//===-- ConvertCall.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertProcedureDesignator.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/HlfirIntrinsics.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/CUF/CUFOps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-expr"
static llvm::cl::opt<bool> useHlfirIntrinsicOps(
"use-hlfir-intrinsic-ops", llvm::cl::init(true),
llvm::cl::desc("Lower via HLFIR transformational intrinsic operations such "
"as hlfir.sum"));
static constexpr char tempResultName[] = ".tmp.func_result";
/// Helper to package a Value and its properties into an ExtendedValue.
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
llvm::ArrayRef<mlir::Value> extents,
llvm::ArrayRef<mlir::Value> lengths) {
mlir::Type type = base.getType();
if (mlir::isa<fir::BaseBoxType>(type))
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
type = fir::unwrapRefType(type);
if (mlir::isa<fir::BaseBoxType>(type))
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(type)) {
if (seqTy.getDimension() != extents.size())
fir::emitFatalError(loc, "incorrect number of extents for array");
if (mlir::isa<fir::CharacterType>(seqTy.getEleTy())) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharArrayBoxValue(base, lengths[0], extents);
}
return fir::ArrayBoxValue(base, extents);
}
if (mlir::isa<fir::CharacterType>(type)) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharBoxValue(base, lengths[0]);
}
return base;
}
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
/// reference. A C pointer can correspond to a Fortran dummy argument of type
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
static mlir::Value genRecordCPtrValueArg(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value rec,
mlir::Type ty) {
mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
return builder.createConvert(loc, cAddr.getType(), cVal);
}
// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
// Scan the argument list from last to first as the host associations are
// appended for now.
for (unsigned i = fn.getNumArguments(); i > 0; --i)
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
// Host assoc tuple must be last argument (for now).
assert(i == fn.getNumArguments() && "tuple must be last");
return i - 1;
}
llvm_unreachable("anyFuncArgsHaveAttr failed");
}
mlir::Value
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
mlir::Value arg) {
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
auto &builder = converter.getFirOpBuilder();
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
return converter.hostAssocTupleValue();
}
return {};
}
static bool mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
mlir::FunctionType callSiteType, mlir::FunctionType funcOpType) {
// Deal with argument number mismatch by making a function pointer so
// that function type cast can be inserted. Do not emit a warning here
// because this can happen in legal program if the function is not
// defined here and it was first passed as an argument without any more
// information.
if (callSiteType.getNumResults() != funcOpType.getNumResults() ||
callSiteType.getNumInputs() != funcOpType.getNumInputs())
return true;
// Implicit interface result type mismatch are not standard Fortran, but
// some compilers are not complaining about it. The front end is not
// protecting lowering from this currently. Support this with a
// discouraging warning.
// Cast the actual function to the current caller implicit type because
// that is the behavior we would get if we could not see the definition.
if (callSiteType.getResults() != funcOpType.getResults()) {
LLVM_DEBUG(mlir::emitWarning(
loc, "a return type mismatch is not standard compliant and may "
"lead to undefined behavior."));
return true;
}
// In HLFIR, there is little attempt to cope with implicit interface
// mismatch on the arguments. The argument are always prepared according
// to the implicit interface. Cast the actual function if any of the
// argument mismatch cannot be dealt with a simple fir.convert.
if (converter.getLoweringOptions().getLowerToHighLevelFIR())
for (auto [actualType, dummyType] :
llvm::zip(callSiteType.getInputs(), funcOpType.getInputs()))
if (actualType != dummyType &&
!fir::ConvertOp::canBeConverted(actualType, dummyType))
return true;
return false;
}
static mlir::Value readDim3Value(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value dim3Addr, llvm::StringRef comp) {
mlir::Type i32Ty = builder.getI32Type();
mlir::Type refI32Ty = fir::ReferenceType::get(i32Ty);
llvm::SmallVector<mlir::Value> lenParams;
mlir::Value designate = builder.create<hlfir::DesignateOp>(
loc, refI32Ty, dim3Addr, /*component=*/comp,
/*componentShape=*/mlir::Value{}, hlfir::DesignateOp::Subscripts{},
/*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt,
mlir::Value{}, lenParams);
return hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{designate});
}
static mlir::Value remapActualToDummyDescriptor(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::lower::CallerInterface::PassedEntity &arg,
Fortran::lower::CallerInterface &caller, bool isBindcCall) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
Fortran::lower::StatementContext localStmtCtx;
auto lowerSpecExpr = [&](const auto &expr,
bool isAssumedSizeExtent) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, localStmtCtx)));
if (isAssumedSizeExtent)
return convertExpr;
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
bool mapSymbols = caller.mustMapInterfaceSymbolsForDummyArgument(arg);
if (mapSymbols) {
symMap.pushScope();
const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
assert(sym && "call must have explicit interface to map interface symbols");
Fortran::lower::mapCallInterfaceSymbolsForDummyArgument(converter, caller,
symMap, *sym);
}
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
mlir::Type dummyBoxType = caller.getDummyArgumentType(arg);
mlir::Type dummyBaseType = fir::unwrapPassByRefType(dummyBoxType);
if (mlir::isa<fir::SequenceType>(dummyBaseType))
caller.walkDummyArgumentExtents(
arg, [&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
extents.emplace_back(lowerSpecExpr(e, isAssumedSizeExtent));
});
mlir::Value shape;
if (!extents.empty()) {
if (isBindcCall) {
// Preserve zero lower bounds (see F'2023 18.5.3).
llvm::SmallVector<mlir::Value> lowerBounds(extents.size(), zero);
shape = builder.genShape(loc, lowerBounds, extents);
} else {
shape = builder.genShape(loc, extents);
}
}
hlfir::Entity explicitArgument = hlfir::Entity{caller.getInput(arg)};
mlir::Type dummyElementType = fir::unwrapSequenceType(dummyBaseType);
if (auto recType = llvm::dyn_cast<fir::RecordType>(dummyElementType))
if (recType.getNumLenParams() > 0)
TODO(loc, "sequence association of length parameterized derived type "
"dummy arguments");
if (fir::isa_char(dummyElementType))
lengths.emplace_back(hlfir::genCharLength(loc, builder, explicitArgument));
mlir::Value baseAddr =
hlfir::genVariableRawAddress(loc, builder, explicitArgument);
baseAddr = builder.createConvert(loc, fir::ReferenceType::get(dummyBaseType),
baseAddr);
mlir::Value mold;
if (fir::isPolymorphicType(dummyBoxType))
mold = explicitArgument;
mlir::Value remapped =
builder.create<fir::EmboxOp>(loc, dummyBoxType, baseAddr, shape,
/*slice=*/mlir::Value{}, lengths, mold);
if (mapSymbols)
symMap.popScope();
return remapped;
}
/// Create a descriptor for sequenced associated descriptor that are passed
/// by descriptor. Sequence association (F'2023 15.5.2.12) implies that the
/// dummy shape and rank need to not be the same as the actual argument. This
/// helper creates a descriptor based on the dummy shape and rank (sequence
/// association can only happen with explicit and assumed-size array) so that it
/// is safe to assume the rank of the incoming descriptor inside the callee.
/// This helper must be called once all the actual arguments have been lowered
/// and placed inside "caller". Copy-in/copy-out must already have been
/// generated if needed using the actual argument shape (the dummy shape may be
/// assumed-size).
static void remapActualToDummyDescriptors(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller, bool isBindcCall) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
if (arg.isSequenceAssociatedDescriptor()) {
if (!preparedActual.value().handleDynamicOptional()) {
mlir::Value remapped = remapActualToDummyDescriptor(
loc, converter, symMap, arg, caller, isBindcCall);
caller.placeInput(arg, remapped);
} else {
// Absent optional actual argument descriptor cannot be read and
// remapped unconditionally.
mlir::Type dummyType = caller.getDummyArgumentType(arg);
mlir::Value isPresent = preparedActual.value().getIsPresent();
auto &argLambdaCapture = arg;
mlir::Value remapped =
builder
.genIfOp(loc, {dummyType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
mlir::Value newBox = remapActualToDummyDescriptor(
loc, converter, symMap, argLambdaCapture, caller,
isBindcCall);
builder.create<fir::ResultOp>(loc, newBox);
})
.genElse([&]() {
mlir::Value absent =
builder.create<fir::AbsentOp>(loc, dummyType);
builder.create<fir::ResultOp>(loc, absent);
})
.getResults()[0];
caller.placeInput(arg, remapped);
}
}
}
}
std::pair<fir::ExtendedValue, bool> Fortran::lower::genCallOpAndResult(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
std::optional<mlir::Type> resultType, bool isElemental) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
bool mustPopSymMap = false;
if (caller.mustMapInterfaceSymbolsForResult()) {
symMap.pushScope();
mustPopSymMap = true;
Fortran::lower::mapCallInterfaceSymbolsForResult(converter, caller, symMap);
}
// If this is an indirect call, retrieve the function address. Also retrieve
// the result length if this is a character function (note that this length
// will be used only if there is no explicit length in the local interface).
mlir::Value funcPointer;
mlir::Value charFuncPointerLength;
if (const Fortran::evaluate::ProcedureDesignator *procDesignator =
caller.getIfIndirectCall()) {
if (mlir::Value passedArg = caller.getIfPassedArg()) {
// Procedure pointer component call with PASS argument. To avoid
// "double" lowering of the ComponentRef, semantics only place the
// ComponentRef in the ActualArguments, not in the ProcedureDesignator (
// that is only the component symbol).
// Fetch the passed argument and addresses of its procedure pointer
// component.
funcPointer = Fortran::lower::derefPassProcPointerComponent(
loc, converter, *procDesignator, passedArg, symMap, stmtCtx);
} else {
Fortran::lower::SomeExpr expr{*procDesignator};
fir::ExtendedValue loweredProc =
converter.genExprAddr(loc, expr, stmtCtx);
funcPointer = fir::getBase(loweredProc);
// Dummy procedure may have assumed length, in which case the result
// length was passed along the dummy procedure.
// This is not possible with procedure pointer components.
if (const fir::CharBoxValue *charBox = loweredProc.getCharBox())
charFuncPointerLength = charBox->getLen();
}
}
mlir::IndexType idxTy = builder.getIndexType();
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> resultLengths;
auto allocatedResult = [&]() -> std::optional<fir::ExtendedValue> {
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
if (!caller.callerAllocateResult())
return {};
mlir::Type type = caller.getResultStorageType();
if (mlir::isa<fir::SequenceType>(type))
caller.walkResultExtents(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
extents.emplace_back(lowerSpecExpr(e));
});
caller.walkResultLengths(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
lengths.emplace_back(lowerSpecExpr(e));
});
// Result length parameters should not be provided to box storage
// allocation and save_results, but they are still useful information to
// keep in the ExtendedValue if non-deferred.
if (!mlir::isa<fir::BoxType>(type)) {
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
// Calling an assumed length function. This is only possible if this
// is a call to a character dummy procedure.
if (!charFuncPointerLength)
fir::emitFatalError(loc, "failed to retrieve character function "
"length while calling it");
lengths.push_back(charFuncPointerLength);
}
resultLengths = lengths;
}
if ((!extents.empty() || !lengths.empty()) && !isElemental) {
// Note: in the elemental context, the alloca ownership inside the
// elemental region is implicit, and later pass in lowering (stack
// reclaim) fir.do_loop will be in charge of emitting any stack
// save/restore if needed.
auto *bldr = &converter.getFirOpBuilder();
mlir::Value sp = bldr->genStackSave(loc);
stmtCtx.attachCleanup(
[bldr, loc, sp]() { bldr->genStackRestore(loc, sp); });
}
mlir::Value temp =
builder.createTemporary(loc, type, ".result", extents, resultLengths);
return toExtendedValue(loc, temp, extents, lengths);
}();
if (mustPopSymMap)
symMap.popScope();
// Place allocated result or prepare the fir.save_result arguments.
mlir::Value arrayResultShape;
if (allocatedResult) {
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = caller.getPassedResult()) {
if (resultArg->passBy == PassBy::AddressAndLength)
caller.placeAddressAndLengthInput(*resultArg,
fir::getBase(*allocatedResult),
fir::getLen(*allocatedResult));
else if (resultArg->passBy == PassBy::BaseAddress)
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
else
fir::emitFatalError(
loc, "only expect character scalar result to be passed by ref");
} else {
assert(caller.mustSaveResult());
arrayResultShape = allocatedResult->match(
[&](const fir::CharArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const fir::ArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const auto &) { return mlir::Value{}; });
}
}
// In older Fortran, procedure argument types are inferred. This may lead
// different view of what the function signature is in different locations.
