//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03
// UNSUPPORTED: libcpp-abi-no-compressed-pair-padding
// This test makes sure that the control block implementation used for non-array
// types in std::make_shared and std::allocate_shared is ABI compatible with the
// original implementation.
//
// This test is relevant because the implementation of that control block is
// different starting in C++20, a change that was required to implement P0674.
#include <cassert>
#include <cstddef>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <string>
#include <vector>
#include "test_macros.h"
struct value_init_tag {};
template <class T, int _Idx, bool CanBeEmptyBase = std::is_empty<T>::value && !std::__libcpp_is_final<T>::value>
struct compressed_pair_elem {
explicit compressed_pair_elem(value_init_tag) : value_() {}
template <class U>
explicit compressed_pair_elem(U&& u) : value_(std::forward<U>(u)) {}
T& get() { return value_; }
private:
T value_;
};
template <class T, int _Idx>
struct compressed_pair_elem<T, _Idx, true> : private T {
explicit compressed_pair_elem(value_init_tag) : T() {}
template <class U>
explicit compressed_pair_elem(U&& u) : T(std::forward<U>(u)) {}
T& get() { return *this; }
};
template <class T1, class T2>
class compressed_pair : private compressed_pair_elem<T1, 0>, private compressed_pair_elem<T2, 1> {
public:
using Base1 = compressed_pair_elem<T1, 0>;
using Base2 = compressed_pair_elem<T2, 1>;
template <class U1, class U2>
explicit compressed_pair(U1&& t1, U2&& t2) : Base1(std::forward<U1>(t1)), Base2(std::forward<U2>(t2)) {}
T1& first() { return static_cast<Base1&>(*this).get(); }
T2& second() { return static_cast<Base2&>(*this).get(); }
};
// This is the pre-C++20 implementation of the control block used by non-array
// std::allocate_shared and std::make_shared. We keep it here so that we can
// make sure our implementation is backwards compatible with it forever.
//
// Of course, the class and its methods were renamed, but the size and layout
// of the class should remain the same as the original implementation.
template <class T, class Alloc>
struct OldEmplaceControlBlock : std::__shared_weak_count {
explicit OldEmplaceControlBlock(Alloc a) : data_(std::move(a), value_init_tag()) {}
T* get_elem() noexcept { return std::addressof(data_.second()); }
Alloc* get_alloc() noexcept { return std::addressof(data_.first()); }
private:
virtual void __on_zero_shared() noexcept {
// Not implemented
}
virtual void __on_zero_shared_weak() noexcept {
// Not implemented
}
compressed_pair<Alloc, T> data_;
};
template <class T, template <class> class Alloc>
void test() {
using Old = OldEmplaceControlBlock<T, Alloc<T>>;
using New = std::__shared_ptr_emplace<T, Alloc<T>>;
static_assert(sizeof(New) == sizeof(Old), "");
static_assert(alignof(New) == alignof(Old), "");
// Also make sure each member is at the same offset
Alloc<T> a;
Old old(a);
New new_(a);
// 1. Check the stored object
{
char const* old_elem = reinterpret_cast<char const*>(old.get_elem());
char const* new_elem = reinterpret_cast<char const*>(new_.__get_elem());
std::ptrdiff_t old_offset = old_elem - reinterpret_cast<char const*>(&old);
std::ptrdiff_t new_offset = new_elem - reinterpret_cast<char const*>(&new_);
assert(new_offset == old_offset && "offset of stored element changed");
}
// 2. Check the allocator
{
char const* old_alloc = reinterpret_cast<char const*>(old.get_alloc());
char const* new_alloc = reinterpret_cast<char const*>(new_.__get_alloc());
std::ptrdiff_t old_offset = old_alloc - reinterpret_cast<char const*>(&old);
std::ptrdiff_t new_offset = new_alloc - reinterpret_cast<char const*>(&new_);
assert(new_offset == old_offset && "offset of allocator changed");
}
// Make sure both types have the same triviality (that has ABI impact since
// it determined how objects are passed). Both should be non-trivial.
