//===-- PolymorphicOpConversion.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/BuiltinModules.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Runtime/derived-api.h"
#include "flang/Semantics/runtime-type-info.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
namespace fir {
#define GEN_PASS_DEF_POLYMORPHICOPCONVERSION
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
using namespace fir;
using namespace mlir;
namespace {
/// SelectTypeOp converted to an if-then-else chain
///
/// This lowers the test conditions to calls into the runtime.
class SelectTypeConv : public OpConversionPattern<fir::SelectTypeOp> {
public:
using OpConversionPattern<fir::SelectTypeOp>::OpConversionPattern;
SelectTypeConv(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<fir::SelectTypeOp>(ctx) {}
llvm::LogicalResult
matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override;
private:
// Generate comparison of type descriptor addresses.
mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector,
mlir::Type ty, mlir::ModuleOp mod,
mlir::PatternRewriter &rewriter) const;
llvm::LogicalResult genTypeLadderStep(mlir::Location loc,
mlir::Value selector,
mlir::Attribute attr, mlir::Block *dest,
std::optional<mlir::ValueRange> destOps,
mlir::ModuleOp mod,
mlir::PatternRewriter &rewriter,
fir::KindMapping &kindMap) const;
llvm::SmallSet<llvm::StringRef, 4> collectAncestors(fir::TypeInfoOp dt,
mlir::ModuleOp mod) const;
};
/// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
/// table.
struct DispatchOpConv : public OpConversionPattern<fir::DispatchOp> {
using OpConversionPattern<fir::DispatchOp>::OpConversionPattern;
DispatchOpConv(mlir::MLIRContext *ctx, const BindingTables &bindingTables)
: mlir::OpConversionPattern<fir::DispatchOp>(ctx),
bindingTables(bindingTables) {}
llvm::LogicalResult
matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = dispatch.getLoc();
if (bindingTables.empty())
return emitError(loc) << "no binding tables found";
// Get derived type information.
mlir::Type declaredType =
fir::getDerivedType(dispatch.getObject().getType().getEleTy());
assert(mlir::isa<fir::RecordType>(declaredType) && "expecting fir.type");
auto recordType = mlir::dyn_cast<fir::RecordType>(declaredType);
// Lookup for the binding table.
auto bindingsIter = bindingTables.find(recordType.getName());
if (bindingsIter == bindingTables.end())
return emitError(loc)
<< "cannot find binding table for " << recordType.getName();
// Lookup for the binding.
const BindingTable &bindingTable = bindingsIter->second;
auto bindingIter = bindingTable.find(dispatch.getMethod());
if (bindingIter == bindingTable.end())
return emitError(loc)
<< "cannot find binding for " << dispatch.getMethod();
unsigned bindingIdx = bindingIter->second;
mlir::Value passedObject = dispatch.getObject();
auto module = dispatch.getOperation()->getParentOfType<mlir::ModuleOp>();
Type typeDescTy;
std::string typeDescName =
NameUniquer::getTypeDescriptorName(recordType.getName());
if (auto global = module.lookupSymbol<fir::GlobalOp>(typeDescName)) {
typeDescTy = global.getType();
}
// clang-format off
// Before:
// fir.dispatch "proc1"(%11 :
// !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>)
// After:
// %12 = fir.box_tdesc %11 : (!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) -> !fir.tdesc<none>
// %13 = fir.convert %12 : (!fir.tdesc<none>) -> !fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>
// %14 = fir.field_index binding, !fir.type<_QM__fortran_type_infoTderivedtype>
// %15 = fir.coordinate_of %13, %14 : (!fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>, !fir.field) -> !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
// %bindings = fir.load %15 : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
// %16 = fir.box_addr %bindings : (!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>) -> !fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>
// %17 = fir.coordinate_of %16, %c0 : (!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>, index) -> !fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>
// %18 = fir.field_index proc, !fir.type<_QM__fortran_type_infoTbinding>
// %19 = fir.coordinate_of %17, %18 : (!fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>, !fir.field) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>
// %20 = fir.field_index __address, !fir.type<_QM__fortran_builtinsT__builtin_c_funptr>
// %21 = fir.coordinate_of %19, %20 : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>, !fir.field) -> !fir.ref<i64>
// %22 = fir.load %21 : !fir.ref<i64>
// %23 = fir.convert %22 : (i64) -> (() -> ())
// fir.call %23() : () -> ()
// clang-format on
// Load the descriptor.