// Casts are inserted as needed below to accommodate this.
// The mlir::func::FuncOp type prevails, unless it has a different number of
// arguments which can happen in legal program if it was passed as a dummy
// procedure argument earlier with no further type information.
mlir::SymbolRefAttr funcSymbolAttr;
bool addHostAssociations = false;
if (!funcPointer) {
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
mlir::SymbolRefAttr symbolAttr =
builder.getSymbolRefAttr(caller.getMangledName());
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
fir::getHostAssocAttrName())) {
// The number of arguments is off by one, and we're lowering a function
// with host associations. Modify call to include host associations
// argument by appending the value at the end of the operands.
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
converter.hostAssocTupleValue().getType());
addHostAssociations = true;
}
// When this is not a call to an internal procedure (where there is a
// mismatch due to the extra argument, but the interface is otherwise
// explicit and safe), handle interface mismatch due to F77 implicit
// interface "abuse" with a function address cast if needed.
if (!addHostAssociations &&
mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
loc, converter, callSiteType, funcOpType))
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
else
funcSymbolAttr = symbolAttr;
// Issue a warning if the procedure name conflicts with
// a runtime function name a call to which has been already
// lowered (implying that the FuncOp has been created).
// The behavior is undefined in this case.
if (caller.getFuncOp()->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()))
LLVM_DEBUG(mlir::emitWarning(
loc,
llvm::Twine("function name '") +
llvm::Twine(symbolAttr.getLeafReference()) +
llvm::Twine("' conflicts with a runtime function name used by "
"Flang - this may lead to undefined behavior")));
}
mlir::FunctionType funcType =
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
llvm::SmallVector<mlir::Value> operands;
// First operand of indirect call is the function pointer. Cast it to
// required function type for the call to handle procedures that have a
// compatible interface in Fortran, but that have different signatures in
// FIR.
if (funcPointer) {
operands.push_back(
mlir::isa<fir::BoxProcType>(funcPointer.getType())
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
: builder.createConvert(loc, funcType, funcPointer));
}
// Deal with potential mismatches in arguments types. Passing an array to a
// scalar argument should for instance be tolerated here.
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
// When passing arguments to a procedure that can be called by implicit
// interface, allow any character actual arguments to be passed to dummy
// arguments of any type and vice versa.
mlir::Value cast;
auto *context = builder.getContext();
if (mlir::isa<fir::BoxProcType>(snd) &&
mlir::isa<mlir::FunctionType>(fst.getType())) {
auto funcTy =
mlir::FunctionType::get(context, std::nullopt, std::nullopt);
auto boxProcTy = builder.getBoxProcType(funcTy);
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
cast = builder.create<fir::EmboxProcOp>(
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
} else {
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
}
} else {
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
if (fir::isa_builtin_cptr_type(fromTy) &&
Fortran::lower::isCPtrArgByValueType(snd)) {
cast = genRecordCPtrValueArg(builder, loc, fst, fromTy);
} else if (fir::isa_derived(snd) && !fir::isa_derived(fst.getType())) {
// TODO: remove this TODO once the old lowering is gone.
TODO(loc, "derived type argument passed by value");
} else {
// With the lowering to HLFIR, box arguments have already been built
// according to the attributes, rank, bounds, and type they should have.
// Do not attempt any reboxing here that could break this.
bool legacyLowering =
!converter.getLoweringOptions().getLowerToHighLevelFIR();
cast = builder.convertWithSemantics(loc, snd, fst,
callingImplicitInterface,
/*allowRebox=*/legacyLowering);
}
}
operands.push_back(cast);
}
// Add host associations as necessary.
if (addHostAssociations)
operands.push_back(converter.hostAssocTupleValue());
mlir::Value callResult;
unsigned callNumResults;
fir::FortranProcedureFlagsEnumAttr procAttrs =
caller.getProcedureAttrs(builder.getContext());
if (!caller.getCallDescription().chevrons().empty()) {
// A call to a CUDA kernel with the chevron syntax.
mlir::Type i32Ty = builder.getI32Type();
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
mlir::Value grid_x, grid_y, grid_z;
if (caller.getCallDescription().chevrons()[0].GetType()->category() ==
Fortran::common::TypeCategory::Integer) {
// If grid is an integer, it is converted to dim3(grid,1,1). Since z is
// not used for the number of thread blocks, it is omitted in the op.
grid_x = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[0], stmtCtx)));
grid_y = one;
grid_z = one;
} else {
auto dim3Addr = converter.genExprAddr(
caller.getCallDescription().chevrons()[0], stmtCtx);
grid_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
grid_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
grid_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
}
mlir::Value block_x, block_y, block_z;
if (caller.getCallDescription().chevrons()[1].GetType()->category() ==
Fortran::common::TypeCategory::Integer) {
// If block is an integer, it is converted to dim3(block,1,1).
block_x = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[1], stmtCtx)));
block_y = one;
block_z = one;
} else {
auto dim3Addr = converter.genExprAddr(
caller.getCallDescription().chevrons()[1], stmtCtx);
block_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
block_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
block_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
}
mlir::Value bytes; // bytes is optional.
if (caller.getCallDescription().chevrons().size() > 2)
bytes = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[2], stmtCtx)));
mlir::Value stream; // stream is optional.
if (caller.getCallDescription().chevrons().size() > 3)
stream = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[3], stmtCtx)));
builder.create<cuf::KernelLaunchOp>(
loc, funcType.getResults(), funcSymbolAttr, grid_x, grid_y, grid_z,
block_x, block_y, block_z, bytes, stream, operands);
callNumResults = 0;
} else if (caller.requireDispatchCall()) {
// Procedure call requiring a dynamic dispatch. Call is created with
// fir.dispatch.
// Get the raw procedure name. The procedure name is not mangled in the
// binding table, but there can be a suffix to distinguish bindings of
// the same name (which happens only when PRIVATE bindings exist in
// ancestor types in other modules).
const auto &ultimateSymbol =
caller.getCallDescription().proc().GetSymbol()->GetUltimate();
std::string procName = ultimateSymbol.name().ToString();
if (const auto &binding{
ultimateSymbol.get<Fortran::semantics::ProcBindingDetails>()};
binding.numPrivatesNotOverridden() > 0)
procName += "."s + std::to_string(binding.numPrivatesNotOverridden());
fir::DispatchOp dispatch;
if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
// PASS, PASS(arg-name)
// Note that caller.getInputs is used instead of operands to get the
// passed object because interface mismatch issues may have inserted a
// cast to the operand with a different declared type, which would break
// later type bound call resolution in the FIR to FIR pass.
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
caller.getInputs()[*passArg], operands,
builder.getI32IntegerAttr(*passArg), procAttrs);
} else {
// NOPASS
const Fortran::evaluate::Component *component =
caller.getCallDescription().proc().GetComponent();
assert(component && "expect component for type-bound procedure call.");
fir::ExtendedValue dataRefValue = Fortran::lower::convertDataRefToValue(
loc, converter, component->base(), symMap, stmtCtx);
mlir::Value passObject = fir::getBase(dataRefValue);
if (fir::isa_ref_type(passObject.getType()))
passObject = builder.create<fir::LoadOp>(loc, passObject);
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
passObject, operands, nullptr, procAttrs);
}
callNumResults = dispatch.getNumResults();
if (callNumResults != 0)
callResult = dispatch.getResult(0);
} else {
// Standard procedure call with fir.call.
auto call = builder.create<fir::CallOp>(
loc, funcType.getResults(), funcSymbolAttr, operands, procAttrs);
callNumResults = call.getNumResults();
if (callNumResults != 0)
callResult = call.getResult(0);
}
if (caller.mustSaveResult()) {
assert(allocatedResult.has_value());
builder.create<fir::SaveResultOp>(loc, callResult,
fir::getBase(*allocatedResult),
arrayResultShape, resultLengths);
}
if (allocatedResult) {
// The result must be optionally destroyed (if it is of a derived type
// that may need finalization or deallocation of the components).
// For an allocatable result we have to free the memory allocated
// for the top-level entity. Note that the Destroy calls below
// do not deallocate the top-level entity. The two clean-ups
// must be pushed in reverse order, so that the final order is:
// Destroy(desc)
// free(desc->base_addr)
allocatedResult->match(
[&](const fir::MutableBoxValue &box) {
if (box.isAllocatable()) {
// 9.7.3.2 point 4. Deallocate allocatable results. Note that
// finalization was done independently by calling
// genDerivedTypeDestroy above and is not triggered by this inline
// deallocation.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, box]() {
fir::factory::genFreememIfAllocated(*bldr, loc, box);
});
}
},
[](const auto &) {});
// 7.5.6.3 point 5. Derived-type finalization for nonpointer function.
bool resultIsFinalized = false;
// Check if the derived-type is finalizable if it is a monomorphic
// derived-type.
// For polymorphic and unlimited polymorphic enities call the runtime
// in any cases.
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
// With HLFIR lowering, isElemental must be set to true
// if we are producing an elemental call. In this case,
// the elemental results must not be destroyed, instead,
// the resulting array result will be finalized/destroyed
// as needed by hlfir.destroy.
if (!isElemental && !fir::isPointerType(funcType.getResults()[0]) &&
retTy &&
(retTy->category() == Fortran::common::TypeCategory::Derived ||
retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())) {
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic()) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
fir::runtime::genDerivedTypeDestroy(*bldr, loc,
fir::getBase(*allocatedResult));
});
resultIsFinalized = true;
} else {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
// If the result type may require finalization
// or have allocatable components, we need to make sure
// everything is properly finalized/deallocated.
if (Fortran::semantics::MayRequireFinalization(typeSpec) ||
// We can use DerivedTypeDestroy even if finalization is not needed.
hlfir::mayHaveAllocatableComponent(funcType.getResults()[0])) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
mlir::Value box = bldr->createBox(loc, *allocatedResult);
fir::runtime::genDerivedTypeDestroy(*bldr, loc, box);
});
resultIsFinalized = true;
}
}
}
return {*allocatedResult, resultIsFinalized};
}
// subroutine call
if (!resultType)
return {fir::ExtendedValue{mlir::Value{}}, /*resultIsFinalized=*/false};
// For now, Fortran return values are implemented with a single MLIR
// function return value.
assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
(void)callNumResults;
// Call a BIND(C) function that return a char.
if (caller.characterize().IsBindC() &&
mlir::isa<fir::CharacterType>(funcType.getResults()[0])) {
fir::CharacterType charTy =
mlir::dyn_cast<fir::CharacterType>(funcType.getResults()[0]);
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
return {fir::CharBoxValue{callResult, len}, /*resultIsFinalized=*/false};
}
return {callResult, /*resultIsFinalized=*/false};
}
static hlfir::EntityWithAttributes genStmtFunctionRef(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
assert(symbol && "expected symbol in ProcedureRef of statement functions");
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Statement functions have their own scope, we just need to associate
// the dummy symbols to argument expressions. There are no
// optional/alternate return arguments. Statement functions cannot be
// recursive (directly or indirectly) so it is safe to add dummy symbols to
// the local map here.
symMap.pushScope();
llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
for (auto [arg, bind] : llvm::zip(details.dummyArgs(), procRef.arguments())) {
assert(arg && "alternate return in statement function");
assert(bind && "optional argument in statement function");
const auto *expr = bind->UnwrapExpr();
// TODO: assumed type in statement function, that surprisingly seems
// allowed, probably because nobody thought of restricting this usage.
// gfortran/ifort compiles this.
assert(expr && "assumed type used as statement function argument");
// As per Fortran 2018 C1580, statement function arguments can only be
// scalars.
// The only care is to use the dummy character explicit length if any
// instead of the actual argument length (that can be bigger).
hlfir::EntityWithAttributes loweredArg = Fortran::lower::convertExprToHLFIR(
loc, converter, *expr, symMap, stmtCtx);
fir::FortranVariableOpInterface variableIface = loweredArg.getIfVariable();
if (!variableIface) {
// So far only FortranVariableOpInterface can be mapped to symbols.
