//===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
#include "MacOSX/arm64/DNBArchImplARM64.h"
#if defined(ARM_THREAD_STATE64_COUNT)
#include "DNB.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include <cinttypes>
#include <sys/sysctl.h>
#undef DEBUGSERVER_IS_ARM64E
#if __has_feature(ptrauth_calls)
#include <ptrauth.h>
#if defined(__LP64__)
#define DEBUGSERVER_IS_ARM64E 1
#endif
#endif
// Break only in privileged or user mode
// (PAC bits in the DBGWVRn_EL1 watchpoint control register)
#define S_USER ((uint32_t)(2u << 1))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
// (LSC bits in the DBGWVRn_EL1 watchpoint control register)
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Single instruction step
// (SS bit in the MDSCR_EL1 register)
#define SS_ENABLE ((uint32_t)(1u))
static const uint8_t g_arm64_breakpoint_opcode[] = {
0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order
// If we need to set one logical watchpoint by using
// two hardware watchpoint registers, the watchpoint
// will be split into a "high" and "low" watchpoint.
// Record both of them in the LoHi array.
// It's safe to initialize to all 0's since
// hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = {0};
void DNBArchMachARM64::Initialize() {
DNBArchPluginInfo arch_plugin_info = {
CPU_TYPE_ARM64, DNBArchMachARM64::Create,
DNBArchMachARM64::GetRegisterSetInfo,
DNBArchMachARM64::SoftwareBreakpointOpcode};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
DNBArchPluginInfo arch_plugin_info_32 = {
CPU_TYPE_ARM64_32, DNBArchMachARM64::Create,
DNBArchMachARM64::GetRegisterSetInfo,
DNBArchMachARM64::SoftwareBreakpointOpcode};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin(arch_plugin_info_32);
}
DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) {
DNBArchMachARM64 *obj = new DNBArchMachARM64(thread);
return obj;
}
const uint8_t *
DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) {
return g_arm64_breakpoint_opcode;
}
uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; }
static uint64_t clear_pac_bits(uint64_t value) {
uint32_t addressing_bits = 0;
if (!DNBGetAddressingBits(addressing_bits))
return value;
// On arm64_32, no ptrauth bits to clear
#if !defined(__LP64__)
return value;
#endif
uint64_t mask = ((1ULL << addressing_bits) - 1);
// Normally PAC bit clearing needs to check b55 and either set the
// non-addressing bits, or clear them. But the register values we
// get from thread_get_state on an arm64e process don't follow this
// convention?, at least when there's been a PAC auth failure in
// the inferior.
// Userland processes are always in low memory, so this
// hardcoding b55 == 0 PAC stripping behavior here.
return value & mask; // high bits cleared to 0
}
uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
#if defined(DEBUGSERVER_IS_ARM64E)
return clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc));
#else
return m_state.context.gpr.__pc;
#endif
return failValue;
}
kern_return_t DNBArchMachARM64::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
#if defined(__LP64__)
#if __has_feature(ptrauth_calls)
// The incoming value could be garbage. Strip it to avoid
// trapping when it gets resigned in the thread state.
value = (uint64_t) ptrauth_strip((void*) value, ptrauth_key_function_pointer);
value = (uint64_t) ptrauth_sign_unauthenticated((void*) value, ptrauth_key_function_pointer, 0);
#endif
arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) value);
#else
m_state.context.gpr.__pc = value;
#endif
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
#if defined(DEBUGSERVER_IS_ARM64E)
return clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp));
#else
return m_state.context.gpr.__sp;
#endif
return failValue;
}
kern_return_t DNBArchMachARM64::GetGPRState(bool force) {
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetGPRCount;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64,
(thread_state_t)&m_state.context.gpr, &count);
if (DNBLogEnabledForAny(LOG_THREAD)) {
uint64_t *x = &m_state.context.gpr.__x[0];
const char *log_str = "thread_get_state signed regs "
"\n fp=%16.16llx"
"\n lr=%16.16llx"
"\n sp=%16.16llx"
"\n pc=%16.16llx";
#if defined(DEBUGSERVER_IS_ARM64E)
DNBLogThreaded(log_str,
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp),
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr),
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp),
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc));
#else
DNBLogThreaded(log_str, m_state.context.gpr.__fp, m_state.context.gpr.__lr,
m_state.context.gpr.__sp, m_state.context.gpr.__pc);
#endif
#if defined(DEBUGSERVER_IS_ARM64E)
uint64_t log_fp = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp));
uint64_t log_lr = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr));
uint64_t log_sp = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp));
uint64_t log_pc = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc));
#else
uint64_t log_fp = m_state.context.gpr.__fp;
uint64_t log_lr = m_state.context.gpr.__lr;
uint64_t log_sp = m_state.context.gpr.__sp;
uint64_t log_pc = m_state.context.gpr.__pc;
#endif
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs"
"\n x0=%16.16llx"
"\n x1=%16.16llx"
"\n x2=%16.16llx"
"\n x3=%16.16llx"
"\n x4=%16.16llx"
"\n x5=%16.16llx"
"\n x6=%16.16llx"
"\n x7=%16.16llx"
"\n x8=%16.16llx"
"\n x9=%16.16llx"
"\n x10=%16.16llx"
"\n x11=%16.16llx"
"\n x12=%16.16llx"
"\n x13=%16.16llx"
"\n x14=%16.16llx"
"\n x15=%16.16llx"
"\n x16=%16.16llx"
"\n x17=%16.16llx"
"\n x18=%16.16llx"
"\n x19=%16.16llx"
"\n x20=%16.16llx"
"\n x21=%16.16llx"
"\n x22=%16.16llx"
"\n x23=%16.16llx"
"\n x24=%16.16llx"
"\n x25=%16.16llx"
"\n x26=%16.16llx"
"\n x27=%16.16llx"
"\n x28=%16.16llx"
"\n fp=%16.16llx"
"\n lr=%16.16llx"
"\n sp=%16.16llx"
"\n pc=%16.16llx"
"\n cpsr=%8.8x",
m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count,
x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11],
x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21],
x[22], x[23], x[24], x[25], x[26], x[27], x[28],
log_fp, log_lr, log_sp, log_pc, m_state.context.gpr.__cpsr);
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM64::GetVFPState(bool force) {
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetVFPCount;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64,
(thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny(LOG_THREAD)) {
#if defined(__arm64__) || defined(__aarch64__)
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
"\n q0 = 0x%16.16llx%16.16llx"
"\n q1 = 0x%16.16llx%16.16llx"
"\n q2 = 0x%16.16llx%16.16llx"
"\n q3 = 0x%16.16llx%16.16llx"
"\n q4 = 0x%16.16llx%16.16llx"
"\n q5 = 0x%16.16llx%16.16llx"
"\n q6 = 0x%16.16llx%16.16llx"
"\n q7 = 0x%16.16llx%16.16llx"
"\n q8 = 0x%16.16llx%16.16llx"
"\n q9 = 0x%16.16llx%16.16llx"
"\n q10 = 0x%16.16llx%16.16llx"
"\n q11 = 0x%16.16llx%16.16llx"
"\n q12 = 0x%16.16llx%16.16llx"
"\n q13 = 0x%16.16llx%16.16llx"
"\n q14 = 0x%16.16llx%16.16llx"
"\n q15 = 0x%16.16llx%16.16llx"
"\n q16 = 0x%16.16llx%16.16llx"
"\n q17 = 0x%16.16llx%16.16llx"
"\n q18 = 0x%16.16llx%16.16llx"
"\n q19 = 0x%16.16llx%16.16llx"
"\n q20 = 0x%16.16llx%16.16llx"
"\n q21 = 0x%16.16llx%16.16llx"
"\n q22 = 0x%16.16llx%16.16llx"
"\n q23 = 0x%16.16llx%16.16llx"
"\n q24 = 0x%16.16llx%16.16llx"
"\n q25 = 0x%16.16llx%16.16llx"
"\n q26 = 0x%16.16llx%16.16llx"
"\n q27 = 0x%16.16llx%16.16llx"
"\n q28 = 0x%16.16llx%16.16llx"
"\n q29 = 0x%16.16llx%16.16llx"
"\n q30 = 0x%16.16llx%16.16llx"
"\n q31 = 0x%16.16llx%16.16llx"