mlir::Type fieldTy = fir::FieldType::get(rewriter.getContext());
mlir::Type tdescType =
fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
mlir::Value boxDesc =
rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, passedObject);
boxDesc = rewriter.create<fir::ConvertOp>(
loc, fir::ReferenceType::get(typeDescTy), boxDesc);
// Load the bindings descriptor.
auto bindingsCompName = Fortran::semantics::bindingDescCompName;
fir::RecordType typeDescRecTy = mlir::cast<fir::RecordType>(typeDescTy);
mlir::Value field = rewriter.create<fir::FieldIndexOp>(
loc, fieldTy, bindingsCompName, typeDescRecTy, mlir::ValueRange{});
mlir::Type coorTy =
fir::ReferenceType::get(typeDescRecTy.getType(bindingsCompName));
mlir::Value bindingBoxAddr =
rewriter.create<fir::CoordinateOp>(loc, coorTy, boxDesc, field);
mlir::Value bindingBox = rewriter.create<fir::LoadOp>(loc, bindingBoxAddr);
// Load the correct binding.
mlir::Value bindings = rewriter.create<fir::BoxAddrOp>(loc, bindingBox);
fir::RecordType bindingTy = fir::unwrapIfDerived(
mlir::cast<fir::BaseBoxType>(bindingBox.getType()));
mlir::Type bindingAddrTy = fir::ReferenceType::get(bindingTy);
mlir::Value bindingIdxVal = rewriter.create<mlir::arith::ConstantOp>(
loc, rewriter.getIndexType(), rewriter.getIndexAttr(bindingIdx));
mlir::Value bindingAddr = rewriter.create<fir::CoordinateOp>(
loc, bindingAddrTy, bindings, bindingIdxVal);
// Get the function pointer.
auto procCompName = Fortran::semantics::procCompName;
mlir::Value procField = rewriter.create<fir::FieldIndexOp>(
loc, fieldTy, procCompName, bindingTy, mlir::ValueRange{});
fir::RecordType procTy =
mlir::cast<fir::RecordType>(bindingTy.getType(procCompName));
mlir::Type procRefTy = fir::ReferenceType::get(procTy);
mlir::Value procRef = rewriter.create<fir::CoordinateOp>(
loc, procRefTy, bindingAddr, procField);
auto addressFieldName = Fortran::lower::builtin::cptrFieldName;
mlir::Value addressField = rewriter.create<fir::FieldIndexOp>(
loc, fieldTy, addressFieldName, procTy, mlir::ValueRange{});
mlir::Type addressTy = procTy.getType(addressFieldName);
mlir::Type addressRefTy = fir::ReferenceType::get(addressTy);
mlir::Value addressRef = rewriter.create<fir::CoordinateOp>(
loc, addressRefTy, procRef, addressField);
mlir::Value address = rewriter.create<fir::LoadOp>(loc, addressRef);
// Get the function type.
llvm::SmallVector<mlir::Type> argTypes;
for (mlir::Value operand : dispatch.getArgs())
argTypes.push_back(operand.getType());
llvm::SmallVector<mlir::Type> resTypes;
if (!dispatch.getResults().empty())
resTypes.push_back(dispatch.getResults()[0].getType());
mlir::Type funTy =
mlir::FunctionType::get(rewriter.getContext(), argTypes, resTypes);
mlir::Value funcPtr = rewriter.create<fir::ConvertOp>(loc, funTy, address);
// Make the call.
llvm::SmallVector<mlir::Value> args{funcPtr};
args.append(dispatch.getArgs().begin(), dispatch.getArgs().end());
rewriter.replaceOpWithNewOp<fir::CallOp>(dispatch, resTypes, nullptr, args,
dispatch.getProcedureAttrsAttr());
return mlir::success();
}
private:
BindingTables bindingTables;
};
/// Convert FIR structured control flow ops to CFG ops.
