//===- AbstractResult.cpp - Conversion of Abstract Function Result --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
namespace fir {
#define GEN_PASS_DEF_ABSTRACTRESULTOPT
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-abstract-result-opt"
using namespace mlir;
namespace fir {
namespace {
static mlir::Type getResultArgumentType(mlir::Type resultType,
bool shouldBoxResult) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(resultType)
.Case<fir::SequenceType, fir::RecordType>(
[&](mlir::Type type) -> mlir::Type {
if (shouldBoxResult)
return fir::BoxType::get(type);
return fir::ReferenceType::get(type);
})
.Case<fir::BaseBoxType>([](mlir::Type type) -> mlir::Type {
return fir::ReferenceType::get(type);
})
.Default([](mlir::Type) -> mlir::Type {
llvm_unreachable("bad abstract result type");
});
}
static mlir::FunctionType getNewFunctionType(mlir::FunctionType funcTy,
bool shouldBoxResult) {
auto resultType = funcTy.getResult(0);
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
llvm::SmallVector<mlir::Type> newInputTypes = {argTy};
newInputTypes.append(funcTy.getInputs().begin(), funcTy.getInputs().end());
return mlir::FunctionType::get(funcTy.getContext(), newInputTypes,
/*resultTypes=*/{});
}
static mlir::Type getVoidPtrType(mlir::MLIRContext *context) {
return fir::ReferenceType::get(mlir::NoneType::get(context));
}
/// This is for function result types that are of type C_PTR from ISO_C_BINDING.
/// Follow the ABI for interoperability with C.
static mlir::FunctionType getCPtrFunctionType(mlir::FunctionType funcTy) {
assert(fir::isa_builtin_cptr_type(funcTy.getResult(0)));
llvm::SmallVector<mlir::Type> outputTypes{
getVoidPtrType(funcTy.getContext())};
return mlir::FunctionType::get(funcTy.getContext(), funcTy.getInputs(),
outputTypes);
}
static bool mustEmboxResult(mlir::Type resultType, bool shouldBoxResult) {
return mlir::isa<fir::SequenceType, fir::RecordType>(resultType) &&
shouldBoxResult;
}
template <typename Op>
class CallConversion : public mlir::OpRewritePattern<Op> {
public:
using mlir::OpRewritePattern<Op>::OpRewritePattern;
CallConversion(mlir::MLIRContext *context, bool shouldBoxResult)
: OpRewritePattern<Op>(context, 1), shouldBoxResult{shouldBoxResult} {}
llvm::LogicalResult
matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto result = op->getResult(0);
if (!result.hasOneUse()) {
mlir::emitError(loc,
"calls with abstract result must have exactly one user");
return mlir::failure();
}
auto saveResult =
mlir::dyn_cast<fir::SaveResultOp>(result.use_begin().getUser());
if (!saveResult) {
mlir::emitError(
loc, "calls with abstract result must be used in fir.save_result");
return mlir::failure();
}
auto argType = getResultArgumentType(result.getType(), shouldBoxResult);
auto buffer = saveResult.getMemref();
mlir::Value arg = buffer;
if (mustEmboxResult(result.getType(), shouldBoxResult))
arg = rewriter.create<fir::EmboxOp>(
loc, argType, buffer, saveResult.getShape(), /*slice*/ mlir::Value{},
saveResult.getTypeparams());
llvm::SmallVector<mlir::Type> newResultTypes;
bool isResultBuiltinCPtr = fir::isa_builtin_cptr_type(result.getType());
if (isResultBuiltinCPtr)
newResultTypes.emplace_back(getVoidPtrType(result.getContext()));
Op newOp;
// fir::CallOp specific handling.
if constexpr (std::is_same_v<Op, fir::CallOp>) {
if (op.getCallee()) {
llvm::SmallVector<mlir::Value> newOperands;
if (!isResultBuiltinCPtr)
newOperands.emplace_back(arg);
newOperands.append(op.getOperands().begin(), op.getOperands().end());
newOp = rewriter.create<fir::CallOp>(loc, *op.getCallee(),
newResultTypes, newOperands);
} else {
// Indirect calls.
llvm::SmallVector<mlir::Type> newInputTypes;
if (!isResultBuiltinCPtr)
newInputTypes.emplace_back(argType);
for (auto operand : op.getOperands().drop_front())
newInputTypes.push_back(operand.getType());
auto newFuncTy = mlir::FunctionType::get(op.getContext(), newInputTypes,
newResultTypes);
llvm::SmallVector<mlir::Value> newOperands;
newOperands.push_back(
rewriter.create<fir::ConvertOp>(loc, newFuncTy, op.getOperand(0)));
if (!isResultBuiltinCPtr)
newOperands.push_back(arg);
newOperands.append(op.getOperands().begin() + 1,
op.getOperands().end());
newOp = rewriter.create<fir::CallOp>(loc, mlir::SymbolRefAttr{},
newResultTypes, newOperands);
}
}
// fir::DispatchOp specific handling.