// Create an hlfir.associate to create a variable from a potential
// value argument.
mlir::Type argType = converter.genType(*arg);
auto associate = hlfir::genAssociateExpr(
loc, builder, loweredArg, argType, toStringRef(arg->name()));
exprAssociations.push_back(associate);
variableIface = associate;
}
const Fortran::semantics::DeclTypeSpec *type = arg->GetType();
if (type &&
type->category() == Fortran::semantics::DeclTypeSpec::Character) {
// Instantiate character as if it was a normal dummy argument so that the
// statement function dummy character length is applied and dealt with
// correctly.
symMap.addSymbol(*arg, variableIface.getBase());
Fortran::lower::mapSymbolAttributes(converter, *arg, symMap, stmtCtx);
} else {
// No need to create an extra hlfir.declare otherwise for
// numerical and logical scalar dummies.
symMap.addVariableDefinition(*arg, variableIface);
}
}
// Explicitly map statement function host associated symbols to their
// parent scope lowered symbol box.
for (const Fortran::semantics::SymbolRef &sym :
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
if (const auto *details =
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
converter.copySymbolBinding(details->symbol(), sym);
hlfir::Entity result = Fortran::lower::convertExprToHLFIR(
loc, converter, details.stmtFunction().value(), symMap, stmtCtx);
symMap.popScope();
// The result must not be a variable.
result = hlfir::loadTrivialScalar(loc, builder, result);
if (result.isVariable())
result = hlfir::Entity{builder.create<hlfir::AsExprOp>(loc, result)};
for (auto associate : exprAssociations)
builder.create<hlfir::EndAssociateOp>(loc, associate);
return hlfir::EntityWithAttributes{result};
}
namespace {
// Structure to hold the information about the call and the lowering context.
// This structure is intended to help threading the information
// through the various lowering calls without having to pass every
// required structure one by one.
struct CallContext {
CallContext(const Fortran::evaluate::ProcedureRef &procRef,
std::optional<mlir::Type> resultType, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: procRef{procRef}, converter{converter}, symMap{symMap},
stmtCtx{stmtCtx}, resultType{resultType}, loc{loc} {}
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
std::string getProcedureName() const {
if (const Fortran::semantics::Symbol *sym = procRef.proc().GetSymbol())
return sym->GetUltimate().name().ToString();
return procRef.proc().GetName();
}
/// Is this a call to an elemental procedure with at least one array argument?
bool isElementalProcWithArrayArgs() const {
if (procRef.IsElemental())
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments())
if (arg && arg->Rank() != 0)
return true;
return false;
}
/// Is this a statement function reference?
bool isStatementFunctionCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (const auto *details =
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
return details->stmtFunction().has_value();
return false;
}
/// Is this a call to a BIND(C) procedure?
bool isBindcCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
return Fortran::semantics::IsBindCProcedure(*symbol);
return false;
}
const Fortran::evaluate::ProcedureRef &procRef;
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
std::optional<mlir::Type> resultType;
mlir::Location loc;
};
using ExvAndCleanup =
std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>;
} // namespace
// Helper to transform a fir::ExtendedValue to an hlfir::EntityWithAttributes.
static hlfir::EntityWithAttributes
extendedValueToHlfirEntity(mlir::Location loc, fir::FirOpBuilder &builder,
const fir::ExtendedValue &exv,
llvm::StringRef name) {
mlir::Value firBase = fir::getBase(exv);
mlir::Type firBaseTy = firBase.getType();
if (fir::isa_trivial(firBaseTy))
return hlfir::EntityWithAttributes{firBase};
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(firBase.getType())) {
// CHAR() intrinsic and BIND(C) procedures returning CHARACTER(1)
// are lowered to a fir.char<kind,1> that is not in memory.
// This tends to cause a lot of bugs because the rest of the
// infrastructure is mostly tested with characters that are
// in memory.
// To avoid having to deal with this special case here and there,
// place it in memory here. If this turns out to be suboptimal,
// this could be fixed, but for now llvm opt -O1 is able to get
// rid of the memory indirection in a = char(b), so there is
// little incentive to increase the compiler complexity.
hlfir::Entity storage{builder.createTemporary(loc, charTy)};
builder.create<fir::StoreOp>(loc, firBase, storage);
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, storage, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::genDeclare(loc, builder, exv, name,
fir::FortranVariableFlagsAttr{});
}
namespace {
/// Structure to hold the clean-up related to a dummy argument preparation
/// that may have to be done after a call (copy-out or temporary deallocation).
struct CallCleanUp {
struct CopyIn {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::CopyOutOp>(loc, tempBox, wasCopied, copyBackVar);
}
// address of the descriptor holding the temp if a temp was created.
mlir::Value tempBox;
// Boolean indicating if a copy was made or not.
mlir::Value wasCopied;
// copyBackVar may be null if copy back is not needed.
mlir::Value copyBackVar;
};
struct ExprAssociate {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::EndAssociateOp>(loc, tempVar, mustFree);
}
mlir::Value tempVar;
mlir::Value mustFree;
};
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
Fortran::common::visit([&](auto &c) { c.genCleanUp(loc, builder); },
cleanUp);
}
std::variant<CopyIn, ExprAssociate> cleanUp;
};
/// Structure representing a prepared dummy argument.
/// It holds the value to be passed in the call and any related
/// clean-ups to be done after the call.
struct PreparedDummyArgument {
void pushCopyInCleanUp(mlir::Value tempBox, mlir::Value wasCopied,
mlir::Value copyBackVar) {
cleanups.emplace_back(
CallCleanUp{CallCleanUp::CopyIn{tempBox, wasCopied, copyBackVar}});
}
void pushExprAssociateCleanUp(mlir::Value tempVar, mlir::Value wasCopied) {
cleanups.emplace_back(
CallCleanUp{CallCleanUp::ExprAssociate{tempVar, wasCopied}});
}
void pushExprAssociateCleanUp(hlfir::AssociateOp associate) {
mlir::Value hlfirBase = associate.getBase();
mlir::Value firBase = associate.getFirBase();
cleanups.emplace_back(CallCleanUp{CallCleanUp::ExprAssociate{
hlfir::mayHaveAllocatableComponent(hlfirBase.getType()) ? hlfirBase
: firBase,
associate.getMustFreeStrorageFlag()}});
}
mlir::Value dummy;
// NOTE: the clean-ups are executed in reverse order.
llvm::SmallVector<CallCleanUp, 2> cleanups;
};
/// Structure to help conditionally preparing a dummy argument based
/// on the actual argument presence.
/// It helps "wrapping" the dummy and the clean-up information in
/// an if (present) {...}:
///
/// %conditionallyPrepared = fir.if (%present) {
/// fir.result %preparedDummy
/// } else {
/// fir.result %absent
/// }
///
struct ConditionallyPreparedDummy {
/// Create ConditionallyPreparedDummy from a preparedDummy that must
/// be wrapped in a fir.if.
ConditionallyPreparedDummy(PreparedDummyArgument &preparedDummy) {
thenResultValues.push_back(preparedDummy.dummy);
for (const CallCleanUp &c : preparedDummy.cleanups) {
if (const auto *copyInCleanUp =
std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
thenResultValues.push_back(copyInCleanUp->wasCopied);
if (copyInCleanUp->copyBackVar)
thenResultValues.push_back(copyInCleanUp->copyBackVar);
} else {
const auto &exprAssociate =
std::get<CallCleanUp::ExprAssociate>(c.cleanUp);
thenResultValues.push_back(exprAssociate.tempVar);
thenResultValues.push_back(exprAssociate.mustFree);
}
}
}
/// Get the result types of the wrapping fir.if that must be created.
llvm::SmallVector<mlir::Type> getIfResulTypes() const {
llvm::SmallVector<mlir::Type> types;
for (mlir::Value res : thenResultValues)
types.push_back(res.getType());
return types;
}
/// Generate the "fir.result %preparedDummy" in the then branch of the
/// wrapping fir.if.
void genThenResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
builder.create<fir::ResultOp>(loc, thenResultValues);
}
/// Generate the "fir.result %absent" in the else branch of the
/// wrapping fir.if.
void genElseResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
llvm::SmallVector<mlir::Value> elseResultValues;
mlir::Type i1Type = builder.getI1Type();
for (mlir::Value res : thenResultValues) {
mlir::Type type = res.getType();
if (type == i1Type)
elseResultValues.push_back(builder.createBool(loc, false));
else
elseResultValues.push_back(builder.genAbsentOp(loc, type));
}
builder.create<fir::ResultOp>(loc, elseResultValues);
}
/// Once the fir.if has been created, get the resulting %conditionallyPrepared
/// dummy argument.
PreparedDummyArgument
getPreparedDummy(fir::IfOp ifOp,
const PreparedDummyArgument &unconditionalDummy) {
PreparedDummyArgument preparedDummy;
preparedDummy.dummy = ifOp.getResults()[0];
for (const CallCleanUp &c : unconditionalDummy.cleanups) {
if (const auto *copyInCleanUp =
std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
mlir::Value copyBackVar;
if (copyInCleanUp->copyBackVar)
copyBackVar = ifOp.getResults().back();
// tempBox is an hlfir.copy_in argument created outside of the
// fir.if region. It needs not to be threaded as a fir.if result.
preparedDummy.pushCopyInCleanUp(copyInCleanUp->tempBox,
ifOp.getResults()[1], copyBackVar);
} else {
preparedDummy.pushExprAssociateCleanUp(ifOp.getResults()[1],
ifOp.getResults()[2]);
}
}
return preparedDummy;
}
llvm::SmallVector<mlir::Value> thenResultValues;
};
} // namespace
/// Fix-up the fact that it is supported to pass a character procedure
/// designator to a non character procedure dummy procedure and vice-versa, even
/// in case of explicit interface. Uglier cases where an object is passed as
/// procedure designator or vice versa are handled only for implicit interfaces
/// (refused by semantics with explicit interface), and handled with a funcOp
/// cast like other implicit interface mismatches.
static hlfir::Entity fixProcedureDummyMismatch(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity actual,
mlir::Type dummyType) {
if (mlir::isa<fir::BoxProcType>(actual.getType()) &&
fir::isCharacterProcedureTuple(dummyType)) {
mlir::Value length =
builder.create<fir::UndefOp>(loc, builder.getCharacterLengthType());
mlir::Value tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, dummyType, actual, length);
return hlfir::Entity{tuple};
}
assert(fir::isCharacterProcedureTuple(actual.getType()) &&
mlir::isa<fir::BoxProcType>(dummyType) &&
"unsupported dummy procedure mismatch with the actual argument");
mlir::Value boxProc = fir::factory::extractCharacterProcedureTuple(
builder, loc, actual, /*openBoxProc=*/false)
.first;
return hlfir::Entity{boxProc};
}
mlir::Value static getZeroLowerBounds(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity entity) {
assert(!entity.isAssumedRank() &&
"assumed-rank must use fir.rebox_assumed_rank");
if (entity.getRank() < 1)
return {};
mlir::Value zero =
builder.createIntegerConstant(loc, builder.getIndexType(), 0);
llvm::SmallVector<mlir::Value> lowerBounds(entity.getRank(), zero);
return builder.genShift(loc, lowerBounds);
}
static bool
isSimplyContiguous(const Fortran::evaluate::ActualArgument &arg,
Fortran::evaluate::FoldingContext &foldingContext) {
if (const auto *expr = arg.UnwrapExpr())
return Fortran::evaluate::IsSimplyContiguous(*expr, foldingContext);
const Fortran::semantics::Symbol *sym = arg.GetAssumedTypeDummy();
assert(sym &&
"expect ActualArguments to be expression or assumed-type symbols");
return sym->Rank() == 0 ||
Fortran::evaluate::IsSimplyContiguous(*sym, foldingContext);
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface. Do as needed:
/// - address element if this is an array argument in an elemental call.
/// - set dynamic type to the dummy type if the dummy is not polymorphic.
/// - copy-in into contiguous variable if the dummy must be contiguous
/// - copy into a temporary if the dummy has the VALUE attribute.
/// - package the prepared dummy as required (fir.box, fir.class,
/// fir.box_char...).