"\n fpsr = 0x%8.8x"
"\n fpcr = 0x%8.8x\n\n",
m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count,
((uint64_t *)&m_state.context.vfp.__v[0])[0],
((uint64_t *)&m_state.context.vfp.__v[0])[1],
((uint64_t *)&m_state.context.vfp.__v[1])[0],
((uint64_t *)&m_state.context.vfp.__v[1])[1],
((uint64_t *)&m_state.context.vfp.__v[2])[0],
((uint64_t *)&m_state.context.vfp.__v[2])[1],
((uint64_t *)&m_state.context.vfp.__v[3])[0],
((uint64_t *)&m_state.context.vfp.__v[3])[1],
((uint64_t *)&m_state.context.vfp.__v[4])[0],
((uint64_t *)&m_state.context.vfp.__v[4])[1],
((uint64_t *)&m_state.context.vfp.__v[5])[0],
((uint64_t *)&m_state.context.vfp.__v[5])[1],
((uint64_t *)&m_state.context.vfp.__v[6])[0],
((uint64_t *)&m_state.context.vfp.__v[6])[1],
((uint64_t *)&m_state.context.vfp.__v[7])[0],
((uint64_t *)&m_state.context.vfp.__v[7])[1],
((uint64_t *)&m_state.context.vfp.__v[8])[0],
((uint64_t *)&m_state.context.vfp.__v[8])[1],
((uint64_t *)&m_state.context.vfp.__v[9])[0],
((uint64_t *)&m_state.context.vfp.__v[9])[1],
((uint64_t *)&m_state.context.vfp.__v[10])[0],
((uint64_t *)&m_state.context.vfp.__v[10])[1],
((uint64_t *)&m_state.context.vfp.__v[11])[0],
((uint64_t *)&m_state.context.vfp.__v[11])[1],
((uint64_t *)&m_state.context.vfp.__v[12])[0],
((uint64_t *)&m_state.context.vfp.__v[12])[1],
((uint64_t *)&m_state.context.vfp.__v[13])[0],
((uint64_t *)&m_state.context.vfp.__v[13])[1],
((uint64_t *)&m_state.context.vfp.__v[14])[0],
((uint64_t *)&m_state.context.vfp.__v[14])[1],
((uint64_t *)&m_state.context.vfp.__v[15])[0],
((uint64_t *)&m_state.context.vfp.__v[15])[1],
((uint64_t *)&m_state.context.vfp.__v[16])[0],
((uint64_t *)&m_state.context.vfp.__v[16])[1],
((uint64_t *)&m_state.context.vfp.__v[17])[0],
((uint64_t *)&m_state.context.vfp.__v[17])[1],
((uint64_t *)&m_state.context.vfp.__v[18])[0],
((uint64_t *)&m_state.context.vfp.__v[18])[1],
((uint64_t *)&m_state.context.vfp.__v[19])[0],
((uint64_t *)&m_state.context.vfp.__v[19])[1],
((uint64_t *)&m_state.context.vfp.__v[20])[0],
((uint64_t *)&m_state.context.vfp.__v[20])[1],
((uint64_t *)&m_state.context.vfp.__v[21])[0],
((uint64_t *)&m_state.context.vfp.__v[21])[1],
((uint64_t *)&m_state.context.vfp.__v[22])[0],
((uint64_t *)&m_state.context.vfp.__v[22])[1],
((uint64_t *)&m_state.context.vfp.__v[23])[0],
((uint64_t *)&m_state.context.vfp.__v[23])[1],
((uint64_t *)&m_state.context.vfp.__v[24])[0],
((uint64_t *)&m_state.context.vfp.__v[24])[1],
((uint64_t *)&m_state.context.vfp.__v[25])[0],
((uint64_t *)&m_state.context.vfp.__v[25])[1],
((uint64_t *)&m_state.context.vfp.__v[26])[0],
((uint64_t *)&m_state.context.vfp.__v[26])[1],
((uint64_t *)&m_state.context.vfp.__v[27])[0],
((uint64_t *)&m_state.context.vfp.__v[27])[1],
((uint64_t *)&m_state.context.vfp.__v[28])[0],
((uint64_t *)&m_state.context.vfp.__v[28])[1],
((uint64_t *)&m_state.context.vfp.__v[29])[0],
((uint64_t *)&m_state.context.vfp.__v[29])[1],
((uint64_t *)&m_state.context.vfp.__v[30])[0],
((uint64_t *)&m_state.context.vfp.__v[30])[1],
((uint64_t *)&m_state.context.vfp.__v[31])[0],
((uint64_t *)&m_state.context.vfp.__v[31])[1],
m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
#endif
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM64::GetEXCState(bool force) {
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetEXCCount;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64,
(thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
#if 0
static void DumpDBGState(const arm_debug_state_t &dbg) {
uint32_t i = 0;
for (i = 0; i < 16; i++)
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
"WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
dbg.__wcr[i]);
}
#endif
kern_return_t DNBArchMachARM64::GetDBGState(bool force) {
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetDBGCount;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64,
(thread_state_t)&m_state.dbg, &count);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM64::SetGPRState() {
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_THREAD_STATE64,
(thread_state_t)&m_state.context.gpr, e_regSetGPRCount);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM64::SetVFPState() {
int set = e_regSetVFP;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_NEON_STATE64,
(thread_state_t)&m_state.context.vfp, e_regSetVFPCount);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM64::SetEXCState() {
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64,
(thread_state_t)&m_state.context.exc, e_regSetEXCCount);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) {
int set = e_regSetDBG;
kern_return_t kret =
::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64,
(thread_state_t)&m_state.dbg, e_regSetDBGCount);
if (also_set_on_task) {
kern_return_t task_kret = task_set_state(
m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64,
(thread_state_t)&m_state.dbg, e_regSetDBGCount);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed "
"to set debug control register state: "
"0x%8.8x.",
task_kret);
}
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
void DNBArchMachARM64::ThreadWillResume() {
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
EnableHardwareSingleStep(true);
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction
// which triggered our watchpoint.
if (m_watchpoint_did_occur) {
if (m_watchpoint_hw_index >= 0) {
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS &&
!IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need
// to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::ThreadWillResume() "
"DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering
// instruction.
m_watchpoint_resume_single_step_enabled =
(EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the
// watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that
// the next time around
// this callback function is invoked, the enclosing logical branch is
// skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::ThreadWillResume()"
" failed to enable single step");
} else
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::ThreadWillResume() "
"succeeded to enable single step");
}
}
}
bool DNBArchMachARM64::NotifyException(MachException::Data &exc) {
switch (exc.exc_type) {
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
// One logical watchpoint was split into two watchpoint locations because
// it was too big. If the watchpoint exception is indicating the 2nd half
// of the two-parter, find the address of the 1st half and report that --
// that's what lldb is going to expect to see.
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::NotifyException "
"watchpoint %d was hit on address "
"0x%llx",
hw_index, (uint64_t)addr);
const uint32_t num_watchpoints = NumSupportedHardwareWatchpoints();
for (uint32_t i = 0; i < num_watchpoints; i++) {
if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
addr = GetWatchpointAddressByIndex(i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::NotifyException "
"It is a linked watchpoint; "
"rewritten to index %d addr 0x%llx",
LoHi[i], (uint64_t)addr);
}
}
if (hw_index != INVALID_NUB_HW_INDEX) {
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
// detect a __builtin_debugtrap instruction pattern ("brk #0xf000")
// and advance the $pc past it, so that the user can continue execution.
// Generally speaking, this knowledge should be centralized in lldb,
// recognizing the builtin_trap instruction and knowing how to advance
// the pc past it, so that continue etc work.