class PolymorphicOpConversion
: public fir::impl::PolymorphicOpConversionBase<PolymorphicOpConversion> {
public:
llvm::LogicalResult initialize(mlir::MLIRContext *ctx) override {
return mlir::success();
}
void runOnOperation() override {
auto *context = &getContext();
mlir::ModuleOp mod = getOperation();
mlir::RewritePatternSet patterns(context);
BindingTables bindingTables;
buildBindingTables(bindingTables, mod);
patterns.insert<SelectTypeConv>(context);
patterns.insert<DispatchOpConv>(context, bindingTables);
mlir::ConversionTarget target(*context);
target.addLegalDialect<mlir::affine::AffineDialect,
mlir::cf::ControlFlowDialect, FIROpsDialect,
mlir::func::FuncDialect>();
// apply the patterns
target.addIllegalOp<SelectTypeOp>();
target.addIllegalOp<DispatchOp>();
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"error in converting to CFG\n");
signalPassFailure();
}
}
};
} // namespace
llvm::LogicalResult SelectTypeConv::matchAndRewrite(
fir::SelectTypeOp selectType, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const {
auto operands = adaptor.getOperands();
auto typeGuards = selectType.getCases();
unsigned typeGuardNum = typeGuards.size();
auto selector = selectType.getSelector();
auto loc = selectType.getLoc();
auto mod = selectType.getOperation()->getParentOfType<mlir::ModuleOp>();
fir::KindMapping kindMap = fir::getKindMapping(mod);
// Order type guards so the condition and branches are done to respect the
// Execution of SELECT TYPE construct as described in the Fortran 2018
// standard 11.1.11.2 point 4.
// 1. If a TYPE IS type guard statement matches the selector, the block
// following that statement is executed.
// 2. Otherwise, if exactly one CLASS IS type guard statement matches the
// selector, the block following that statement is executed.
// 3. Otherwise, if several CLASS IS type guard statements match the
// selector, one of these statements will inevitably specify a type that
// is an extension of all the types specified in the others; the block
// following that statement is executed.
// 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
// following that statement is executed.
// 5. Otherwise, no block is executed.
llvm::SmallVector<unsigned> orderedTypeGuards;
llvm::SmallVector<unsigned> orderedClassIsGuards;
unsigned defaultGuard = typeGuardNum - 1;
// The following loop go through the type guards in the fir.select_type
// operation and sort them into two lists.
// - All the TYPE IS type guard are added in order to the orderedTypeGuards
// list. This list is used at the end to generate the if-then-else ladder.
// - CLASS IS type guard are added in a separate list. If a CLASS IS type
// guard type extends a type already present, the type guard is inserted
// before in the list to respect point 3. above. Otherwise it is just
// added in order at the end.
for (unsigned t = 0; t < typeGuardNum; ++t) {
if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(typeGuards[t])) {
orderedTypeGuards.push_back(t);
continue;
}
if (auto a = mlir::dyn_cast<fir::SubclassAttr>(typeGuards[t])) {
if (auto recTy = mlir::dyn_cast<fir::RecordType>(a.getType())) {
auto dt = mod.lookupSymbol<fir::TypeInfoOp>(recTy.getName());
assert(dt && "dispatch table not found");
llvm::SmallSet<llvm::StringRef, 4> ancestors =
collectAncestors(dt, mod);
if (!ancestors.empty()) {
auto it = orderedClassIsGuards.begin();
while (it != orderedClassIsGuards.end()) {
fir::SubclassAttr sAttr =
mlir::dyn_cast<fir::SubclassAttr>(typeGuards[*it]);
if (auto ty = mlir::dyn_cast<fir::RecordType>(sAttr.getType())) {
if (ancestors.contains(ty.getName()))
break;
}
++it;
}
if (it != orderedClassIsGuards.end()) {
// Parent type is present so place it before.
orderedClassIsGuards.insert(it, t);
continue;
}
}
}
orderedClassIsGuards.push_back(t);
}
}
orderedTypeGuards.append(orderedClassIsGuards);
orderedTypeGuards.push_back(defaultGuard);
assert(orderedTypeGuards.size() == typeGuardNum &&
"ordered type guard size doesn't match number of type guards");
for (unsigned idx : orderedTypeGuards) {
auto *dest = selectType.getSuccessor(idx);
std::optional<mlir::ValueRange> destOps =
selectType.getSuccessorOperands(operands, idx);
if (mlir::dyn_cast<mlir::UnitAttr>(typeGuards[idx]))
rewriter.replaceOpWithNewOp<mlir::cf::BranchOp>(
selectType, dest, destOps.value_or(mlir::ValueRange{}));
else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx],
dest, destOps, mod, rewriter,
kindMap)))
return mlir::failure();
}
return mlir::success();
}
llvm::LogicalResult SelectTypeConv::genTypeLadderStep(
mlir::Location loc, mlir::Value selector, mlir::Attribute attr,
mlir::Block *dest, std::optional<mlir::ValueRange> destOps,
mlir::ModuleOp mod, mlir::PatternRewriter &rewriter,
fir::KindMapping &kindMap) const {
mlir::Value cmp;
// TYPE IS type guard comparison are all done inlined.