/// This function should only be called with an actual that is present.
/// The optional aspects must be handled by this function user.
static PreparedDummyArgument preparePresentUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
Fortran::evaluate::FoldingContext &foldingContext =
callContext.converter.getFoldingContext();
// Step 1: get the actual argument, which includes addressing the
// element if this is an array in an elemental call.
hlfir::Entity actual = preparedActual.getActual(loc, builder);
// Handle procedure arguments (procedure pointers should go through
// prepareProcedurePointerActualArgument).
if (hlfir::isFortranProcedureValue(dummyType)) {
// Procedure pointer or function returns procedure pointer actual to
// procedure dummy.
if (actual.isProcedurePointer()) {
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
return PreparedDummyArgument{actual, /*cleanups=*/{}};
}
// Procedure actual to procedure dummy.
assert(actual.isProcedure());
// Do nothing if this is a procedure argument. It is already a
// fir.boxproc/fir.tuple<fir.boxproc, len> as it should.
if (!mlir::isa<fir::BoxProcType>(actual.getType()) &&
actual.getType() != dummyType)
// The actual argument may be a procedure that returns character (a
// fir.tuple<fir.boxproc, len>) while the dummy is not. Extract the tuple
// in that case.
actual = fixProcedureDummyMismatch(loc, builder, actual, dummyType);
return PreparedDummyArgument{actual, /*cleanups=*/{}};
}
const bool ignoreTKRtype = arg.testTKR(Fortran::common::IgnoreTKR::Type);
const bool passingPolymorphicToNonPolymorphic =
actual.isPolymorphic() && !fir::isPolymorphicType(dummyType) &&
!ignoreTKRtype;
// When passing a CLASS(T) to TYPE(T), only the "T" part must be
// passed. Unless the entity is a scalar passed by raw address, a
// new descriptor must be made using the dummy argument type as
// dynamic type. This must be done before any copy/copy-in because the
// dynamic type matters to determine the contiguity.
const bool mustSetDynamicTypeToDummyType =
passingPolymorphicToNonPolymorphic &&
(actual.isArray() || mlir::isa<fir::BaseBoxType>(dummyType));
// The simple contiguity of the actual is "lost" when passing a polymorphic
// to a non polymorphic entity because the dummy dynamic type matters for
// the contiguity.
const bool mustDoCopyInOut =
actual.isArray() && arg.mustBeMadeContiguous() &&
(passingPolymorphicToNonPolymorphic ||
!isSimplyContiguous(*arg.entity, foldingContext));
const bool actualIsAssumedRank = actual.isAssumedRank();
// Create dummy type with actual argument rank when the dummy is an assumed
// rank. That way, all the operation to create dummy descriptors are ranked if
// the actual argument is ranked, which allows simple code generation.
// Also do the same when the dummy is a sequence associated descriptor
// because the actual shape/rank may mismatch with the dummy, and the dummy
// may be an assumed-size array, so any descriptor manipulation should use the
// actual argument shape information. A descriptor with the dummy shape
// information will be created later when all actual arguments are ready.
mlir::Type dummyTypeWithActualRank = dummyType;
if (auto baseBoxDummy = mlir::dyn_cast<fir::BaseBoxType>(dummyType)) {
if (baseBoxDummy.isAssumedRank() ||
arg.testTKR(Fortran::common::IgnoreTKR::Rank) ||
arg.isSequenceAssociatedDescriptor()) {
mlir::Type actualTy =
hlfir::getFortranElementOrSequenceType(actual.getType());
dummyTypeWithActualRank = baseBoxDummy.getBoxTypeWithNewShape(actualTy);
}
}
// Preserve the actual type in the argument preparation in case IgnoreTKR(t)
// is set (descriptors must be created with the actual type in this case, and
// copy-in/copy-out should be driven by the contiguity with regard to the
// actual type).
if (ignoreTKRtype) {
if (auto boxCharType =
mlir::dyn_cast<fir::BoxCharType>(dummyTypeWithActualRank)) {
auto maybeActualCharType =
mlir::dyn_cast<fir::CharacterType>(actual.getFortranElementType());
if (!maybeActualCharType ||
maybeActualCharType.getFKind() != boxCharType.getKind()) {
// When passing to a fir.boxchar with ignore(tk), prepare the argument
// as if only the raw address must be passed.
dummyTypeWithActualRank =
fir::ReferenceType::get(actual.getElementOrSequenceType());
}
// Otherwise, the actual is already a character with the same kind as the
// dummy and can be passed normally.
} else {
dummyTypeWithActualRank = fir::changeElementType(
dummyTypeWithActualRank, actual.getFortranElementType(),
actual.isPolymorphic());
}
}
PreparedDummyArgument preparedDummy;
// Helpers to generate hlfir.copy_in operation and register the related
// hlfir.copy_out creation.
auto genCopyIn = [&](hlfir::Entity var, bool doCopyOut) -> hlfir::Entity {
auto baseBoxTy = mlir::dyn_cast<fir::BaseBoxType>(var.getType());
assert(baseBoxTy && "expect non simply contiguous variables to be boxes");
// Create allocatable descriptor for the potential temporary.
mlir::Type tempBoxType = baseBoxTy.getBoxTypeWithNewAttr(
fir::BaseBoxType::Attribute::Allocatable);
mlir::Value tempBox = builder.createTemporary(loc, tempBoxType);
auto copyIn = builder.create<hlfir::CopyInOp>(
loc, var, tempBox, /*var_is_present=*/mlir::Value{});
// Register the copy-out after the call.
preparedDummy.pushCopyInCleanUp(copyIn.getTempBox(), copyIn.getWasCopied(),
doCopyOut ? copyIn.getVar()
: mlir::Value{});
return hlfir::Entity{copyIn.getCopiedIn()};
};
auto genSetDynamicTypeToDummyType = [&](hlfir::Entity var) -> hlfir::Entity {
fir::BaseBoxType boxType = fir::BoxType::get(
hlfir::getFortranElementOrSequenceType(dummyTypeWithActualRank));
if (actualIsAssumedRank)
return hlfir::Entity{builder.create<fir::ReboxAssumedRankOp>(
loc, boxType, var, fir::LowerBoundModifierAttribute::SetToOnes)};
// Use actual shape when creating descriptor with dummy type, the dummy
// shape may be unknown in case of sequence association.
mlir::Type actualTy =
hlfir::getFortranElementOrSequenceType(actual.getType());
boxType = boxType.getBoxTypeWithNewShape(actualTy);
return hlfir::Entity{builder.create<fir::ReboxOp>(loc, boxType, var,
/*shape=*/mlir::Value{},
/*slice=*/mlir::Value{})};
};
// Step 2: prepare the storage for the dummy arguments, ensuring that it
// matches the dummy requirements (e.g., must be contiguous or must be
// a temporary).
hlfir::Entity entity =
hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (entity.isVariable()) {
// Set dynamic type if needed before any copy-in or copy so that the dummy
// is contiguous according to the dummy type.
if (mustSetDynamicTypeToDummyType)
entity = genSetDynamicTypeToDummyType(entity);
if (arg.hasValueAttribute() ||
// Constant expressions might be lowered as variables with
// 'parameter' attribute. Even though the constant expressions
// are not definable and explicit assignments to them are not
// possible, we have to create a temporary copies when we pass
// them down the call stack.
entity.isParameter()) {
// Make a copy in a temporary.
auto copy = builder.create<hlfir::AsExprOp>(loc, entity);
mlir::Type storageType = entity.getType();
mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, hlfir::Entity{copy}, storageType, "", byRefAttr);
entity = hlfir::Entity{associate.getBase()};
// Register the temporary destruction after the call.
preparedDummy.pushExprAssociateCleanUp(associate);
} else if (mustDoCopyInOut) {
// Copy-in non contiguous variables.
// TODO: for non-finalizable monomorphic derived type actual
// arguments associated with INTENT(OUT) dummy arguments
// we may avoid doing the copy and only allocate the temporary.
// The codegen would do a "mold" allocation instead of "sourced"
// allocation for the temp in this case. We can communicate
// this to the codegen via some CopyInOp flag.
// This is a performance concern.
entity = genCopyIn(entity, arg.mayBeModifiedByCall());
}
} else {
const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
assert(expr && "expression actual argument cannot be an assumed type");
// The actual is an expression value, place it into a temporary
// and register the temporary destruction after the call.
mlir::Type storageType = callContext.converter.genType(*expr);
mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, entity, storageType, "", byRefAttr);
entity = hlfir::Entity{associate.getBase()};
preparedDummy.pushExprAssociateCleanUp(associate);
// Rebox the actual argument to the dummy argument's type, and make sure
// that we pass a contiguous entity (i.e. make copy-in, if needed).
//
// TODO: this can probably be optimized by associating the expression with
// properly typed temporary, but this needs either a new operation or
// making the hlfir.associate more complex.
if (mustSetDynamicTypeToDummyType) {
entity = genSetDynamicTypeToDummyType(entity);
entity = genCopyIn(entity, /*doCopyOut=*/false);
}
}
// Step 3: now that the dummy argument storage has been prepared, package
// it according to the interface.
mlir::Value addr;
if (mlir::isa<fir::BoxCharType>(dummyTypeWithActualRank)) {
addr = hlfir::genVariableBoxChar(loc, builder, entity);
} else if (mlir::isa<fir::BaseBoxType>(dummyTypeWithActualRank)) {
entity = hlfir::genVariableBox(loc, builder, entity);
// Ensures the box has the right attributes and that it holds an
// addendum if needed.
fir::BaseBoxType actualBoxType =
mlir::cast<fir::BaseBoxType>(entity.getType());
mlir::Type boxEleType = actualBoxType.getEleTy();
// For now, assume it is not OK to pass the allocatable/pointer
// descriptor to a non pointer/allocatable dummy. That is a strict
// interpretation of 18.3.6 point 4 that stipulates the descriptor
// has the dummy attributes in BIND(C) contexts.
const bool actualBoxHasAllocatableOrPointerFlag =
fir::isa_ref_type(boxEleType);
// Fortran 2018 18.5.3, pp3: BIND(C) non pointer allocatable descriptors
// must have zero lower bounds.
bool needsZeroLowerBounds = callContext.isBindcCall() && entity.isArray();
// On the callee side, the current code generated for unlimited
// polymorphic might unconditionally read the addendum. Intrinsic type
// descriptors may not have an addendum, the rebox below will create a
// descriptor with an addendum in such case.
const bool actualBoxHasAddendum = fir::boxHasAddendum(actualBoxType);
const bool needToAddAddendum =
fir::isUnlimitedPolymorphicType(dummyTypeWithActualRank) &&
!actualBoxHasAddendum;
if (needToAddAddendum || actualBoxHasAllocatableOrPointerFlag ||
needsZeroLowerBounds) {
if (actualIsAssumedRank) {
auto lbModifier = needsZeroLowerBounds
? fir::LowerBoundModifierAttribute::SetToZeroes
: fir::LowerBoundModifierAttribute::SetToOnes;
entity = hlfir::Entity{builder.create<fir::ReboxAssumedRankOp>(
loc, dummyTypeWithActualRank, entity, lbModifier)};
} else {
mlir::Value shift{};
if (needsZeroLowerBounds)
shift = getZeroLowerBounds(loc, builder, entity);
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, dummyTypeWithActualRank, entity, /*shape=*/shift,
/*slice=*/mlir::Value{})};
}
}
addr = entity;
} else {
addr = hlfir::genVariableRawAddress(loc, builder, entity);
}
// For ranked actual passed to assumed-rank dummy, the cast to assumed-rank
// box is inserted when building the fir.call op. Inserting it here would
// cause the fir.if results to be assumed-rank in case of OPTIONAL dummy,
// causing extra runtime costs due to the unknown runtime size of assumed-rank
// descriptors.
preparedDummy.dummy =
builder.createConvert(loc, dummyTypeWithActualRank, addr);
return preparedDummy;
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface, taking care
/// of any optional aspect.
static PreparedDummyArgument prepareUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
if (!preparedActual.handleDynamicOptional())
return preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, callContext);
// Conditional dummy argument preparation. The actual may be absent
// at runtime, causing any addressing, copy, and packaging to have
// undefined behavior.