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_BREAKPOINT) {
nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
if (pc != INVALID_NUB_ADDRESS && pc > 0) {
DNBBreakpoint *bp =
m_thread->Process()->Breakpoints().FindByAddress(pc);
if (bp == nullptr) {
uint8_t insnbuf[4];
if (m_thread->Process()->ReadMemory(pc, 4, insnbuf) == 4) {
uint8_t builtin_debugtrap_insn[4] = {0x00, 0x00, 0x3e,
0xd4}; // brk #0xf000
if (memcmp(insnbuf, builtin_debugtrap_insn, 4) == 0) {
SetPC(pc + 4);
}
}
}
}
}
break;
}
return false;
}
bool DNBArchMachARM64::ThreadDidStop() {
bool success = true;
m_state.InvalidateAllRegisterStates();
if (m_watchpoint_resume_single_step_enabled) {
// Great! We now disable the hardware single step as well as re-enable the
// hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
ReenableHardwareWatchpoint(m_watchpoint_hw_index);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
} else {
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
"is true but (m_watchpoint_did_occur && "
"m_watchpoint_hw_index >= 0) does not hold!");
}
} else {
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
"is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) {
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail()) {
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Status();
}
err = GetDBGState(false);
if (err.Fail()) {
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Status();
}
#if defined(DEBUGSERVER_IS_ARM64E)
uint64_t pc = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc));
#else
uint64_t pc = m_state.context.gpr.__pc;
#endif
if (enable) {
DNBLogThreadedIf(LOG_STEP,
"%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
__FUNCTION__, pc);
m_state.dbg.__mdscr_el1 |= SS_ENABLE;
} else {
DNBLogThreadedIf(LOG_STEP,
"%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
__FUNCTION__, pc);
m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE);
}
return SetDBGState(false);
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit) {
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) {
assert(msbit >= lsbit);
uint64_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<=
shift_left; // shift anything above the msbit off of the unsigned edge
value >>= shift_left + lsbit; // shift it back again down to the lsbit
// (including undoing any shift from above)
return value; // return our result
}
uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() {
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX) {
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof(n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
} else {
// For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in
// EL0 so it can't
// access that reg. The kernel should have filled in the sysctls based on it
// though.
#if defined(__arm__)
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
// Zero is reserved for the WRP count, so don't increment it if it is zero
if (numWRPs > 0)
numWRPs++;
g_num_supported_hw_watchpoints = numWRPs;
DNBLogThreadedIf(LOG_THREAD,
"Number of supported hw watchpoints via asm(): %d",
g_num_supported_hw_watchpoints);
#endif
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t DNBArchMachARM64::NumSupportedHardwareBreakpoints() {
// Set the init value to something that will let us know that we need to
// autodetect how many breakpoints are supported dynamically...
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
if (g_num_supported_hw_breakpoints == UINT_MAX) {
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_breakpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof(n);
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) {
g_num_supported_hw_breakpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
} else {
// For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in
// EL0 so it can't access that reg. The kernel should have filled in the
// sysctls based on it though.
#if defined(__arm__)
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
// Zero is reserved for the WRP count, so don't increment it if it is zero
if (numWRPs > 0)
numWRPs++;
g_num_supported_hw_breakpoints = numWRPs;
DNBLogThreadedIf(LOG_THREAD,
"Number of supported hw breakpoint via asm(): %d",
g_num_supported_hw_breakpoints);
#endif
}
}
return g_num_supported_hw_breakpoints;
}
uint32_t DNBArchMachARM64::EnableHardwareBreakpoint(nub_addr_t addr,
nub_size_t size,
bool also_set_on_task) {
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::EnableHardwareBreakpoint(addr = "
"0x%8.8llx, size = %zu)",
(uint64_t)addr, size);
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
nub_addr_t aligned_bp_address = addr;
uint32_t control_value = 0;
switch (size) {
case 2:
control_value = (0x3 << 5) | 7;
aligned_bp_address &= ~1;
break;
case 4:
control_value = (0xfu << 5) | 7;
aligned_bp_address &= ~3;
break;
};
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS) {
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i = 0; i < num_hw_breakpoints; ++i) {
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
break; // We found an available hw breakpoint slot (in i)
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_breakpoints) {
m_state.dbg.__bvr[i] = aligned_bp_address;
m_state.dbg.__bcr[i] = control_value;
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::EnableHardwareBreakpoint() "
"adding breakpoint on address 0x%llx with control "
"register value 0x%x",
(uint64_t)m_state.dbg.__bvr[i],
(uint32_t)m_state.dbg.__bcr[i]);
kret = SetDBGState(also_set_on_task);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"EnableHardwareBreakpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
} else {
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"EnableHardwareBreakpoint(): All "
"hardware resources (%u) are in use.",
num_hw_breakpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
// This should be `std::bit_ceil(aligned_size)` but
// that requires C++20.
// Calculates the smallest integral power of two that is not smaller than x.
static uint64_t bit_ceil(uint64_t input) {
if (input <= 1 || __builtin_popcount(input) == 1)
return input;
return 1ULL << (64 - __builtin_clzll(input));
}
std::vector<DNBArchMachARM64::WatchpointSpec>
DNBArchMachARM64::AlignRequestedWatchpoint(nub_addr_t requested_addr,
nub_size_t requested_size) {
// Can't watch zero bytes
if (requested_size == 0)
return {};
// Smallest size we can watch on AArch64 is 8 bytes
constexpr nub_size_t min_watchpoint_alignment = 8;
nub_size_t aligned_size = std::max(requested_size, min_watchpoint_alignment);
/// Round up \a requested_size to the next power-of-2 size, at least 8
/// bytes
/// requested_size == 8 -> aligned_size == 8
/// requested_size == 9 -> aligned_size == 16
aligned_size = aligned_size = bit_ceil(aligned_size);
nub_addr_t aligned_start = requested_addr & ~(aligned_size - 1);
// Does this power-of-2 memory range, aligned to power-of-2, completely
// encompass the requested watch region.
if (aligned_start + aligned_size >= requested_addr + requested_size) {
WatchpointSpec wp;
wp.aligned_start = aligned_start;
wp.requested_start = requested_addr;
wp.aligned_size = aligned_size;
wp.requested_size = requested_size;
return {{wp}};
}
// We need to split this into two watchpoints, split on the aligned_size
// boundary and re-evaluate the alignment of each half.
//
// requested_addr 48 requested_size 20 -> aligned_size 32
// aligned_start 32
// split_addr 64
// first_requested_addr 48
// first_requested_size 16
// second_requested_addr 64
// second_requested_size 4
nub_addr_t split_addr = aligned_start + aligned_size;
nub_addr_t first_requested_addr = requested_addr;
nub_size_t first_requested_size = split_addr - requested_addr;
nub_addr_t second_requested_addr = split_addr;
nub_size_t second_requested_size = requested_size - first_requested_size;
std::vector<WatchpointSpec> first_wp =
AlignRequestedWatchpoint(first_requested_addr, first_requested_size);
std::vector<WatchpointSpec> second_wp =
AlignRequestedWatchpoint(second_requested_addr, second_requested_size);
if (first_wp.size() != 1 || second_wp.size() != 1)
return {};
return {{first_wp[0], second_wp[0]}};
}
uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr,
nub_size_t size, bool read,
bool write,
bool also_set_on_task) {
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::EnableHardwareWatchpoint(addr = "
"0x%8.8llx, size = %zu, read = %u, write = %u)",
(uint64_t)addr, size, read, write);
std::vector<DNBArchMachARM64::WatchpointSpec> wps =
AlignRequestedWatchpoint(addr, size);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::EnableHardwareWatchpoint() using %zu "
"hardware watchpoints",
wps.size());
if (wps.size() == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Only one hardware watchpoint needed
// to implement the user's request.
if (wps.size() == 1) {
if (wps[0].aligned_size <= 8)
return SetBASWatchpoint(wps[0], read, write, also_set_on_task);
else
return SetMASKWatchpoint(wps[0], read, write, also_set_on_task);
}
// We have multiple WatchpointSpecs
std::vector<uint32_t> wp_slots_used;
for (size_t i = 0; i < wps.size(); i++) {
uint32_t idx =
EnableHardwareWatchpoint(wps[i].requested_start, wps[i].requested_size,
read, write, also_set_on_task);
if (idx != INVALID_NUB_HW_INDEX)
wp_slots_used.push_back(idx);
}
// Did we fail to set all of the WatchpointSpecs needed
// for this user's request?
if (wps.size() != wp_slots_used.size()) {
for (int wp_slot : wp_slots_used)
DisableHardwareWatchpoint(wp_slot, also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
LoHi[wp_slots_used[0]] = wp_slots_used[1];
return wp_slots_used[0];
}
uint32_t DNBArchMachARM64::SetBASWatchpoint(DNBArchMachARM64::WatchpointSpec wp,
bool read, bool write,
bool also_set_on_task) {
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
nub_addr_t aligned_dword_addr = wp.aligned_start;
nub_addr_t watching_offset = wp.requested_start - wp.aligned_start;
nub_size_t watching_size = wp.requested_size;
// If user asks to watch 3 bytes at 0x1005,
// aligned_dword_addr 0x1000
// watching_offset 5
// watching_size 3
// Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
// above.