if constexpr (std::is_same_v<Op, fir::DispatchOp>) {
llvm::SmallVector<mlir::Value> newOperands;
if (!isResultBuiltinCPtr)
newOperands.emplace_back(arg);
unsigned passArgShift = newOperands.size();
newOperands.append(op.getOperands().begin() + 1, op.getOperands().end());
mlir::IntegerAttr passArgPos;
if (op.getPassArgPos())
passArgPos =
rewriter.getI32IntegerAttr(*op.getPassArgPos() + passArgShift);
newOp = rewriter.create<fir::DispatchOp>(
loc, newResultTypes, rewriter.getStringAttr(op.getMethod()),
op.getOperands()[0], newOperands, passArgPos,
op.getProcedureAttrsAttr());
}
if (isResultBuiltinCPtr) {
mlir::Value save = saveResult.getMemref();
auto module = op->template getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
mlir::Value saveAddr = fir::factory::genCPtrOrCFunptrAddr(
builder, loc, save, result.getType());
builder.createStoreWithConvert(loc, newOp->getResult(0), saveAddr);
}
op->dropAllReferences();
rewriter.eraseOp(op);
return mlir::success();
}
private:
bool shouldBoxResult;
};
class SaveResultOpConversion
: public mlir::OpRewritePattern<fir::SaveResultOp> {
public:
using OpRewritePattern::OpRewritePattern;
SaveResultOpConversion(mlir::MLIRContext *context)
: OpRewritePattern(context) {}
llvm::LogicalResult
matchAndRewrite(fir::SaveResultOp op,
mlir::PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return mlir::success();
}
};
class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
public:
using OpRewritePattern::OpRewritePattern;
ReturnOpConversion(mlir::MLIRContext *context, mlir::Value newArg)
: OpRewritePattern(context), newArg{newArg} {}
llvm::LogicalResult
matchAndRewrite(mlir::func::ReturnOp ret,
mlir::PatternRewriter &rewriter) const override {
auto loc = ret.getLoc();
rewriter.setInsertionPoint(ret);
mlir::Value resultValue = ret.getOperand(0);
fir::LoadOp resultLoad;
mlir::Value resultStorage;
// Identify result local storage.
if (auto load = resultValue.getDefiningOp<fir::LoadOp>()) {
resultLoad = load;
resultStorage = load.getMemref();
// The result alloca may be behind a fir.declare, if any.
if (auto declare = resultStorage.getDefiningOp<fir::DeclareOp>())
resultStorage = declare.getMemref();
}
// Replace old local storage with new storage argument, unless
// the derived type is C_PTR/C_FUN_PTR, in which case the return
// type is updated to return void* (no new argument is passed).
if (fir::isa_builtin_cptr_type(resultValue.getType())) {
auto module = ret->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
mlir::Value cptr = resultValue;
if (resultLoad) {
// Replace whole derived type load by component load.
cptr = resultLoad.getMemref();
rewriter.setInsertionPoint(resultLoad);
}
mlir::Value newResultValue =
fir::factory::genCPtrOrCFunptrValue(builder, loc, cptr);
newResultValue = builder.createConvert(
loc, getVoidPtrType(ret.getContext()), newResultValue);
rewriter.setInsertionPoint(ret);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(
ret, mlir::ValueRange{newResultValue});
} else if (resultStorage) {
resultStorage.replaceAllUsesWith(newArg);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
} else {
// The result storage may have been optimized out by a memory to
// register pass, this is possible for fir.box results, or fir.record
// with no length parameters. Simply store the result in the result
// storage. at the return point.
rewriter.create<fir::StoreOp>(loc, resultValue, newArg);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
}
// Delete result old local storage if unused.