// To simplify the handling of this case, the "normal" dummy preparation
// helper is used, except its generated code is wrapped inside a
// fir.if(present).
mlir::Value isPresent = preparedActual.getIsPresent();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
// Code generated in a preparation block that will become the
// "then" block in "if (present) then {} else {}". The reason
// for this unusual if/then/else generation is that the number
// and types of the if results will depend on how the argument
// is prepared, and forecasting that here would be brittle.
auto badIfOp = builder.create<fir::IfOp>(loc, dummyType, isPresent,
/*withElseRegion=*/false);
mlir::Block *preparationBlock = &badIfOp.getThenRegion().front();
builder.setInsertionPointToStart(preparationBlock);
PreparedDummyArgument unconditionalDummy =
preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, callContext);
builder.restoreInsertionPoint(insertPt);
// TODO: when forwarding an optional to an optional of the same kind
// (i.e, unconditionalDummy.dummy was not created in preparationBlock),
// the if/then/else generation could be skipped to improve the generated
// code.
// Now that the result types of the ifOp can be deduced, generate
// the "real" ifOp (operation result types cannot be changed, so
// badIfOp cannot be modified and used here).
llvm::SmallVector<mlir::Type> ifOpResultTypes;
ConditionallyPreparedDummy conditionalDummy(unconditionalDummy);
auto ifOp = builder.create<fir::IfOp>(loc, conditionalDummy.getIfResulTypes(),
isPresent,
/*withElseRegion=*/true);
// Move "preparationBlock" into the "then" of the new
// fir.if operation and create fir.result propagating
// unconditionalDummy.
preparationBlock->moveBefore(&ifOp.getThenRegion().back());
ifOp.getThenRegion().back().erase();
builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
conditionalDummy.genThenResult(loc, builder);
// Generate "else" branch with returning absent values.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
conditionalDummy.genElseResult(loc, builder);
// Build dummy from IfOpResults.
builder.setInsertionPointAfter(ifOp);
PreparedDummyArgument result =
conditionalDummy.getPreparedDummy(ifOp, unconditionalDummy);
badIfOp->erase();
return result;
}
/// Prepare actual argument for a procedure pointer dummy.
static PreparedDummyArgument prepareProcedurePointerActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
// NULL() actual to procedure pointer dummy
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*arg.entity) &&
fir::isBoxProcAddressType(dummyType)) {
auto boxTy{Fortran::lower::getUntypedBoxProcType(builder.getContext())};
auto tempBoxProc{builder.createTemporary(loc, boxTy)};
hlfir::Entity nullBoxProc(
fir::factory::createNullBoxProc(builder, loc, boxTy));
builder.create<fir::StoreOp>(loc, nullBoxProc, tempBoxProc);
return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}
hlfir::Entity actual = preparedActual.getActual(loc, builder);
if (actual.isProcedurePointer())
return PreparedDummyArgument{actual, /*cleanups=*/{}};
assert(actual.isProcedure());
// Procedure actual to procedure pointer dummy.
auto tempBoxProc{builder.createTemporary(loc, actual.getType())};
builder.create<fir::StoreOp>(loc, actual, tempBoxProc);
return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}
/// Prepare arguments of calls to user procedures with actual arguments that
/// have been pre-lowered but not yet prepared according to the interface.
void prepareUserCallArguments(
Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
CallContext &callContext, llvm::SmallVector<CallCleanUp> &callCleanUps) {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
mlir::Location loc = callContext.loc;
bool mustRemapActualToDummyDescriptors = false;
fir::FirOpBuilder &builder = callContext.getBuilder();
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
if (!preparedActual) {
// Optional dummy argument for which there is no actual argument.
caller.placeInput(arg, builder.genAbsentOp(loc, argTy));
continue;
}
switch (arg.passBy) {
case PassBy::Value: {
// True pass-by-value semantics.
assert(!preparedActual->handleDynamicOptional() && "cannot be optional");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
hlfir::Entity value = hlfir::loadTrivialScalar(loc, builder, actual);
mlir::Type eleTy = value.getFortranElementType();
if (fir::isa_builtin_cptr_type(eleTy)) {
// Pass-by-value argument of type(C_PTR/C_FUNPTR).
// Load the __address component and pass it by value.
if (value.isValue()) {
auto associate = hlfir::genAssociateExpr(loc, builder, value, eleTy,
"adapt.cptrbyval");
value = hlfir::Entity{genRecordCPtrValueArg(
builder, loc, associate.getFirBase(), eleTy)};
builder.create<hlfir::EndAssociateOp>(loc, associate);
} else {
value =
hlfir::Entity{genRecordCPtrValueArg(builder, loc, value, eleTy)};
}
} else if (fir::isa_derived(value.getFortranElementType()) ||
value.isCharacter()) {
// BIND(C), VALUE derived type or character. The value must really
// be loaded here.
auto [exv, cleanup] = hlfir::convertToValue(loc, builder, value);
mlir::Value loadedValue = fir::getBase(exv);
// Character actual arguments may have unknown length or a length longer
// than one. Cast the memory ref to the dummy type so that the load is
// valid and only loads what is needed.
if (mlir::Type baseTy = fir::dyn_cast_ptrEleTy(loadedValue.getType()))
if (fir::isa_char(baseTy))
loadedValue = builder.createConvert(
loc, fir::ReferenceType::get(argTy), loadedValue);
if (fir::isa_ref_type(loadedValue.getType()))
loadedValue = builder.create<fir::LoadOp>(loc, loadedValue);
caller.placeInput(arg, loadedValue);
if (cleanup)
(*cleanup)();
break;
}
caller.placeInput(arg, builder.createConvert(loc, argTy, value));
} break;
case PassBy::BaseAddressValueAttribute:
case PassBy::CharBoxValueAttribute:
case PassBy::Box:
case PassBy::BaseAddress:
case PassBy::BoxChar: {
PreparedDummyArgument preparedDummy = prepareUserCallActualArgument(
loc, builder, *preparedActual, argTy, arg, callContext);
callCleanUps.append(preparedDummy.cleanups.rbegin(),
preparedDummy.cleanups.rend());
caller.placeInput(arg, preparedDummy.dummy);
if (arg.passBy == PassBy::Box)
mustRemapActualToDummyDescriptors |=
arg.isSequenceAssociatedDescriptor();
} break;
case PassBy::BoxProcRef: {
PreparedDummyArgument preparedDummy =
prepareProcedurePointerActualArgument(loc, builder, *preparedActual,
argTy, arg, callContext);
callCleanUps.append(preparedDummy.cleanups.rbegin(),
preparedDummy.cleanups.rend());
caller.placeInput(arg, preparedDummy.dummy);
} break;
case PassBy::AddressAndLength:
// PassBy::AddressAndLength is only used for character results. Results
// are not handled here.
fir::emitFatalError(
loc, "unexpected PassBy::AddressAndLength for actual arguments");
break;
case PassBy::CharProcTuple: {
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (actual.isProcedurePointer())
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (!fir::isCharacterProcedureTuple(actual.getType()))
actual = fixProcedureDummyMismatch(loc, builder, actual, argTy);
caller.placeInput(arg, actual);
} break;
case PassBy::MutableBox: {
const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
// C709 and C710.
assert(expr && "cannot pass TYPE(*) to POINTER or ALLOCATABLE");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// If expr is NULL(), the mutableBox created must be a deallocated
// pointer with the dummy argument characteristics (see table 16.5
// in Fortran 2018 standard).
// No length parameters are set for the created box because any non
// deferred type parameters of the dummy will be evaluated on the
// callee side, and it is illegal to use NULL without a MOLD if any
// dummy length parameters are assumed.
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
assert(boxTy && mlir::isa<fir::BaseBoxType>(boxTy) &&
"must be a fir.box type");
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
caller.placeInput(arg, boxStorage);
continue;
}
if (fir::isPointerType(argTy) &&
!Fortran::evaluate::IsObjectPointer(*expr)) {
// Passing a non POINTER actual argument to a POINTER dummy argument.
// Create a pointer of the dummy argument type and assign the actual
// argument to it.
auto dataTy = llvm::cast<fir::BaseBoxType>(fir::unwrapRefType(argTy));
fir::ExtendedValue actualExv = Fortran::lower::convertToAddress(
loc, callContext.converter, actual, callContext.stmtCtx,
hlfir::getFortranElementType(dataTy));
// If the dummy is an assumed-rank pointer, allocate a pointer
// descriptor with the actual argument rank (if it is not assumed-rank
// itself).
if (dataTy.isAssumedRank()) {
dataTy =
dataTy.getBoxTypeWithNewShape(fir::getBase(actualExv).getType());
}
mlir::Value irBox = builder.createTemporary(loc, dataTy);
fir::MutableBoxValue ptrBox(irBox,
/*nonDeferredParams=*/mlir::ValueRange{},
/*mutableProperties=*/{});
fir::factory::associateMutableBox(builder, loc, ptrBox, actualExv,
/*lbounds=*/std::nullopt);
caller.placeInput(arg, irBox);
continue;
}
// Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
assert(actual.isMutableBox() && "actual must be a mutable box");
if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
callContext.isBindcCall()) {
// INTENT(OUT) allocatables are deallocated on the callee side,
// but BIND(C) procedures may be implemented in C, so deallocation is
// also done on the caller side (if the procedure is implemented in
// Fortran, the deallocation attempt in the callee will be a no-op).
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, actual);
const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>();
assert(mutableBox && !cleanup && "expect allocatable");
Fortran::lower::genDeallocateIfAllocated(callContext.converter,
*mutableBox, loc);
}
caller.placeInput(arg, actual);
} break;
}
}
// Handle cases where caller must allocate the result or a fir.box for it.
if (mustRemapActualToDummyDescriptors)
remapActualToDummyDescriptors(loc, callContext.converter,
callContext.symMap, loweredActuals, caller,
callContext.isBindcCall());
}
/// Lower calls to user procedures with actual arguments that have been
/// pre-lowered but not yet prepared according to the interface.
/// This can be called for elemental procedures, but only with scalar
/// arguments: if there are array arguments, it must be provided with
/// the array argument elements value and will return the corresponding
/// scalar result value.
static std::optional<hlfir::EntityWithAttributes>
genUserCall(Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType, CallContext &callContext) {
mlir::Location loc = callContext.loc;
llvm::SmallVector<CallCleanUp> callCleanUps;
fir::FirOpBuilder &builder = callContext.getBuilder();
prepareUserCallArguments(loweredActuals, caller, callSiteType, callContext,
callCleanUps);
// Prepare lowered arguments according to the interface
// and map the lowered values to the dummy
// arguments.
auto [result, resultIsFinalized] = Fortran::lower::genCallOpAndResult(
loc, callContext.converter, callContext.symMap, callContext.stmtCtx,
caller, callSiteType, callContext.resultType,
callContext.isElementalProcWithArrayArgs());
// For procedure pointer function result, just return the call.
if (callContext.resultType &&
mlir::isa<fir::BoxProcType>(*callContext.resultType))
return hlfir::EntityWithAttributes(fir::getBase(result));
/// Clean-up associations and copy-in.
for (auto cleanUp : callCleanUps)
cleanUp.genCleanUp(loc, builder);
if (!fir::getBase(result))
return std::nullopt; // subroutine call.
if (fir::isPointerType(fir::getBase(result).getType()))
return extendedValueToHlfirEntity(loc, builder, result, tempResultName);
if (!resultIsFinalized) {
hlfir::Entity resultEntity =
extendedValueToHlfirEntity(loc, builder, result, tempResultName);
resultEntity = loadTrivialScalar(loc, builder, resultEntity);
if (resultEntity.isVariable()) {
// If the result has no finalization, it can be moved into an expression.
// In such case, the expression should not be freed after its use since
// the result is stack allocated or deallocation (for allocatable results)
// was already inserted in genCallOpAndResult.
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::EntityWithAttributes{resultEntity};
}
// If the result has finalization, it cannot be moved because use of its
// value have been created in the statement context and may be emitted
// after the hlfir.expr destroy, so the result is kept as a variable in
// HLFIR. This may lead to copies when passing the result to an argument
// with VALUE, and this do not convey the fact that the result will not
// change, but is correct, and using hlfir.expr without the move would
// trigger a copy that may be avoided.