// The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
// etc, up to 0b11111111 for 8.
// then we shift those bits left by the offset into this dword that we are
// interested in.
// e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
// 0b11110000.
uint32_t byte_address_select = ((1 << watching_size) - 1) << watching_offset;
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return INVALID_NUB_HW_INDEX;
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i = 0; i < num_hw_watchpoints; ++i) {
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot
}
if (i == num_hw_watchpoints) {
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"SetBASWatchpoint(): All "
"hardware resources (%u) are in use.",
num_hw_watchpoints);
return INVALID_NUB_HW_INDEX;
}
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"SetBASWatchpoint() "
"set hardware register %d to BAS watchpoint "
"aligned start address 0x%llx, watch region start "
"offset %lld, number of bytes %zu",
i, aligned_dword_addr, watching_offset, watching_size);
// Clear any previous LoHi joined-watchpoint that may have been in use
LoHi[i] = 0;
// shift our Byte Address Select bits up to the correct bit range for the
// DBGWCRn_EL1
byte_address_select = byte_address_select << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = aligned_dword_addr; // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
// the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::SetBASWatchpoint() "
"adding watchpoint on address 0x%llx with control "
"register value 0x%x",
(uint64_t)m_state.dbg.__wvr[i],
(uint32_t)m_state.dbg.__wcr[i]);
kret = SetDBGState(also_set_on_task);
// DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"SetBASWatchpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
return INVALID_NUB_HW_INDEX;
}
uint32_t
DNBArchMachARM64::SetMASKWatchpoint(DNBArchMachARM64::WatchpointSpec wp,
bool read, bool write,
bool also_set_on_task) {
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return INVALID_NUB_HW_INDEX;
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i = 0; i < num_hw_watchpoints; ++i) {
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot
}
if (i == num_hw_watchpoints) {
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"SetMASKWatchpoint(): All "
"hardware resources (%u) are in use.",
num_hw_watchpoints);
return INVALID_NUB_HW_INDEX;
}
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"SetMASKWatchpoint() "
"set hardware register %d to MASK watchpoint "
"aligned start address 0x%llx, aligned size %zu",
i, wp.aligned_start, wp.aligned_size);
// Clear any previous LoHi joined-watchpoint that may have been in use
LoHi[i] = 0;
// MASK field is the number of low bits that are masked off
// when comparing the address with the DBGWVR<n>_EL1 values.
// If aligned size is 16, that means we ignore low 4 bits, 0b1111.
// popcount(16 - 1) give us the correct value of 4.
// 2GB is max watchable region, which is 31 bits (low bits 0x7fffffff
// masked off) -- a MASK value of 31.
const uint64_t mask = __builtin_popcountl(wp.aligned_size - 1) << 24;
// A '0b11111111' BAS value needed for mask watchpoints plus a
// nonzero mask value.
const uint64_t not_bas_wp = 0xff << 5;
m_state.dbg.__wvr[i] = wp.aligned_start;
m_state.dbg.__wcr[i] = mask | not_bas_wp | S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::SetMASKWatchpoint() "
"adding watchpoint on address 0x%llx with control "
"register value 0x%llx",
(uint64_t)m_state.dbg.__wvr[i],
(uint64_t)m_state.dbg.__wcr[i]);
kret = SetDBGState(also_set_on_task);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"SetMASKWatchpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
return INVALID_NUB_HW_INDEX;
}
bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) {
// If this logical watchpoint # is actually implemented using
// two hardware watchpoint registers, re-enable both of them.
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
return ReenableHardwareWatchpoint_helper(hw_index) &&
ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
} else {
return ReenableHardwareWatchpoint_helper(hw_index);
}
}
bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"ReenableHardwareWatchpoint_helper( %u ) - WVR%u = "
"0x%8.8llx WCR%u = 0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(false);
return (kret == KERN_SUCCESS);
}
bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index,
bool also_set_on_task) {
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
} else {
return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
}
}
bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index,
bool also_set_on_task) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
"DisableHardwareWatchpoint( %u ) - WVR%u = "
"0x%8.8llx WCR%u = 0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(also_set_on_task);
return (kret == KERN_SUCCESS);
}
bool DNBArchMachARM64::DisableHardwareBreakpoint(uint32_t hw_index,
bool also_set_on_task) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
if (hw_index >= num_hw_points)
return false;
m_disabled_breakpoints[hw_index].addr = m_state.dbg.__bvr[hw_index];
m_disabled_breakpoints[hw_index].control = m_state.dbg.__bcr[hw_index];
m_state.dbg.__bcr[hw_index] = 0;
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::"
"DisableHardwareBreakpoint( %u ) - WVR%u = "
"0x%8.8llx BCR%u = 0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__bvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__bcr[hw_index]);
kret = SetDBGState(also_set_on_task);
return (kret == KERN_SUCCESS);
}
// This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control
// register.
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000,
// 0b?1000000, 0b10000000 }.
static inline int32_t LowestBitSet(uint32_t val) {
for (unsigned i = 0; i < 8; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint
// whose address matches.
// As a side effect, the starting address as understood by the debugger is
// returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) {
// Read the debug state
kern_return_t kret = GetDBGState(true);
// DumpDBGState(m_state.dbg);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
kret);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx",
(uint64_t)addr);
if (kret == KERN_SUCCESS) {
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i) {
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplARM64::"
"GetHardwareWatchpointHit() slot: %u "
"(addr = 0x%llx, WCR = 0x%llx)",
i, wp_addr, debug_state.__wcr[i]);
if (!IsWatchpointEnabled(debug_state, i))
continue;
// DBGWCR<n>EL1.BAS are the bits of the doubleword that are watched
// with a BAS watchpoint.
uint32_t bas_bits = bits(debug_state.__wcr[i], 12, 5);
// DBGWCR<n>EL1.MASK is the number of bits that are masked off the
// virtual address when comparing to DBGWVR<n>_EL1.
uint32_t mask = bits(debug_state.__wcr[i], 28, 24);
const bool is_bas_watchpoint = mask == 0;
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchImplARM64::"
"GetHardwareWatchpointHit() slot: %u %s",
i, is_bas_watchpoint ? "is BAS watchpoint" : "is MASK watchpoint");
if (is_bas_watchpoint) {
if (bits(wp_addr, 48, 3) != bits(addr, 48, 3))
continue;
} else {
if (bits(wp_addr, 48, mask) == bits(addr, 48, mask)) {
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplARM64::"
"GetHardwareWatchpointHit() slot: %u matched MASK "
"ignoring %u low bits",
i, mask);
return i;
}
}
if (is_bas_watchpoint) {
// Sanity check the bas_bits
uint32_t lsb = LowestBitSet(bas_bits);
if (lsb < 0)
continue;
uint64_t byte_to_match = bits(addr, 2, 0);
if (bas_bits & (1 << byte_to_match)) {
addr = wp_addr + lsb;
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplARM64::"
"GetHardwareWatchpointHit() slot: %u matched BAS",
i);
return i;
}
}
}
}
return INVALID_NUB_HW_INDEX;
}
nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) {
kern_return_t kret = GetDBGState(true);
if (kret != KERN_SUCCESS)
return INVALID_NUB_ADDRESS;
const uint32_t num = NumSupportedHardwareWatchpoints();
if (hw_index >= num)
return INVALID_NUB_ADDRESS;
if (IsWatchpointEnabled(m_state.dbg, hw_index))
return GetWatchAddress(m_state.dbg, hw_index);
return INVALID_NUB_ADDRESS;
}
bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state,
uint32_t hw_index) {
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state,
uint32_t hw_index) {
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 63, 0);
}
// Register information definitions for 64 bit ARMv8.