if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(attr)) {
if (fir::isa_trivial(a.getType()) ||
mlir::isa<fir::CharacterType>(a.getType())) {
// For type guard statement with Intrinsic type spec the type code of
// the descriptor is compared.
int code = fir::getTypeCode(a.getType(), kindMap);
if (code == 0)
return mlir::emitError(loc)
<< "type code unavailable for " << a.getType();
mlir::Value typeCode = rewriter.create<mlir::arith::ConstantOp>(
loc, rewriter.getI8IntegerAttr(code));
mlir::Value selectorTypeCode = rewriter.create<fir::BoxTypeCodeOp>(
loc, rewriter.getI8Type(), selector);
cmp = rewriter.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode);
} else {
// Flang inline the kind parameter in the type descriptor so we can
// directly check if the type descriptor addresses are identical for
// the TYPE IS type guard statement.
mlir::Value res =
genTypeDescCompare(loc, selector, a.getType(), mod, rewriter);
if (!res)
return mlir::failure();
cmp = res;
}
// CLASS IS type guard statement is done with a runtime call.
} else if (auto a = mlir::dyn_cast<fir::SubclassAttr>(attr)) {
// Retrieve the type descriptor from the type guard statement record type.
assert(mlir::isa<fir::RecordType>(a.getType()) && "expect fir.record type");
fir::RecordType recTy = mlir::dyn_cast<fir::RecordType>(a.getType());
std::string typeDescName =
fir::NameUniquer::getTypeDescriptorName(recTy.getName());
auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(typeDescGlobal.getType()),
typeDescGlobal.getSymbol());
mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType());
mlir::Value typeDesc =
rewriter.create<ConvertOp>(loc, typeDescTy, typeDescAddr);
// Prepare the selector descriptor for the runtime call.
mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType());
mlir::Value descSelector =
rewriter.create<ConvertOp>(loc, descNoneTy, selector);
// Generate runtime call.
llvm::StringRef fctName = RTNAME_STRING(ClassIs);
mlir::func::FuncOp callee;
{
// Since conversion is done in parallel for each fir.select_type
// operation, the runtime function insertion must be threadsafe.
callee =
fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName,
rewriter.getFunctionType({descNoneTy, typeDescTy},
rewriter.getI1Type()));
}
cmp = rewriter
.create<fir::CallOp>(loc, callee,
mlir::ValueRange{descSelector, typeDesc})
.getResult(0);
}
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock =
rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest));
rewriter.setInsertionPointToEnd(thisBlock);
if (destOps.has_value())
rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, destOps.value(),
newBlock, std::nullopt);
else
rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, newBlock);
rewriter.setInsertionPointToEnd(newBlock);
return mlir::success();
}
// Generate comparison of type descriptor addresses.
mlir::Value
SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector,
mlir::Type ty, mlir::ModuleOp mod,
mlir::PatternRewriter &rewriter) const {
assert(mlir::isa<fir::RecordType>(ty) && "expect fir.record type");
fir::RecordType recTy = mlir::dyn_cast<fir::RecordType>(ty);
std::string typeDescName =
fir::NameUniquer::getTypeDescriptorName(recTy.getName());
auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
if (!typeDescGlobal)
return {};
auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(typeDescGlobal.getType()),
typeDescGlobal.getSymbol());
auto intPtrTy = rewriter.getIndexType();
mlir::Type tdescType =
fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
mlir::Value selectorTdescAddr =
rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, selector);
auto typeDescInt =
rewriter.create<fir::ConvertOp>(loc, intPtrTy, typeDescAddr);
auto selectorTdescInt =
rewriter.create<fir::ConvertOp>(loc, intPtrTy, selectorTdescAddr);
return rewriter.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt);
}
llvm::SmallSet<llvm::StringRef, 4>
SelectTypeConv::collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const {
llvm::SmallSet<llvm::StringRef, 4> ancestors;
while (auto parentName = dt.getIfParentName()) {
ancestors.insert(*parentName);
dt = mod.lookupSymbol<fir::TypeInfoOp>(*parentName);
assert(dt && "parent type info not generated");
}
return ancestors;
}