// Load allocatable results before emitting the hlfir.declare and drop its
// lower bounds: this is not a variable From the Fortran point of view, so
// the lower bounds are ones when inquired on the caller side.
const auto *allocatable = result.getBoxOf<fir::MutableBoxValue>();
fir::ExtendedValue loadedResult =
allocatable
? fir::factory::genMutableBoxRead(builder, loc, *allocatable,
/*mayBePolymorphic=*/true,
/*preserveLowerBounds=*/false)
: result;
return extendedValueToHlfirEntity(loc, builder, loadedResult, tempResultName);
}
/// Create an optional dummy argument value from an entity that may be
/// absent. \p actualGetter callback returns hlfir::Entity denoting
/// the lowered actual argument. \p actualGetter can only return numerical
/// or logical scalar entity.
/// If the entity is considered absent according to 15.5.2.12 point 1., the
/// returned value is zero (or false), otherwise it is the value of the entity.
/// \p eleType specifies the entity's Fortran element type.
template <typename T>
static ExvAndCleanup genOptionalValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type eleType,
T actualGetter, mlir::Value isPresent) {
return {builder
.genIfOp(loc, {eleType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
hlfir::Entity entity = actualGetter(loc, builder);
assert(eleType == entity.getFortranElementType() &&
"result type mismatch in genOptionalValue");
assert(entity.isScalar() && fir::isa_trivial(eleType) &&
"must be a numerical or logical scalar");
mlir::Value val =
hlfir::loadTrivialScalar(loc, builder, entity);
builder.create<fir::ResultOp>(loc, val);
})
.genElse([&]() {
mlir::Value zero =
fir::factory::createZeroValue(builder, loc, eleType);
builder.create<fir::ResultOp>(loc, zero);
})
.getResults()[0],
std::nullopt};
}
/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is a null pointer, otherwise it is the address of \p
/// entity.
static ExvAndCleanup genOptionalAddr(fir::FirOpBuilder &builder,
mlir::Location loc, hlfir::Entity entity,
mlir::Value isPresent) {
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
// If it is an exv pointer/allocatable, then it cannot be absent
// because it is passed to a non-pointer/non-allocatable.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
return {fir::factory::genMutableBoxRead(builder, loc, *box), cleanup};
// If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
// address and can be passed directly.
return {exv, cleanup};
}
/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is an absent fir.box, otherwise it is a fir.box
/// describing \p entity.
static ExvAndCleanup genOptionalBox(fir::FirOpBuilder &builder,
mlir::Location loc, hlfir::Entity entity,
mlir::Value isPresent) {
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
// Non allocatable/pointer optional box -> simply forward
if (exv.getBoxOf<fir::BoxValue>())
return {exv, cleanup};
fir::ExtendedValue newExv = exv;
// Optional allocatable/pointer -> Cannot be absent, but need to translate
// unallocated/diassociated into absent fir.box.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
// createBox will not do create any invalid memory dereferences if exv is
// absent. The created fir.box will not be usable, but the SelectOp below
// ensures it won't be.
mlir::Value box = builder.createBox(loc, newExv);
mlir::Type boxType = box.getType();
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
loc, boxType, isPresent, box, absent);
return {fir::BoxValue(boxOrAbsent), cleanup};
}
/// Lower calls to intrinsic procedures with custom optional handling where the
/// actual arguments have been pre-lowered
static std::optional<hlfir::EntityWithAttributes> genCustomIntrinsicRefCore(
Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
auto &builder = callContext.getBuilder();
const auto &loc = callContext.loc;
assert(intrinsic &&
Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, callContext.converter));
// helper to get a particular prepared argument
auto getArgument = [&](std::size_t i, bool loadArg) -> fir::ExtendedValue {
if (!loweredActuals[i])
return fir::getAbsentIntrinsicArgument();
hlfir::Entity actual = loweredActuals[i]->getActual(loc, builder);
if (loadArg && fir::conformsWithPassByRef(actual.getType())) {
return hlfir::loadTrivialScalar(loc, builder, actual);
}
return Fortran::lower::translateToExtendedValue(loc, builder, actual,
callContext.stmtCtx);
};
// helper to get the isPresent flag for a particular prepared argument
auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> {
if (!loweredActuals[i])
return {builder.createBool(loc, false)};
if (loweredActuals[i]->handleDynamicOptional())
return {loweredActuals[i]->getIsPresent()};
return std::nullopt;
};
assert(callContext.resultType &&
"the elemental intrinsics with custom handling are all functions");
// if callContext.resultType is an array then this was originally an elemental
// call. What we are lowering here is inside the kernel of the hlfir.elemental
// so we should return the scalar type. If the return type is already a scalar
// then it should be unchanged here.
mlir::Type resTy = hlfir::getFortranElementType(*callContext.resultType);
fir::ExtendedValue result = Fortran::lower::lowerCustomIntrinsic(
builder, loc, callContext.getProcedureName(), resTy, isPresent,
getArgument, loweredActuals.size(), callContext.stmtCtx);
return {hlfir::EntityWithAttributes{extendedValueToHlfirEntity(
loc, builder, result, ".tmp.custom_intrinsic_result")}};
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRefCore(Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry,
CallContext &callContext) {
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter))
return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
llvm::SmallVector<fir::ExtendedValue> operands;
llvm::SmallVector<hlfir::CleanupFunction> cleanupFns;
auto addToCleanups = [&cleanupFns](std::optional<hlfir::CleanupFunction> fn) {
if (fn)
cleanupFns.emplace_back(std::move(*fn));
};
auto &stmtCtx = callContext.stmtCtx;
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
const fir::IntrinsicArgumentLoweringRules *argLowering =
intrinsicEntry.getArgumentLoweringRules();
for (auto arg : llvm::enumerate(loweredActuals)) {
if (!arg.value()) {
operands.emplace_back(fir::getAbsentIntrinsicArgument());
continue;
}
if (!argLowering) {
// No argument lowering instruction, lower by value.
assert(!arg.value()->handleDynamicOptional() &&
"should use genOptionalValue");
hlfir::Entity actual = arg.value()->getActual(loc, builder);
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
}
// Helper to get the type of the Fortran expression in case it is a
// computed value that must be placed in memory (logicals are computed as
// i1, but must be placed in memory as fir.logical).
auto getActualFortranElementType = [&]() -> mlir::Type {
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
mlir::Type type = converter.genType(*expr);
return hlfir::getFortranElementType(type);
}
// TYPE(*): is already in memory anyway. Can return none
// here.
return builder.getNoneType();
};
// Ad-hoc argument lowering handling.
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (arg.value()->handleDynamicOptional()) {
mlir::Value isPresent = arg.value()->getIsPresent();
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value: {
// In case of elemental call, getActual() may produce
// a designator denoting the array element to be passed
// to the subprogram. If the actual array is dynamically
// optional the designator must be generated under
// isPresent check, because the box bounds reads will be
// generated in the codegen. These reads are illegal,
// if the dynamically optional argument is absent.
auto getActualCb = [&](mlir::Location loc,
fir::FirOpBuilder &builder) -> hlfir::Entity {
return arg.value()->getActual(loc, builder);
};
auto [exv, cleanup] =
genOptionalValue(builder, loc, getActualFortranElementType(),
getActualCb, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Addr: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] = genOptionalAddr(builder, loc, actual, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Box: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] = genOptionalBox(builder, loc, actual, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Inquired: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, actual);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
}
llvm_unreachable("bad switch");
}
hlfir::Entity actual = arg.value()->getActual(loc, builder);
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
case fir::LowerIntrinsicArgAs::Addr:
operands.emplace_back(Fortran::lower::convertToAddress(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Box:
operands.emplace_back(Fortran::lower::convertToBox(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Inquired:
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// NULL() pointer without a MOLD must be passed as a deallocated
// pointer (see table 16.5 in Fortran 2018 standard).
// !fir.box<!fir.ptr<none>> should always be valid in this context.
mlir::Type noneTy = mlir::NoneType::get(builder.getContext());
mlir::Type nullPtrTy = fir::PointerType::get(noneTy);
mlir::Type boxTy = fir::BoxType::get(nullPtrTy);
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
hlfir::EntityWithAttributes nullBoxEntity =
extendedValueToHlfirEntity(loc, builder, boxStorage,
".tmp.null_box");
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, nullBoxEntity, stmtCtx));
continue;
}
}
// Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
// are translated to fir::ExtendedValue without transformation (notably,
// pointers/allocatable are not dereferenced).
// TODO: once lowering to FIR retires, UBOUND and LBOUND can be simplified
// since the fir.box lowered here are now guaranteed to contain the local
// lower bounds thanks to the hlfir.declare (the extra rebox can be
// removed).
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, actual, stmtCtx));
continue;
}
llvm_unreachable("bad switch");
}
// genIntrinsicCall needs the scalar type, even if this is a transformational
// procedure returning an array.
std::optional<mlir::Type> scalarResultType;
if (callContext.resultType)
scalarResultType = hlfir::getFortranElementType(*callContext.resultType);
const std::string intrinsicName = callContext.getProcedureName();
// Let the intrinsic library lower the intrinsic procedure call.
auto [resultExv, mustBeFreed] = genIntrinsicCall(
builder, loc, intrinsicEntry, scalarResultType, operands, &converter);
for (const hlfir::CleanupFunction &fn : cleanupFns)
fn();
if (!fir::getBase(resultExv))
return std::nullopt;
hlfir::EntityWithAttributes resultEntity = extendedValueToHlfirEntity(
loc, builder, resultExv, ".tmp.intrinsic_result");
// Move result into memory into an hlfir.expr since they are immutable from
// that point, and the result storage is some temp. "Null" is special: it
// returns a null pointer variable that should not be transformed into a value
// (what matters is the memory address).
if (resultEntity.isVariable() && intrinsicName != "null") {
assert(!fir::isa_trivial(fir::unwrapRefType(resultEntity.getType())) &&
"expect intrinsic scalar results to not be in memory");
hlfir::AsExprOp asExpr;
// Character/Derived MERGE lowering returns one of its argument address
// (this is the only intrinsic implemented in that way so far). The
// ownership of this address cannot be taken here since it may not be a
// temp.
if (intrinsicName == "merge")
asExpr = builder.create<hlfir::AsExprOp>(loc, resultEntity);
else
asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, builder.createBool(loc, mustBeFreed));
resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
}
return resultEntity;
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes> genHLFIRIntrinsicRefCore(
Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry,
CallContext &callContext) {
// Try lowering transformational intrinsic ops to HLFIR ops if enabled
// (transformational always have a result type)
if (useHlfirIntrinsicOps && callContext.resultType) {
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
const std::string intrinsicName = callContext.getProcedureName();
const fir::IntrinsicArgumentLoweringRules *argLowering =
intrinsicEntry.getArgumentLoweringRules();
std::optional<hlfir::EntityWithAttributes> res =
Fortran::lower::lowerHlfirIntrinsic(builder, loc, intrinsicName,
loweredActuals, argLowering,
*callContext.resultType);
if (res)
return res;
}
// fallback to calling the intrinsic via fir.call
return genIntrinsicRefCore(loweredActuals, intrinsic, intrinsicEntry,
callContext);
}
namespace {
template <typename ElementalCallBuilderImpl>
class ElementalCallBuilder {
public:
std::optional<hlfir::EntityWithAttributes>
genElementalCall(Fortran::lower::PreparedActualArguments &loweredActuals,
bool isImpure, CallContext &callContext) {
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
unsigned numArgs = loweredActuals.size();
// Step 1: dereference pointers/allocatables and compute elemental shape.
mlir::Value shape;
Fortran::lower::PreparedActualArgument *optionalWithShape;
// 10.1.4 p5. Impure elemental procedures must be called in element order.
bool mustBeOrdered = isImpure;
for (unsigned i = 0; i < numArgs; ++i) {
auto &preparedActual = loweredActuals[i];
if (preparedActual) {
// Elemental procedure dummy arguments cannot be pointer/allocatables
// (C15100), so it is safe to dereference any pointer or allocatable
// actual argument now instead of doing this inside the elemental
// region.
preparedActual->derefPointersAndAllocatables(loc, builder);
// Better to load scalars outside of the loop when possible.
if (!preparedActual->handleDynamicOptional() &&
impl().canLoadActualArgumentBeforeLoop(i))
preparedActual->loadTrivialScalar(loc, builder);
// TODO: merge shape instead of using the first one.
if (!shape && preparedActual->isArray()) {
if (preparedActual->handleDynamicOptional())
optionalWithShape = &*preparedActual;
else
shape = preparedActual->genShape(loc, builder);
}
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
// arguments must be called in element order.
if (impl().argMayBeModifiedByCall(i))
mustBeOrdered = true;
}
}
if (!shape && optionalWithShape) {
// If all array operands appear in optional positions, then none of them
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
// first operand.
shape = optionalWithShape->genShape(loc, builder);
// TODO: There is an opportunity to add a runtime check here that
// this array is present as required. Also, the optionality of all actual
// could be checked and reset given the Fortran requirement.
optionalWithShape->resetOptionalAspect();
}
assert(shape &&
"elemental array calls must have at least one array arguments");
// Evaluate the actual argument array expressions before the elemental
// call of an impure subprogram or a subprogram with intent(out) or
// intent(inout) arguments. Note that the scalar arguments are handled
// above.
if (mustBeOrdered) {
for (auto &preparedActual : loweredActuals) {
if (preparedActual) {
if (hlfir::AssociateOp associate =
preparedActual->associateIfArrayExpr(loc, builder)) {
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::EndAssociateOp>(loc, associate); });
}
}
}
}
// Push a new local scope so that any temps made inside the elemental
// iterations are cleaned up inside the iterations.
if (!callContext.resultType) {
// Subroutine case. Generate call inside loop nest.