enum gpr_regnums {
gpr_x0 = 0,
gpr_x1,
gpr_x2,
gpr_x3,
gpr_x4,
gpr_x5,
gpr_x6,
gpr_x7,
gpr_x8,
gpr_x9,
gpr_x10,
gpr_x11,
gpr_x12,
gpr_x13,
gpr_x14,
gpr_x15,
gpr_x16,
gpr_x17,
gpr_x18,
gpr_x19,
gpr_x20,
gpr_x21,
gpr_x22,
gpr_x23,
gpr_x24,
gpr_x25,
gpr_x26,
gpr_x27,
gpr_x28,
gpr_fp,
gpr_x29 = gpr_fp,
gpr_lr,
gpr_x30 = gpr_lr,
gpr_sp,
gpr_x31 = gpr_sp,
gpr_pc,
gpr_cpsr,
gpr_w0,
gpr_w1,
gpr_w2,
gpr_w3,
gpr_w4,
gpr_w5,
gpr_w6,
gpr_w7,
gpr_w8,
gpr_w9,
gpr_w10,
gpr_w11,
gpr_w12,
gpr_w13,
gpr_w14,
gpr_w15,
gpr_w16,
gpr_w17,
gpr_w18,
gpr_w19,
gpr_w20,
gpr_w21,
gpr_w22,
gpr_w23,
gpr_w24,
gpr_w25,
gpr_w26,
gpr_w27,
gpr_w28
};
enum {
vfp_v0 = 0,
vfp_v1,
vfp_v2,
vfp_v3,
vfp_v4,
vfp_v5,
vfp_v6,
vfp_v7,
vfp_v8,
vfp_v9,
vfp_v10,
vfp_v11,
vfp_v12,
vfp_v13,
vfp_v14,
vfp_v15,
vfp_v16,
vfp_v17,
vfp_v18,
vfp_v19,
vfp_v20,
vfp_v21,
vfp_v22,
vfp_v23,
vfp_v24,
vfp_v25,
vfp_v26,
vfp_v27,
vfp_v28,
vfp_v29,
vfp_v30,
vfp_v31,
vfp_fpsr,
vfp_fpcr,
// lower 32 bits of the corresponding vfp_v<n> reg.
vfp_s0,
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31,
// lower 64 bits of the corresponding vfp_v<n> reg.
vfp_d0,
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31
};
enum { exc_far = 0, exc_esr, exc_exception };
// These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)"
// document.
enum {
dwarf_x0 = 0,
dwarf_x1,
dwarf_x2,
dwarf_x3,
dwarf_x4,
dwarf_x5,
dwarf_x6,
dwarf_x7,
dwarf_x8,
dwarf_x9,
dwarf_x10,
dwarf_x11,
dwarf_x12,
dwarf_x13,
dwarf_x14,
dwarf_x15,
dwarf_x16,
dwarf_x17,
dwarf_x18,
dwarf_x19,
dwarf_x20,
dwarf_x21,
dwarf_x22,
dwarf_x23,
dwarf_x24,
dwarf_x25,
dwarf_x26,
dwarf_x27,
dwarf_x28,
dwarf_x29,
dwarf_x30,
dwarf_x31,
dwarf_pc = 32,
dwarf_elr_mode = 33,
dwarf_fp = dwarf_x29,
dwarf_lr = dwarf_x30,
dwarf_sp = dwarf_x31,
// 34-63 reserved
// V0-V31 (128 bit vector registers)
dwarf_v0 = 64,
dwarf_v1,
dwarf_v2,
dwarf_v3,
dwarf_v4,
dwarf_v5,
dwarf_v6,
dwarf_v7,
dwarf_v8,
dwarf_v9,
dwarf_v10,
dwarf_v11,
dwarf_v12,
dwarf_v13,
dwarf_v14,
dwarf_v15,
dwarf_v16,
dwarf_v17,
dwarf_v18,
dwarf_v19,
dwarf_v20,
dwarf_v21,
dwarf_v22,
dwarf_v23,
dwarf_v24,
dwarf_v25,
dwarf_v26,
dwarf_v27,
dwarf_v28,
dwarf_v29,
dwarf_v30,
dwarf_v31
// 96-127 reserved
};
enum {
debugserver_gpr_x0 = 0,
debugserver_gpr_x1,
debugserver_gpr_x2,
debugserver_gpr_x3,
debugserver_gpr_x4,
debugserver_gpr_x5,
debugserver_gpr_x6,
debugserver_gpr_x7,
debugserver_gpr_x8,
debugserver_gpr_x9,
debugserver_gpr_x10,
debugserver_gpr_x11,
debugserver_gpr_x12,
debugserver_gpr_x13,
debugserver_gpr_x14,
debugserver_gpr_x15,
debugserver_gpr_x16,
debugserver_gpr_x17,
debugserver_gpr_x18,
debugserver_gpr_x19,
debugserver_gpr_x20,
debugserver_gpr_x21,
debugserver_gpr_x22,
debugserver_gpr_x23,
debugserver_gpr_x24,
debugserver_gpr_x25,
debugserver_gpr_x26,
debugserver_gpr_x27,
debugserver_gpr_x28,
debugserver_gpr_fp, // x29
debugserver_gpr_lr, // x30
debugserver_gpr_sp, // sp aka xsp
debugserver_gpr_pc,
debugserver_gpr_cpsr,
debugserver_vfp_v0,
debugserver_vfp_v1,
debugserver_vfp_v2,
debugserver_vfp_v3,
debugserver_vfp_v4,
debugserver_vfp_v5,
debugserver_vfp_v6,
debugserver_vfp_v7,
debugserver_vfp_v8,
debugserver_vfp_v9,
debugserver_vfp_v10,
debugserver_vfp_v11,
debugserver_vfp_v12,
debugserver_vfp_v13,
debugserver_vfp_v14,
debugserver_vfp_v15,
debugserver_vfp_v16,
debugserver_vfp_v17,
debugserver_vfp_v18,
debugserver_vfp_v19,
debugserver_vfp_v20,
debugserver_vfp_v21,
debugserver_vfp_v22,
debugserver_vfp_v23,
debugserver_vfp_v24,
debugserver_vfp_v25,
debugserver_vfp_v26,
debugserver_vfp_v27,
debugserver_vfp_v28,
debugserver_vfp_v29,
debugserver_vfp_v30,
debugserver_vfp_v31,
debugserver_vfp_fpsr,
debugserver_vfp_fpcr
};
const char *g_contained_x0[]{"x0", NULL};
const char *g_contained_x1[]{"x1", NULL};
const char *g_contained_x2[]{"x2", NULL};
const char *g_contained_x3[]{"x3", NULL};
const char *g_contained_x4[]{"x4", NULL};
const char *g_contained_x5[]{"x5", NULL};
const char *g_contained_x6[]{"x6", NULL};
const char *g_contained_x7[]{"x7", NULL};
const char *g_contained_x8[]{"x8", NULL};
const char *g_contained_x9[]{"x9", NULL};
const char *g_contained_x10[]{"x10", NULL};
const char *g_contained_x11[]{"x11", NULL};
const char *g_contained_x12[]{"x12", NULL};
const char *g_contained_x13[]{"x13", NULL};
const char *g_contained_x14[]{"x14", NULL};
const char *g_contained_x15[]{"x15", NULL};
const char *g_contained_x16[]{"x16", NULL};
const char *g_contained_x17[]{"x17", NULL};
const char *g_contained_x18[]{"x18", NULL};
const char *g_contained_x19[]{"x19", NULL};
const char *g_contained_x20[]{"x20", NULL};
const char *g_contained_x21[]{"x21", NULL};
const char *g_contained_x22[]{"x22", NULL};
const char *g_contained_x23[]{"x23", NULL};
const char *g_contained_x24[]{"x24", NULL};
const char *g_contained_x25[]{"x25", NULL};
const char *g_contained_x26[]{"x26", NULL};
const char *g_contained_x27[]{"x27", NULL};
const char *g_contained_x28[]{"x28", NULL};
const char *g_invalidate_x0[]{"x0", "w0", NULL};
const char *g_invalidate_x1[]{"x1", "w1", NULL};
const char *g_invalidate_x2[]{"x2", "w2", NULL};
const char *g_invalidate_x3[]{"x3", "w3", NULL};
const char *g_invalidate_x4[]{"x4", "w4", NULL};
const char *g_invalidate_x5[]{"x5", "w5", NULL};
const char *g_invalidate_x6[]{"x6", "w6", NULL};
const char *g_invalidate_x7[]{"x7", "w7", NULL};
const char *g_invalidate_x8[]{"x8", "w8", NULL};
const char *g_invalidate_x9[]{"x9", "w9", NULL};
const char *g_invalidate_x10[]{"x10", "w10", NULL};
const char *g_invalidate_x11[]{"x11", "w11", NULL};
const char *g_invalidate_x12[]{"x12", "w12", NULL};
const char *g_invalidate_x13[]{"x13", "w13", NULL};
const char *g_invalidate_x14[]{"x14", "w14", NULL};
const char *g_invalidate_x15[]{"x15", "w15", NULL};
const char *g_invalidate_x16[]{"x16", "w16", NULL};
const char *g_invalidate_x17[]{"x17", "w17", NULL};
const char *g_invalidate_x18[]{"x18", "w18", NULL};
const char *g_invalidate_x19[]{"x19", "w19", NULL};
const char *g_invalidate_x20[]{"x20", "w20", NULL};
const char *g_invalidate_x21[]{"x21", "w21", NULL};
const char *g_invalidate_x22[]{"x22", "w22", NULL};
const char *g_invalidate_x23[]{"x23", "w23", NULL};
const char *g_invalidate_x24[]{"x24", "w24", NULL};
const char *g_invalidate_x25[]{"x25", "w25", NULL};
const char *g_invalidate_x26[]{"x26", "w26", NULL};
const char *g_invalidate_x27[]{"x27", "w27", NULL};
const char *g_invalidate_x28[]{"x28", "w28", NULL};
#define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) \
{ \
e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx), \
dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, \
g_invalidate_x##idx \
}
#define DEFINE_GPR_NAME(reg, alt, gen) \
{ \
e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), \
dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL \
}
#define DEFINE_PSEUDO_GPR_IDX(idx, reg) \
{ \
e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \
g_contained_x##idx, g_invalidate_x##idx \
}
//_STRUCT_ARM_THREAD_STATE64
//{
// uint64_t x[29]; /* General purpose registers x0-x28 */
// uint64_t fp; /* Frame pointer x29 */
// uint64_t lr; /* Link register x30 */
// uint64_t sp; /* Stack pointer x31 */
// uint64_t pc; /* Program counter */
// uint32_t cpsr; /* Current program status register */
//};
// General purpose registers
const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = {
DEFINE_GPR_IDX(0, x0, "arg1", GENERIC_REGNUM_ARG1),
DEFINE_GPR_IDX(1, x1, "arg2", GENERIC_REGNUM_ARG2),
DEFINE_GPR_IDX(2, x2, "arg3", GENERIC_REGNUM_ARG3),
DEFINE_GPR_IDX(3, x3, "arg4", GENERIC_REGNUM_ARG4),
DEFINE_GPR_IDX(4, x4, "arg5", GENERIC_REGNUM_ARG5),
DEFINE_GPR_IDX(5, x5, "arg6", GENERIC_REGNUM_ARG6),
DEFINE_GPR_IDX(6, x6, "arg7", GENERIC_REGNUM_ARG7),
DEFINE_GPR_IDX(7, x7, "arg8", GENERIC_REGNUM_ARG8),
DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM),
// For the G/g packet we want to show where the offset into the regctx
// is for fp/lr/sp/pc, but we cannot directly access them on arm64e
// devices (and therefore can't offsetof() them)) - add the offset based
// on the last accessible register by hand for advertising the location
// in the regctx to lldb. We'll go through the accessor functions when
// we read/write them here.
{
e_regSetGPR, gpr_fp, "fp", "x29", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 8,
dwarf_fp, dwarf_fp, GENERIC_REGNUM_FP, debugserver_gpr_fp, NULL, NULL
},
{
e_regSetGPR, gpr_lr, "lr", "x30", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 16,
dwarf_lr, dwarf_lr, GENERIC_REGNUM_RA, debugserver_gpr_lr, NULL, NULL
},
{
e_regSetGPR, gpr_sp, "sp", "xsp", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 24,
dwarf_sp, dwarf_sp, GENERIC_REGNUM_SP, debugserver_gpr_sp, NULL, NULL
},
{
e_regSetGPR, gpr_pc, "pc", NULL, Uint, Hex, 8, GPR_OFFSET_IDX(28) + 32,
dwarf_pc, dwarf_pc, GENERIC_REGNUM_PC, debugserver_gpr_pc, NULL, NULL
},
// in armv7 we specify that writing to the CPSR should invalidate r8-12, sp,
// lr.
// this should be specified for arm64 too even though debugserver is only
// used for
// userland debugging.
{e_regSetGPR, gpr_cpsr, "cpsr", "flags", Uint, Hex, 4,
GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, GENERIC_REGNUM_FLAGS,
debugserver_gpr_cpsr, NULL, NULL},
DEFINE_PSEUDO_GPR_IDX(0, w0),
DEFINE_PSEUDO_GPR_IDX(1, w1),
DEFINE_PSEUDO_GPR_IDX(2, w2),
DEFINE_PSEUDO_GPR_IDX(3, w3),
DEFINE_PSEUDO_GPR_IDX(4, w4),
DEFINE_PSEUDO_GPR_IDX(5, w5),
DEFINE_PSEUDO_GPR_IDX(6, w6),
DEFINE_PSEUDO_GPR_IDX(7, w7),
DEFINE_PSEUDO_GPR_IDX(8, w8),
DEFINE_PSEUDO_GPR_IDX(9, w9),
DEFINE_PSEUDO_GPR_IDX(10, w10),
DEFINE_PSEUDO_GPR_IDX(11, w11),
DEFINE_PSEUDO_GPR_IDX(12, w12),
DEFINE_PSEUDO_GPR_IDX(13, w13),
DEFINE_PSEUDO_GPR_IDX(14, w14),
DEFINE_PSEUDO_GPR_IDX(15, w15),
DEFINE_PSEUDO_GPR_IDX(16, w16),
DEFINE_PSEUDO_GPR_IDX(17, w17),
DEFINE_PSEUDO_GPR_IDX(18, w18),
DEFINE_PSEUDO_GPR_IDX(19, w19),
DEFINE_PSEUDO_GPR_IDX(20, w20),
DEFINE_PSEUDO_GPR_IDX(21, w21),
DEFINE_PSEUDO_GPR_IDX(22, w22),
DEFINE_PSEUDO_GPR_IDX(23, w23),
DEFINE_PSEUDO_GPR_IDX(24, w24),
DEFINE_PSEUDO_GPR_IDX(25, w25),
DEFINE_PSEUDO_GPR_IDX(26, w26),
DEFINE_PSEUDO_GPR_IDX(27, w27),
DEFINE_PSEUDO_GPR_IDX(28, w28)};
const char *g_contained_v0[]{"v0", NULL};
const char *g_contained_v1[]{"v1", NULL};
const char *g_contained_v2[]{"v2", NULL};
const char *g_contained_v3[]{"v3", NULL};
const char *g_contained_v4[]{"v4", NULL};
const char *g_contained_v5[]{"v5", NULL};
const char *g_contained_v6[]{"v6", NULL};
const char *g_contained_v7[]{"v7", NULL};
const char *g_contained_v8[]{"v8", NULL};
const char *g_contained_v9[]{"v9", NULL};
const char *g_contained_v10[]{"v10", NULL};
const char *g_contained_v11[]{"v11", NULL};
const char *g_contained_v12[]{"v12", NULL};
const char *g_contained_v13[]{"v13", NULL};
const char *g_contained_v14[]{"v14", NULL};
const char *g_contained_v15[]{"v15", NULL};
const char *g_contained_v16[]{"v16", NULL};
const char *g_contained_v17[]{"v17", NULL};
const char *g_contained_v18[]{"v18", NULL};
const char *g_contained_v19[]{"v19", NULL};
const char *g_contained_v20[]{"v20", NULL};
const char *g_contained_v21[]{"v21", NULL};
const char *g_contained_v22[]{"v22", NULL};
const char *g_contained_v23[]{"v23", NULL};
const char *g_contained_v24[]{"v24", NULL};
const char *g_contained_v25[]{"v25", NULL};
const char *g_contained_v26[]{"v26", NULL};
const char *g_contained_v27[]{"v27", NULL};
const char *g_contained_v28[]{"v28", NULL};
const char *g_contained_v29[]{"v29", NULL};
const char *g_contained_v30[]{"v30", NULL};
const char *g_contained_v31[]{"v31", NULL};
const char *g_invalidate_v0[]{"v0", "d0", "s0", NULL};
const char *g_invalidate_v1[]{"v1", "d1", "s1", NULL};
const char *g_invalidate_v2[]{"v2", "d2", "s2", NULL};
const char *g_invalidate_v3[]{"v3", "d3", "s3", NULL};
const char *g_invalidate_v4[]{"v4", "d4", "s4", NULL};
const char *g_invalidate_v5[]{"v5", "d5", "s5", NULL};
const char *g_invalidate_v6[]{"v6", "d6", "s6", NULL};
const char *g_invalidate_v7[]{"v7", "d7", "s7", NULL};
const char *g_invalidate_v8[]{"v8", "d8", "s8", NULL};
const char *g_invalidate_v9[]{"v9", "d9", "s9", NULL};
const char *g_invalidate_v10[]{"v10", "d10", "s10", NULL};
const char *g_invalidate_v11[]{"v11", "d11", "s11", NULL};
const char *g_invalidate_v12[]{"v12", "d12", "s12", NULL};
const char *g_invalidate_v13[]{"v13", "d13", "s13", NULL};
const char *g_invalidate_v14[]{"v14", "d14", "s14", NULL};
const char *g_invalidate_v15[]{"v15", "d15", "s15", NULL};
const char *g_invalidate_v16[]{"v16", "d16", "s16", NULL};
const char *g_invalidate_v17[]{"v17", "d17", "s17", NULL};
const char *g_invalidate_v18[]{"v18", "d18", "s18", NULL};
const char *g_invalidate_v19[]{"v19", "d19", "s19", NULL};
const char *g_invalidate_v20[]{"v20", "d20", "s20", NULL};
const char *g_invalidate_v21[]{"v21", "d21", "s21", NULL};
const char *g_invalidate_v22[]{"v22", "d22", "s22", NULL};
const char *g_invalidate_v23[]{"v23", "d23", "s23", NULL};
const char *g_invalidate_v24[]{"v24", "d24", "s24", NULL};
const char *g_invalidate_v25[]{"v25", "d25", "s25", NULL};
const char *g_invalidate_v26[]{"v26", "d26", "s26", NULL};
const char *g_invalidate_v27[]{"v27", "d27", "s27", NULL};
const char *g_invalidate_v28[]{"v28", "d28", "s28", NULL};
const char *g_invalidate_v29[]{"v29", "d29", "s29", NULL};
const char *g_invalidate_v30[]{"v30", "d30", "s30", NULL};
const char *g_invalidate_v31[]{"v31", "d31", "s31", NULL};
#if defined(__arm64__) || defined(__aarch64__)
#define VFP_V_OFFSET_IDX(idx) \
(offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) + \
offsetof(DNBArchMachARM64::Context, vfp))
#else
#define VFP_V_OFFSET_IDX(idx) \
(offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) + \
offsetof(DNBArchMachARM64::Context, vfp))
#endif
#define VFP_OFFSET_NAME(reg) \
(offsetof(DNBArchMachARM64::FPU, reg) + \
offsetof(DNBArchMachARM64::Context, vfp))
#define EXC_OFFSET(reg) \
(offsetof(DNBArchMachARM64::EXC, reg) + \
offsetof(DNBArchMachARM64::Context, exc))
//#define FLOAT_FORMAT Float
#define DEFINE_VFP_V_IDX(idx) \
{ \
e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16, \
VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx, \
INVALID_NUB_REGNUM, debugserver_vfp_v##idx, NULL, g_invalidate_v##idx \
}
#define DEFINE_PSEUDO_VFP_S_IDX(idx) \
{ \
e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \
INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx \
}
#define DEFINE_PSEUDO_VFP_D_IDX(idx) \
{ \
e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \
INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx \
}
// Floating point registers
const DNBRegisterInfo DNBArchMachARM64::g_vfp_registers[] = {
DEFINE_VFP_V_IDX(0),
DEFINE_VFP_V_IDX(1),
DEFINE_VFP_V_IDX(2),
DEFINE_VFP_V_IDX(3),
DEFINE_VFP_V_IDX(4),
DEFINE_VFP_V_IDX(5),
DEFINE_VFP_V_IDX(6),
DEFINE_VFP_V_IDX(7),
DEFINE_VFP_V_IDX(8),
DEFINE_VFP_V_IDX(9),
DEFINE_VFP_V_IDX(10),
DEFINE_VFP_V_IDX(11),
DEFINE_VFP_V_IDX(12),
DEFINE_VFP_V_IDX(13),
DEFINE_VFP_V_IDX(14),
DEFINE_VFP_V_IDX(15),
DEFINE_VFP_V_IDX(16),
DEFINE_VFP_V_IDX(17),
DEFINE_VFP_V_IDX(18),
DEFINE_VFP_V_IDX(19),
DEFINE_VFP_V_IDX(20),
DEFINE_VFP_V_IDX(21),
DEFINE_VFP_V_IDX(22),
DEFINE_VFP_V_IDX(23),
DEFINE_VFP_V_IDX(24),
DEFINE_VFP_V_IDX(25),
DEFINE_VFP_V_IDX(26),
DEFINE_VFP_V_IDX(27),
DEFINE_VFP_V_IDX(28),
DEFINE_VFP_V_IDX(29),
DEFINE_VFP_V_IDX(30),
DEFINE_VFP_V_IDX(31),
{e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4,
VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4,
VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
DEFINE_PSEUDO_VFP_S_IDX(0),
DEFINE_PSEUDO_VFP_S_IDX(1),
DEFINE_PSEUDO_VFP_S_IDX(2),
DEFINE_PSEUDO_VFP_S_IDX(3),
DEFINE_PSEUDO_VFP_S_IDX(4),
DEFINE_PSEUDO_VFP_S_IDX(5),
DEFINE_PSEUDO_VFP_S_IDX(6),
DEFINE_PSEUDO_VFP_S_IDX(7),
DEFINE_PSEUDO_VFP_S_IDX(8),
DEFINE_PSEUDO_VFP_S_IDX(9),
DEFINE_PSEUDO_VFP_S_IDX(10),
DEFINE_PSEUDO_VFP_S_IDX(11),
DEFINE_PSEUDO_VFP_S_IDX(12),
DEFINE_PSEUDO_VFP_S_IDX(13),
DEFINE_PSEUDO_VFP_S_IDX(14),
DEFINE_PSEUDO_VFP_S_IDX(15),
DEFINE_PSEUDO_VFP_S_IDX(16),
DEFINE_PSEUDO_VFP_S_IDX(17),
DEFINE_PSEUDO_VFP_S_IDX(18),
DEFINE_PSEUDO_VFP_S_IDX(19),
DEFINE_PSEUDO_VFP_S_IDX(20),
DEFINE_PSEUDO_VFP_S_IDX(21),
DEFINE_PSEUDO_VFP_S_IDX(22),
DEFINE_PSEUDO_VFP_S_IDX(23),
DEFINE_PSEUDO_VFP_S_IDX(24),
DEFINE_PSEUDO_VFP_S_IDX(25),
DEFINE_PSEUDO_VFP_S_IDX(26),
DEFINE_PSEUDO_VFP_S_IDX(27),
DEFINE_PSEUDO_VFP_S_IDX(28),
DEFINE_PSEUDO_VFP_S_IDX(29),
DEFINE_PSEUDO_VFP_S_IDX(30),
DEFINE_PSEUDO_VFP_S_IDX(31),
DEFINE_PSEUDO_VFP_D_IDX(0),
DEFINE_PSEUDO_VFP_D_IDX(1),
DEFINE_PSEUDO_VFP_D_IDX(2),
DEFINE_PSEUDO_VFP_D_IDX(3),
DEFINE_PSEUDO_VFP_D_IDX(4),
DEFINE_PSEUDO_VFP_D_IDX(5),
DEFINE_PSEUDO_VFP_D_IDX(6),
DEFINE_PSEUDO_VFP_D_IDX(7),
DEFINE_PSEUDO_VFP_D_IDX(8),
DEFINE_PSEUDO_VFP_D_IDX(9),
DEFINE_PSEUDO_VFP_D_IDX(10),
DEFINE_PSEUDO_VFP_D_IDX(11),
DEFINE_PSEUDO_VFP_D_IDX(12),
DEFINE_PSEUDO_VFP_D_IDX(13),
DEFINE_PSEUDO_VFP_D_IDX(14),
DEFINE_PSEUDO_VFP_D_IDX(15),
DEFINE_PSEUDO_VFP_D_IDX(16),
DEFINE_PSEUDO_VFP_D_IDX(17),
DEFINE_PSEUDO_VFP_D_IDX(18),
DEFINE_PSEUDO_VFP_D_IDX(19),
DEFINE_PSEUDO_VFP_D_IDX(20),
DEFINE_PSEUDO_VFP_D_IDX(21),
DEFINE_PSEUDO_VFP_D_IDX(22),
DEFINE_PSEUDO_VFP_D_IDX(23),
DEFINE_PSEUDO_VFP_D_IDX(24),
DEFINE_PSEUDO_VFP_D_IDX(25),
DEFINE_PSEUDO_VFP_D_IDX(26),
DEFINE_PSEUDO_VFP_D_IDX(27),
DEFINE_PSEUDO_VFP_D_IDX(28),
DEFINE_PSEUDO_VFP_D_IDX(29),
DEFINE_PSEUDO_VFP_D_IDX(30),
DEFINE_PSEUDO_VFP_D_IDX(31)
};
//_STRUCT_ARM_EXCEPTION_STATE64
//{
// uint64_t far; /* Virtual Fault Address */
// uint32_t esr; /* Exception syndrome */
// uint32_t exception; /* number of arm exception taken */
//};
// Exception registers
const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = {
{e_regSetEXC, exc_far, "far", NULL, Uint, Hex, 8, EXC_OFFSET(__far),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetEXC, exc_esr, "esr", NULL, Uint, Hex, 4, EXC_OFFSET(__esr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetEXC, exc_exception, "exception", NULL, Uint, Hex, 4,
EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}};
// Number of registers in each register set
const size_t DNBArchMachARM64::k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM64::k_num_vfp_registers =
sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM64::k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM64::k_num_all_registers =
k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
const DNBRegisterSetInfo DNBArchMachARM64::g_reg_sets[] = {
{"ARM64 Registers", NULL, k_num_all_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers}};
// Total number of register sets for this architecture
const size_t DNBArchMachARM64::k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t ®) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_fp;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
case GENERIC_REGNUM_ARG1:
case GENERIC_REGNUM_ARG2:
case GENERIC_REGNUM_ARG3:
case GENERIC_REGNUM_ARG4:
case GENERIC_REGNUM_ARG5:
case GENERIC_REGNUM_ARG6:
set = e_regSetGPR;
reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1;
break;
default:
return false;
}
}
return true;
}
bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
if (!FixGenericRegisterNumber(set, reg))
return false;
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg <= gpr_pc) {
switch (reg) {
#if defined(DEBUGSERVER_IS_ARM64E)
case gpr_pc:
value->value.uint64 = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc));
break;
case gpr_lr:
value->value.uint64 = arm_thread_state64_get_lr(m_state.context.gpr);
break;
case gpr_sp:
value->value.uint64 = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp));
break;
case gpr_fp:
value->value.uint64 = clear_pac_bits(
reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp));
break;
#else
case gpr_pc:
value->value.uint64 = clear_pac_bits(m_state.context.gpr.__pc);
break;
case gpr_lr:
value->value.uint64 = clear_pac_bits(m_state.context.gpr.__lr);
break;
case gpr_sp:
value->value.uint64 = clear_pac_bits(m_state.context.gpr.__sp);
break;
case gpr_fp:
value->value.uint64 = clear_pac_bits(m_state.context.gpr.__fp);
break;
#endif
default:
value->value.uint64 = m_state.context.gpr.__x[reg];
}
return true;
} else if (reg == gpr_cpsr) {
value->value.uint32 = m_state.context.gpr.__cpsr;
return true;
