"""
Test the 'memory read' command.
"""
import lldb
import lldbsuite.test.lldbutil as lldbutil
from lldbsuite.test.decorators import *
from lldbsuite.test.lldbtest import *
class MemoryReadTestCase(TestBase):
NO_DEBUG_INFO_TESTCASE = True
def build_run_stop(self):
self.build()
lldbutil.run_to_source_breakpoint(
self, "// break here", lldb.SBFileSpec("main.c")
)
def test_memory_read_c_string(self):
"""Test that reading memory as a c string respects the size limit given
and warns if the null terminator is missing."""
self.build_run_stop()
# The size here is the size in memory so it includes the null terminator.
cmd = 'memory read --format "c-string" --size {} &my_string'
# Size matches the size of the array.
self.expect(cmd.format(8), substrs=['"abcdefg"'])
# If size would take us past the terminator we stop at the terminator.
self.expect(cmd.format(10), substrs=['"abcdefg"'])
# Size 3 means 2 chars and a terminator. So we print 2 chars but warn because
# the third isn't 0 as expected.
self.expect(cmd.format(3), substrs=['"ab"'])
self.assertRegex(
self.res.GetError(),
"unable to find a NULL terminated string at 0x[0-9A-Fa-f]+."
" Consider increasing the maximum read length.",
)
def test_memory_read(self):
"""Test the 'memory read' command with plain and vector formats."""
self.build_run_stop()
# (lldb) memory read -f d -c 1 `&argc`
# 0x7fff5fbff9a0: 1
self.runCmd("memory read -f d -c 1 `&argc`")
# Find the starting address for variable 'argc' to verify later that the
# '--format uint32_t[] --size 4 --count 4' option increments the address
# correctly.
line = self.res.GetOutput().splitlines()[0]
items = line.split(":")
address = int(items[0], 0)
argc = int(items[1], 0)
self.assertGreater(address, 0)
self.assertEqual(argc, 1)
# (lldb) memory read --format uint32_t[] --size 4 --count 4 `&argc`
# 0x7fff5fbff9a0: {0x00000001}
# 0x7fff5fbff9a4: {0x00000000}
# 0x7fff5fbff9a8: {0x0ec0bf27}
# 0x7fff5fbff9ac: {0x215db505}
self.runCmd("memory read --format uint32_t[] --size 4 --count 4 `&argc`")
lines = self.res.GetOutput().splitlines()
for i in range(4):
if i == 0:
# Verify that the printout for argc is correct.
self.assertEqual(argc, int(lines[i].split(":")[1].strip(" {}"), 0))
addr = int(lines[i].split(":")[0], 0)
# Verify that the printout for addr is incremented correctly.
self.assertEqual(addr, (address + i * 4))
# (lldb) memory read --format char[] --size 7 --count 1 `&my_string`
# 0x7fff5fbff990: {abcdefg}
self.expect(
"memory read --format char[] --size 7 --count 1 `&my_string`",
substrs=["abcdefg"],
)
# (lldb) memory read --format 'hex float' --size 16 `&argc`
# 0x7fff5fbff5b0: error: unsupported byte size (16) for hex float
# format
self.expect(
"memory read --format 'hex float' --size 16 `&argc`",
substrs=["unsupported byte size (16) for hex float format"],
)
self.expect(
"memory read --format 'float' --count 1 --size 8 `&my_double`",
substrs=["1234."],
)
# (lldb) memory read --format 'float' --count 1 --size 20 `&my_double`
# 0x7fff5fbff598: error: unsupported byte size (20) for float format
self.expect(
"memory read --format 'float' --count 1 --size 20 `&my_double`",
substrs=["unsupported byte size (20) for float format"],
)
self.expect(
"memory read --type int --count 5 `&my_ints[0]`",
substrs=["(int) 0x", "2", "4", "6", "8", "10"],
)
self.expect(
"memory read --type int --count 5 --format hex `&my_ints[0]`",
substrs=["(int) 0x", "0x", "0a"],
)
self.expect(
"memory read --type int --count 5 --offset 5 `&my_ints[0]`",
substrs=["(int) 0x", "12", "14", "16", "18", "20"],
)
# the gdb format specifier and the size in characters for
# the returned values including the 0x prefix.
variations = [["b", 4], ["h", 6], ["w", 10], ["g", 18]]
for v in variations:
formatter = v[0]
expected_object_length = v[1]
self.runCmd("memory read --gdb-format 4%s &my_uint64s" % formatter)
lines = self.res.GetOutput().splitlines()
objects_read = []
for l in lines:
objects_read.extend(l.split(":")[1].split())
# Check that we got back 4 0x0000 etc bytes
for o in objects_read:
self.assertEqual(len(o), expected_object_length)
self.assertEqual(len(objects_read), 4)
def test_memory_read_file(self):
self.build_run_stop()
res = lldb.SBCommandReturnObject()
self.ci.HandleCommand("memory read -f d -c 1 `&argc`", res)
self.assertTrue(res.Succeeded(), "memory read failed:" + res.GetError())
# Record golden output.
golden_output = res.GetOutput()
memory_read_file = self.getBuildArtifact("memory-read-output")
def check_file_content(expected):
with open(memory_read_file) as f:
lines = f.readlines()
lines = [s.strip() for s in lines]
expected = [s.strip() for s in expected]
self.assertEqual(lines, expected)
# Sanity check.
self.runCmd("memory read -f d -c 1 -o '{}' `&argc`".format(memory_read_file))
check_file_content([golden_output])
# Write some garbage to the file.
with open(memory_read_file, "w") as f:
f.write("some garbage")
# Make sure the file is truncated when we run the command again.
self.runCmd("memory read -f d -c 1 -o '{}' `&argc`".format(memory_read_file))
check_file_content([golden_output])
# Make sure the file is appended when we run the command with --append-outfile.
self.runCmd(
"memory read -f d -c 1 -o '{}' --append-outfile `&argc`".format(
memory_read_file
)
)
check_file_content([golden_output, golden_output])