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, shape, !mustBeOrdered);
mlir::ValueRange oneBasedIndices = loopNest.oneBasedIndices;
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
builder.restoreInsertionPoint(insPt);
return std::nullopt;
}
// Function case: generate call inside hlfir.elemental
mlir::Type elementType =
hlfir::getFortranElementType(*callContext.resultType);
// Get result length parameters.
llvm::SmallVector<mlir::Value> typeParams;
if (mlir::isa<fir::CharacterType>(elementType) ||
fir::isRecordWithTypeParameters(elementType)) {
auto charType = mlir::dyn_cast<fir::CharacterType>(elementType);
if (charType && charType.hasConstantLen())
typeParams.push_back(builder.createIntegerConstant(
loc, builder.getIndexType(), charType.getLen()));
else if (charType)
typeParams.push_back(impl().computeDynamicCharacterResultLength(
loweredActuals, callContext));
else
TODO(
loc,
"compute elemental PDT function result length parameters in HLFIR");
}
auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b,
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
auto res = *impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
// Note that an hlfir.destroy is not emitted for the result since it
// is still used by the hlfir.yield_element that also marks its last
// use.
return res;
};
mlir::Value polymorphicMold;
if (fir::isPolymorphicType(*callContext.resultType))
polymorphicMold =
impl().getPolymorphicResultMold(loweredActuals, callContext);
mlir::Value elemental =
hlfir::genElementalOp(loc, builder, elementType, shape, typeParams,
genKernel, !mustBeOrdered, polymorphicMold);
// If the function result requires finalization, then it has to be done
// for the array result of the elemental call. We have to communicate
// this via the DestroyOp's attribute.
bool mustFinalizeExpr = impl().resultMayRequireFinalization(callContext);
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup([=]() {
bldr->create<hlfir::DestroyOp>(loc, elemental, mustFinalizeExpr);
});
return hlfir::EntityWithAttributes{elemental};
}
private:
ElementalCallBuilderImpl &impl() {
return *static_cast<ElementalCallBuilderImpl *>(this);
}
};
class ElementalUserCallBuilder
: public ElementalCallBuilder<ElementalUserCallBuilder> {
public:
ElementalUserCallBuilder(Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType)
: caller{caller}, callSiteType{callSiteType} {}
std::optional<hlfir::Entity>
genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
bool argMayBeModifiedByCall(unsigned argIdx) const {
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
return caller.getPassedArguments()[argIdx].mayBeModifiedByCall();
}
bool canLoadActualArgumentBeforeLoop(unsigned argIdx) const {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
const auto &passedArgs{caller.getPassedArguments()};
assert(argIdx < passedArgs.size() && "bad argument index");
// If the actual argument does not need to be passed via an address,
// or will be passed in the address of a temporary copy, it can be loaded
// before the elemental loop nest.
const auto &arg{passedArgs[argIdx]};
return arg.passBy == PassBy::Value ||
arg.passBy == PassBy::BaseAddressValueAttribute;
}
mlir::Value computeDynamicCharacterResultLength(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<CallCleanUp> callCleanUps;
prepareUserCallArguments(loweredActuals, caller, callSiteType, callContext,
callCleanUps);
callContext.symMap.pushScope();
// Map prepared argument to dummy symbol to be able to lower spec expr.
for (const auto &arg : caller.getPassedArguments()) {
const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
assert(sym && "expect symbol for dummy argument");
auto input = caller.getInput(arg);
fir::ExtendedValue exv = Fortran::lower::translateToExtendedValue(
loc, builder, hlfir::Entity{input}, callContext.stmtCtx);
fir::FortranVariableOpInterface variableIface = hlfir::genDeclare(
loc, builder, exv, "dummy.tmp", fir::FortranVariableFlagsAttr{});
callContext.symMap.addVariableDefinition(*sym, variableIface);
}
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy,
fir::getBase(converter.genExprValue(expr, callContext.stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> lengths;
caller.walkResultLengths(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
lengths.emplace_back(lowerSpecExpr(e));
});
callContext.symMap.popScope();
assert(lengths.size() == 1 && "expect 1 length parameter for the result");
return lengths[0];
}
mlir::Value getPolymorphicResultMold(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
fir::emitFatalError(callContext.loc,
"elemental function call with polymorphic result");
return {};
}
bool resultMayRequireFinalization(CallContext &callContext) const {
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
if (!retTy)
return false;
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())
fir::emitFatalError(
callContext.loc,
"elemental function call with [unlimited-]polymorphic result");
if (retTy->category() == Fortran::common::TypeCategory::Derived) {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
return Fortran::semantics::IsFinalizable(typeSpec);
}
return false;
}
private:
Fortran::lower::CallerInterface &caller;
mlir::FunctionType callSiteType;
};
class ElementalIntrinsicCallBuilder
: public ElementalCallBuilder<ElementalIntrinsicCallBuilder> {
public:
ElementalIntrinsicCallBuilder(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry, bool isFunction)
: intrinsic{intrinsic}, intrinsicEntry{intrinsicEntry},
isFunction{isFunction} {}
std::optional<hlfir::Entity>
genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genHLFIRIntrinsicRefCore(loweredActuals, intrinsic, intrinsicEntry,
callContext);
}
// Elemental intrinsic functions cannot modify their arguments.
bool argMayBeModifiedByCall(int) const { return !isFunction; }
bool canLoadActualArgumentBeforeLoop(int) const {
// Elemental intrinsic functions never need the actual addresses
// of their arguments.
return isFunction;
}
mlir::Value computeDynamicCharacterResultLength(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (intrinsic)
if (intrinsic->name == "adjustr" || intrinsic->name == "adjustl" ||
intrinsic->name == "merge")
return loweredActuals[0].value().genCharLength(
callContext.loc, callContext.getBuilder());
// Character MIN/MAX is the min/max of the arguments length that are
// present.
TODO(callContext.loc,
"compute elemental character min/max function result length in HLFIR");
}
mlir::Value getPolymorphicResultMold(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (!intrinsic)
return {};
if (intrinsic->name == "merge") {
// MERGE seems to be the only elemental function that can produce
// polymorphic result. The MERGE's result is polymorphic iff
// both TSOURCE and FSOURCE are polymorphic, and they also must have
// the same declared and dynamic types. So any of them can be used
// for the mold.
assert(!loweredActuals.empty());
return loweredActuals.front()->getPolymorphicMold(callContext.loc);
}
return {};
}
bool resultMayRequireFinalization(
[[maybe_unused]] CallContext &callContext) const {
// FIXME: need access to the CallerInterface's return type
// to check if the result may need finalization (e.g. the result
// of MERGE).
return false;
}
private:
const Fortran::evaluate::SpecificIntrinsic *intrinsic;
fir::IntrinsicHandlerEntry intrinsicEntry;
const bool isFunction;
};
} // namespace
static std::optional<mlir::Value>
genIsPresentIfArgMaybeAbsent(mlir::Location loc, hlfir::Entity actual,
const Fortran::lower::SomeExpr &expr,
CallContext &callContext,
bool passAsAllocatableOrPointer) {
if (!Fortran::evaluate::MayBePassedAsAbsentOptional(expr))
return std::nullopt;
fir::FirOpBuilder &builder = callContext.getBuilder();
if (!passAsAllocatableOrPointer &&
Fortran::evaluate::IsAllocatableOrPointerObject(expr)) {
// Passing Allocatable/Pointer to non-pointer/non-allocatable OPTIONAL.
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, it is
// as if the argument was absent. The main care here is to not do a
// copy-in/copy-out because the temp address, even though pointing to a
// null size storage, would not be a nullptr and therefore the argument
// would not be considered absent on the callee side. Note: if the
// allocatable/pointer is also optional, it cannot be absent as per
// 15.5.2.12 point 7. and 8. We rely on this to un-conditionally read
// the allocatable/pointer descriptor here.
mlir::Value addr = genVariableRawAddress(loc, builder, actual);
return builder.genIsNotNullAddr(loc, addr);
}
// TODO: what if passing allocatable target to optional intent(in) pointer?
// May fall into the category above if the allocatable is not optional.
// Passing an optional to an optional.
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
// Lower a reference to an elemental intrinsic procedure with array arguments
// and custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomElementalIntrinsicRef(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
assert(callContext.isElementalProcWithArrayArgs() &&
"Use genCustomIntrinsicRef for scalar calls");
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
Fortran::lower::PreparedActualArguments operands;
assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter));
// callback for optional arguments
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
std::optional<mlir::Value> isPresent =
genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
/*passAsAllocatableOrPointer=*/false);
operands.emplace_back(
Fortran::lower::PreparedActualArgument{actual, isPresent});
};
// callback for non-optional arguments
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
fir::LowerIntrinsicArgAs lowerAs) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
operands.emplace_back(Fortran::lower::PreparedActualArgument{
actual, /*isPresent=*/std::nullopt});
};
Fortran::lower::prepareCustomIntrinsicArgument(
callContext.procRef, *intrinsic, callContext.resultType,
prepareOptionalArg, prepareOtherArg, converter);
std::optional<fir::IntrinsicHandlerEntry> intrinsicEntry =
fir::lookupIntrinsicHandler(callContext.getBuilder(),
callContext.getProcedureName(),
callContext.resultType);
assert(intrinsicEntry.has_value() &&
"intrinsic with custom handling for OPTIONAL arguments must have "
"lowering entries");
// All of the custom intrinsic elementals with custom handling are pure
// functions
return ElementalIntrinsicCallBuilder{intrinsic, *intrinsicEntry,
/*isFunction=*/true}
.genElementalCall(operands, /*isImpure=*/false, callContext);
}
// Lower a reference to an intrinsic procedure with custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
assert(!callContext.isElementalProcWithArrayArgs() &&
"Needs to be run through ElementalIntrinsicCallBuilder first");
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
auto &converter = callContext.converter;
auto &stmtCtx = callContext.stmtCtx;
assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter));
Fortran::lower::PreparedActualArguments loweredActuals;
// callback for optional arguments
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
mlir::Value isPresent =
genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
/*passAsAllocatableOrPointer*/ false)
.value();
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{actual, {isPresent}});
};
// callback for non-optional arguments
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
fir::LowerIntrinsicArgAs lowerAs) {
auto getActualFortranElementType = [&]() -> mlir::Type {
return hlfir::getFortranElementType(converter.genType(expr));
};
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
std::optional<fir::ExtendedValue> exv;
switch (lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
exv = Fortran::lower::convertToValue(loc, converter, actual, stmtCtx);
break;
case fir::LowerIntrinsicArgAs::Addr:
exv = Fortran::lower::convertToAddress(loc, converter, actual, stmtCtx,
getActualFortranElementType());
break;
case fir::LowerIntrinsicArgAs::Box:
exv = Fortran::lower::convertToBox(loc, converter, actual, stmtCtx,
getActualFortranElementType());
break;
case fir::LowerIntrinsicArgAs::Inquired:
exv = Fortran::lower::translateToExtendedValue(loc, builder, actual,
stmtCtx);
break;
}
if (!exv)
llvm_unreachable("bad switch");
actual = extendedValueToHlfirEntity(loc, builder, exv.value(),
"tmp.custom_intrinsic_arg");
loweredActuals.emplace_back(Fortran::lower::PreparedActualArgument{
actual, /*isPresent=*/std::nullopt});
};
Fortran::lower::prepareCustomIntrinsicArgument(
callContext.procRef, *intrinsic, callContext.resultType,
prepareOptionalArg, prepareOtherArg, converter);
return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
}
/// Lower an intrinsic procedure reference.