}
break;
case e_regSetVFP:
if (reg >= vfp_v0 && reg <= vfp_v31) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0],
16);
#else
memcpy(&value->value.v_uint8,
((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16),
16);
#endif
return true;
} else if (reg == vfp_fpsr) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4);
#else
memcpy(&value->value.uint32,
((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4);
#endif
return true;
} else if (reg == vfp_fpcr) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4);
#else
memcpy(&value->value.uint32,
((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4);
#endif
return true;
} else if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0],
4);
#else
memcpy(&value->value.v_uint8,
((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16),
4);
#endif
return true;
} else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0],
8);
#else
memcpy(&value->value.v_uint8,
((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16),
8);
#endif
return true;
}
break;
case e_regSetEXC:
if (reg == exc_far) {
value->value.uint64 = m_state.context.exc.__far;
return true;
} else if (reg == exc_esr) {
value->value.uint32 = m_state.context.exc.__esr;
return true;
} else if (reg == exc_exception) {
value->value.uint32 = m_state.context.exc.__exception;
return true;
}
break;
}
}
return false;
}
bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
if (!FixGenericRegisterNumber(set, reg))
return false;
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
switch (set) {
case e_regSetGPR:
if (reg <= gpr_pc) {
#if defined(__LP64__)
uint64_t signed_value = value->value.uint64;
#if __has_feature(ptrauth_calls)
// The incoming value could be garbage. Strip it to avoid
// trapping when it gets resigned in the thread state.
signed_value = (uint64_t) ptrauth_strip((void*) signed_value, ptrauth_key_function_pointer);
signed_value = (uint64_t) ptrauth_sign_unauthenticated((void*) signed_value, ptrauth_key_function_pointer, 0);
#endif
if (reg == gpr_pc)
arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) signed_value);
else if (reg == gpr_lr)
arm_thread_state64_set_lr_fptr (m_state.context.gpr, (void*) signed_value);
else if (reg == gpr_sp)
arm_thread_state64_set_sp (m_state.context.gpr, value->value.uint64);
else if (reg == gpr_fp)
arm_thread_state64_set_fp (m_state.context.gpr, value->value.uint64);
else
m_state.context.gpr.__x[reg] = value->value.uint64;
#else
m_state.context.gpr.__x[reg] = value->value.uint64;
#endif
success = true;
} else if (reg == gpr_cpsr) {
m_state.context.gpr.__cpsr = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
if (reg >= vfp_v0 && reg <= vfp_v31) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8,
16);
#else
memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16),
&value->value.v_uint8, 16);
#endif
success = true;
} else if (reg == vfp_fpsr) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4);
#else
memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0,
&value->value.uint32, 4);
#endif
success = true;
} else if (reg == vfp_fpcr) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4);
#else
memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4,
&value->value.uint32, 4);
#endif
success = true;
} else if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8,
4);
#else
memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16),
&value->value.v_uint8, 4);
#endif
success = true;
} else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8,
8);
#else
memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16),
&value->value.v_uint8, 8);
#endif
success = true;
}
break;
case e_regSetEXC:
if (reg == exc_far) {
m_state.context.exc.__far = value->value.uint64;
success = true;
} else if (reg == exc_esr) {
m_state.context.exc.__esr = value->value.uint32;
success = true;
} else if (reg == exc_exception) {
m_state.context.exc.__exception = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetVFP:
return GetVFPState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetDBG:
return GetDBGState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachARM64::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
case e_regSetGPR:
return SetGPRState();
case e_regSetVFP:
return SetVFPState();
case e_regSetEXC:
return SetEXCState();
case e_regSetDBG:
return SetDBGState(false);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
sizeof(m_state.context.exc);
if (buf && buf_len) {
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
// Copy each struct individually to avoid any padding that might be between
// the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf,
buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf,
nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
sizeof(m_state.context.exc);
if (buf == NULL || buf_len == 0)
size = 0;
if (size) {
if (size > buf_len)
size = buf_len;
// Copy each struct individually to avoid any padding that might be between
// the structs in m_state.context
uint8_t *p = const_cast<uint8_t*>(reinterpret_cast<const uint8_t *>(buf));
::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - reinterpret_cast<const uint8_t *>(buf);
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
SetGPRState();
SetVFPState();
SetEXCState();
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf,
buf_len, size);
return size;
}
uint32_t DNBArchMachARM64::SaveRegisterState() {
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf(
LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
"(SetGPRState() for stop_count = %u)",
m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
// Always re-read the registers because above we call thread_abort_safely();
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () "
"error: GPR regs failed to read: %u ",
kret);
} else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () "
"error: %s regs failed to read: %u",
"VFP", kret);
} else {
const uint32_t save_id = GetNextRegisterStateSaveID();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return UINT32_MAX;
}
bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) {
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end()) {
m_state.context.gpr = pos->second.gpr;
m_state.context.vfp = pos->second.vfp;
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState "
"(save_id = %u) error: GPR regs failed to "
"write: %u",
save_id, kret);
success = false;
} else if ((kret = SetVFPState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState "
"(save_id = %u) error: %s regs failed to "
"write: %u",
save_id, "VFP", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
#endif // #if defined (ARM_THREAD_STATE64_COUNT)
#endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)