parameter
std::memory_order_relaxed // fail to exchange order. We don't need any ordering as we are going back to the
// inner while loop
));
return true;
}
_LIBCPP_HIDE_FROM_ABI static constexpr auto __set_locked_bit = [](_State __state) { return __state | _LockedBit; };
};
#endif // _LIBCPP_STD_VER >= 20 && !defined(_LIBCPP_HAS_NO_THREADS)
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP___STOP_TOKEN_ATOMIC_UNIQUE_LOCK_H