/// \p intrinsic is null if this is an intrinsic module procedure that must be
/// lowered as if it were an intrinsic module procedure (like C_LOC which is a
/// procedure from intrinsic module iso_c_binding). Otherwise, \p intrinsic
/// must not be null.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
Fortran::lower::PreparedActualArguments loweredActuals;
const fir::IntrinsicArgumentLoweringRules *argLowering =
intrinsicEntry.getArgumentLoweringRules();
for (const auto &arg : llvm::enumerate(callContext.procRef.arguments())) {
if (!arg.value()) {
// Absent optional.
loweredActuals.push_back(std::nullopt);
continue;
}
auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
if (!expr) {
// TYPE(*) dummy. They are only allowed as argument of a few intrinsics
// that do not take optional arguments: see Fortran 2018 standard C710.
const Fortran::evaluate::Symbol *assumedTypeSym =
arg.value()->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(loc,
"expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
assert(
(!argLowering ||
!fir::lowerIntrinsicArgumentAs(*argLowering, arg.index())
.handleDynamicOptional) &&
"TYPE(*) are not expected to appear as optional intrinsic arguments");
loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
hlfir::Entity{*var}, /*isPresent=*/std::nullopt});
continue;
}
// arguments of bitwise comparison functions may not have nsw flag
// even if -fno-wrapv is enabled
mlir::arith::IntegerOverflowFlags iofBackup{};
auto isBitwiseComparison = [](const std::string intrinsicName) -> bool {
if (intrinsicName == "bge" || intrinsicName == "bgt" ||
intrinsicName == "ble" || intrinsicName == "blt")
return true;
return false;
};
if (isBitwiseComparison(callContext.getProcedureName())) {
iofBackup = callContext.getBuilder().getIntegerOverflowFlags();
callContext.getBuilder().setIntegerOverflowFlags(
mlir::arith::IntegerOverflowFlags::none);
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
if (isBitwiseComparison(callContext.getProcedureName()))
callContext.getBuilder().setIntegerOverflowFlags(iofBackup);
std::optional<mlir::Value> isPresent;
if (argLowering) {
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (argRules.handleDynamicOptional)
isPresent =
genIsPresentIfArgMaybeAbsent(loc, loweredActual, *expr, callContext,
/*passAsAllocatableOrPointer=*/false);
}
loweredActuals.push_back(
Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
}
if (callContext.isElementalProcWithArrayArgs()) {
// All intrinsic elemental functions are pure.
const bool isFunction = callContext.resultType.has_value();
return ElementalIntrinsicCallBuilder{intrinsic, intrinsicEntry, isFunction}
.genElementalCall(loweredActuals, /*isImpure=*/!isFunction,
callContext);
}
std::optional<hlfir::EntityWithAttributes> result = genHLFIRIntrinsicRefCore(
loweredActuals, intrinsic, intrinsicEntry, callContext);
if (result && mlir::isa<hlfir::ExprType>(result->getType())) {
fir::FirOpBuilder *bldr = &callContext.getBuilder();
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, *result); });
}
return result;
}
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter)) {
if (callContext.isElementalProcWithArrayArgs())
return genCustomElementalIntrinsicRef(intrinsic, callContext);
return genCustomIntrinsicRef(intrinsic, callContext);
}
std::optional<fir::IntrinsicHandlerEntry> intrinsicEntry =
fir::lookupIntrinsicHandler(callContext.getBuilder(),
callContext.getProcedureName(),
callContext.resultType);
if (!intrinsicEntry)
fir::crashOnMissingIntrinsic(loc, callContext.getProcedureName());
return genIntrinsicRef(intrinsic, *intrinsicEntry, callContext);
}
/// Main entry point to lower procedure references, regardless of what they are.
static std::optional<hlfir::EntityWithAttributes>
genProcedureRef(CallContext &callContext) {
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
if (auto *intrinsic = callContext.procRef.proc().GetSpecificIntrinsic())
return genIntrinsicRef(intrinsic, callContext);
// Intercept non BIND(C) module procedure reference that have lowering
// handlers defined for there name. Otherwise, lower them as user
// procedure calls and expect the implementation to be part of
// runtime libraries with the proper name mangling.
if (Fortran::lower::isIntrinsicModuleProcRef(callContext.procRef) &&
!callContext.isBindcCall())
if (std::optional<fir::IntrinsicHandlerEntry> intrinsicEntry =
fir::lookupIntrinsicHandler(builder, callContext.getProcedureName(),
callContext.resultType))
return genIntrinsicRef(nullptr, *intrinsicEntry, callContext);
if (callContext.isStatementFunctionCall())
return genStmtFunctionRef(loc, callContext.converter, callContext.symMap,
callContext.stmtCtx, callContext.procRef);
Fortran::lower::CallerInterface caller(callContext.procRef,
callContext.converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
const bool isElemental = callContext.isElementalProcWithArrayArgs();
Fortran::lower::PreparedActualArguments loweredActuals;
// Lower the actual arguments
for (const Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity &arg :
caller.getPassedArguments())
if (const auto *actual = arg.entity) {
const auto *expr = actual->UnwrapExpr();
if (!expr) {
// TYPE(*) actual argument.
const Fortran::evaluate::Symbol *assumedTypeSym =
actual->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(
loc, "expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
hlfir::Entity actual{*var};
std::optional<mlir::Value> isPresent;
if (arg.isOptional()) {
// Passing an optional TYPE(*) to an optional TYPE(*). Note that
// TYPE(*) cannot be ALLOCATABLE/POINTER (C709) so there is no
// need to cover the case of passing an ALLOCATABLE/POINTER to an
// OPTIONAL.
isPresent =
builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
hlfir::Entity{*var}, isPresent});
continue;
}
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
if ((arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::MutableBox) &&
(arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::BoxProcRef)) {
assert(
arg.isOptional() &&
"NULL must be passed only to pointer, allocatable, or OPTIONAL");
// Trying to lower NULL() outside of any context would lead to
// trouble. NULL() here is equivalent to not providing the
// actual argument.
loweredActuals.emplace_back(std::nullopt);
continue;
}
}
if (isElemental && !arg.hasValueAttribute() &&
Fortran::evaluate::IsVariable(*expr) &&
Fortran::evaluate::HasVectorSubscript(*expr)) {
// Vector subscripted arguments are copied in calls, except in elemental
// calls without VALUE attribute where Fortran 2018 15.5.2.4 point 21
// does not apply and the address of each element must be passed.
hlfir::ElementalAddrOp elementalAddr =
Fortran::lower::convertVectorSubscriptedExprToElementalAddr(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{elementalAddr});
continue;
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (arg.isOptional())
isPresent = genIsPresentIfArgMaybeAbsent(
loc, loweredActual, *expr, callContext,
arg.passBy ==
Fortran::lower::CallerInterface::PassEntityBy::MutableBox);
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
} else {
// Optional dummy argument for which there is no actual argument.
loweredActuals.emplace_back(std::nullopt);
}
if (isElemental) {
bool isImpure = false;
if (const Fortran::semantics::Symbol *procSym =
callContext.procRef.proc().GetSymbol())
isImpure = !Fortran::semantics::IsPureProcedure(*procSym);
return ElementalUserCallBuilder{caller, callSiteType}.genElementalCall(
loweredActuals, isImpure, callContext);
}
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
hlfir::Entity Fortran::lower::PreparedActualArgument::getActual(
mlir::Location loc, fir::FirOpBuilder &builder) const {
if (auto *actualEntity = std::get_if<hlfir::Entity>(&actual)) {
if (oneBasedElementalIndices)
return hlfir::getElementAt(loc, builder, *actualEntity,
*oneBasedElementalIndices);
return *actualEntity;
}
assert(oneBasedElementalIndices && "expect elemental context");
hlfir::ElementalAddrOp elementalAddr =
std::get<hlfir::ElementalAddrOp>(actual);
mlir::IRMapping mapper;
auto alwaysFalse = [](hlfir::ElementalOp) -> bool { return false; };
mlir::Value addr = hlfir::inlineElementalOp(
loc, builder, elementalAddr, *oneBasedElementalIndices, mapper,
/*mustRecursivelyInline=*/alwaysFalse);
assert(elementalAddr.getCleanup().empty() && "no clean-up expected");
elementalAddr.erase();
return hlfir::Entity{addr};
}
bool Fortran::lower::isIntrinsicModuleProcRef(
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
if (!symbol)
return false;
const Fortran::semantics::Symbol *module =
symbol->GetUltimate().owner().GetSymbol();
return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
}
static bool isInWhereMaskedExpression(fir::FirOpBuilder &builder) {
// The MASK of the outer WHERE is not masked itself.
mlir::Operation *op = builder.getRegion().getParentOp();
return op && op->getParentOfType<hlfir::WhereOp>();
}
std::optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, std::optional<mlir::Type> resultType,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
if (resultType && !procRef.IsElemental() &&
isInWhereMaskedExpression(builder) &&
!builder.getRegion().getParentOfType<hlfir::ExactlyOnceOp>()) {
// Non elemental calls inside a where-assignment-stmt must be executed
// exactly once without mask control. Lower them in a special region so that
// this can be enforced whenscheduling forall/where expression evaluations.
Fortran::lower::StatementContext localStmtCtx;
mlir::Type bogusType = builder.getIndexType();
auto exactlyOnce = builder.create<hlfir::ExactlyOnceOp>(loc, bogusType);
mlir::Block *block = builder.createBlock(&exactlyOnce.getBody());
builder.setInsertionPointToStart(block);
CallContext callContext(procRef, resultType, loc, converter, symMap,
localStmtCtx);
std::optional<hlfir::EntityWithAttributes> res =
genProcedureRef(callContext);
assert(res.has_value() && "must be a function");
auto yield = builder.create<hlfir::YieldOp>(loc, *res);
Fortran::lower::genCleanUpInRegionIfAny(loc, builder, yield.getCleanup(),
localStmtCtx);
builder.setInsertionPointAfter(exactlyOnce);
exactlyOnce->getResult(0).setType(res->getType());
if (hlfir::isFortranValue(exactlyOnce.getResult()))
return hlfir::EntityWithAttributes{exactlyOnce.getResult()};
// Create hlfir.declare for the result to satisfy
// hlfir::EntityWithAttributes requirements.
auto [exv, cleanup] = hlfir::translateToExtendedValue(
loc, builder, hlfir::Entity{exactlyOnce});
assert(!cleanup && "resut is a variable");
return hlfir::genDeclare(loc, builder, exv, ".func.pointer.result",
fir::FortranVariableFlagsAttr{});
}
CallContext callContext(procRef, resultType, loc, converter, symMap, stmtCtx);
return genProcedureRef(callContext);
}
void Fortran::lower::convertUserDefinedAssignmentToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, hlfir::Entity lhs, hlfir::Entity rhs,
Fortran::lower::SymMap &symMap) {
Fortran::lower::StatementContext definedAssignmentContext;
CallContext callContext(procRef, /*resultType=*/std::nullopt, loc, converter,
symMap, definedAssignmentContext);
Fortran::lower::CallerInterface caller(procRef, converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
PreparedActualArgument preparedLhs{lhs, /*isPresent=*/std::nullopt};
PreparedActualArgument preparedRhs{rhs, /*isPresent=*/std::nullopt};
PreparedActualArguments loweredActuals{preparedLhs, preparedRhs};
genUserCall(loweredActuals, caller, callSiteType, callContext);
return;
}