static_assert(std::is_trivial<New>::value == std::is_trivial<Old>::value, "");
}
// Object types to store in the control block
struct TrivialEmptyType {};
struct alignas(32) OveralignedEmptyType {};
struct TrivialNonEmptyType {
char c[11];
};
struct FinalEmptyType final {};
struct NonTrivialType {
char c[22];
NonTrivialType() : c{'x'} {}
};
struct VirtualFunctionType {
virtual ~VirtualFunctionType() {}
};
// Allocator types
template <class T>
struct TrivialEmptyAlloc {
using value_type = T;
TrivialEmptyAlloc() = default;
template <class U>
TrivialEmptyAlloc(TrivialEmptyAlloc<U>) {}
T* allocate(std::size_t) { return nullptr; }
void deallocate(T*, std::size_t) {}
};
template <class T>
struct TrivialNonEmptyAlloc {
char storage[77];
using value_type = T;
TrivialNonEmptyAlloc() = default;
template <class U>
TrivialNonEmptyAlloc(TrivialNonEmptyAlloc<U>) {}
T* allocate(std::size_t) { return nullptr; }
void deallocate(T*, std::size_t) {}
};
template <class T>
struct FinalEmptyAlloc final {
using value_type = T;
FinalEmptyAlloc() = default;
template <class U>
FinalEmptyAlloc(FinalEmptyAlloc<U>) {}
T* allocate(std::size_t) { return nullptr; }
void deallocate(T*, std::size_t) {}
};
template <class T>
struct NonTrivialAlloc {
char storage[88];
using value_type = T;
NonTrivialAlloc() {}
template <class U>
NonTrivialAlloc(NonTrivialAlloc<U>) {}
T* allocate(std::size_t) { return nullptr; }
void deallocate(T*, std::size_t) {}
};
int main(int, char**) {
test<TrivialEmptyType, TrivialEmptyAlloc>();
test<TrivialEmptyType, TrivialNonEmptyAlloc>();
test<TrivialEmptyType, FinalEmptyAlloc>();
test<TrivialEmptyType, NonTrivialAlloc>();
#if !defined(TEST_HAS_NO_ALIGNED_ALLOCATION)
test<OveralignedEmptyType, TrivialEmptyAlloc>();
test<OveralignedEmptyType, TrivialNonEmptyAlloc>();
test<OveralignedEmptyType, FinalEmptyAlloc>();
test<OveralignedEmptyType, NonTrivialAlloc>();
#endif
test<TrivialNonEmptyType, TrivialEmptyAlloc>();
test<TrivialNonEmptyType, TrivialNonEmptyAlloc>();
test<TrivialNonEmptyType, FinalEmptyAlloc>();
test<TrivialNonEmptyType, NonTrivialAlloc>();
test<FinalEmptyType, TrivialEmptyAlloc>();
// FinalEmptyType combined with TrivialNonEmptyAlloc, FinalEmptyAlloc or NonTrivialAlloc is known to have an ABI break
// between LLVM 19 and LLVM 20. It's been deemed not severe enough to cause actual breakage.
test<NonTrivialType, TrivialEmptyAlloc>();
test<NonTrivialType, TrivialNonEmptyAlloc>();
test<NonTrivialType, FinalEmptyAlloc>();
test<NonTrivialType, NonTrivialAlloc>();
test<VirtualFunctionType, TrivialEmptyAlloc>();
test<VirtualFunctionType, TrivialNonEmptyAlloc>();
test<VirtualFunctionType, FinalEmptyAlloc>();
test<VirtualFunctionType, NonTrivialAlloc>();
// Test a few real world types just to make sure we didn't mess up badly somehow
test<std::string, std::allocator>();
test<int, std::allocator>();
test<std::vector<int>, std::allocator>();
return 0;
}