if (resultStorage)
if (auto alloc = resultStorage.getDefiningOp<fir::AllocaOp>())
if (alloc->use_empty())
rewriter.eraseOp(alloc);
return mlir::success();
}
private:
mlir::Value newArg;
};
class AddrOfOpConversion : public mlir::OpRewritePattern<fir::AddrOfOp> {
public:
using OpRewritePattern::OpRewritePattern;
AddrOfOpConversion(mlir::MLIRContext *context, bool shouldBoxResult)
: OpRewritePattern(context), shouldBoxResult{shouldBoxResult} {}
llvm::LogicalResult
matchAndRewrite(fir::AddrOfOp addrOf,
mlir::PatternRewriter &rewriter) const override {
auto oldFuncTy = mlir::cast<mlir::FunctionType>(addrOf.getType());
mlir::FunctionType newFuncTy;
if (oldFuncTy.getNumResults() != 0 &&
fir::isa_builtin_cptr_type(oldFuncTy.getResult(0)))
newFuncTy = getCPtrFunctionType(oldFuncTy);
else
newFuncTy = getNewFunctionType(oldFuncTy, shouldBoxResult);
auto newAddrOf = rewriter.create<fir::AddrOfOp>(addrOf.getLoc(), newFuncTy,
addrOf.getSymbol());
// Rather than converting all op a function pointer might transit through
// (e.g calls, stores, loads, converts...), cast new type to the abstract
// type. A conversion will be added when calling indirect calls of abstract
// types.
rewriter.replaceOpWithNewOp<fir::ConvertOp>(addrOf, oldFuncTy, newAddrOf);
return mlir::success();
}
private:
bool shouldBoxResult;
};
class AbstractResultOpt
: public fir::impl::AbstractResultOptBase<AbstractResultOpt> {
public:
using fir::impl::AbstractResultOptBase<
AbstractResultOpt>::AbstractResultOptBase;
void runOnSpecificOperation(mlir::func::FuncOp func, bool shouldBoxResult,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
auto loc = func.getLoc();
auto *context = &getContext();
// Convert function type itself if it has an abstract result.
auto funcTy = mlir::cast<mlir::FunctionType>(func.getFunctionType());
if (hasAbstractResult(funcTy)) {
if (fir::isa_builtin_cptr_type(funcTy.getResult(0))) {
func.setType(getCPtrFunctionType(funcTy));
patterns.insert<ReturnOpConversion>(context, mlir::Value{});
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[](mlir::func::ReturnOp ret) {
mlir::Type retTy = ret.getOperand(0).getType();
return !fir::isa_builtin_cptr_type(retTy);
});
return;
}
if (!func.empty()) {
// Insert new argument.
mlir::OpBuilder rewriter(context);
auto resultType = funcTy.getResult(0);
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
func.insertArgument(0u, argTy, {}, loc);
func.eraseResult(0u);
mlir::Value newArg = func.getArgument(0u);
if (mustEmboxResult(resultType, shouldBoxResult)) {
auto bufferType = fir::ReferenceType::get(resultType);
rewriter.setInsertionPointToStart(&func.front());
newArg = rewriter.create<fir::BoxAddrOp>(loc, bufferType, newArg);
}
patterns.insert<ReturnOpConversion>(context, newArg);
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[](mlir::func::ReturnOp ret) { return ret.getOperands().empty(); });
assert(func.getFunctionType() ==
getNewFunctionType(funcTy, shouldBoxResult));
} else {
llvm::SmallVector<mlir::DictionaryAttr> allArgs;
func.getAllArgAttrs(allArgs);
allArgs.insert(allArgs.begin(),
mlir::DictionaryAttr::get(func->getContext()));
func.setType(getNewFunctionType(funcTy, shouldBoxResult));
func.setAllArgAttrs(allArgs);
}
}
}
inline static bool containsFunctionTypeWithAbstractResult(mlir::Type type) {
return mlir::TypeSwitch<mlir::Type, bool>(type)
.Case([](fir::BoxProcType boxProc) {
return fir::hasAbstractResult(
mlir::cast<mlir::FunctionType>(boxProc.getEleTy()));
})
.Case([](fir::PointerType pointer) {
return fir::hasAbstractResult(
mlir::cast<mlir::FunctionType>(pointer.getEleTy()));
})
.Default([](auto &&) { return false; });
}
void runOnSpecificOperation(fir::GlobalOp global, bool,
mlir::RewritePatternSet &,
mlir::ConversionTarget &) {
if (containsFunctionTypeWithAbstractResult(global.getType())) {
TODO(global->getLoc(), "support for procedure pointers");
}
}
/// Run the pass on a ModuleOp. This makes fir-opt --abstract-result work.
void runOnModule() {
mlir::ModuleOp mod = mlir::cast<mlir::ModuleOp>(getOperation());
auto pass = std::make_unique<AbstractResultOpt>();
pass->copyOptionValuesFrom(this);
mlir::OpPassManager pipeline;
pipeline.addPass(std::unique_ptr<mlir::Pass>{pass.release()});
// Run the pass on all operations directly nested inside of the ModuleOp
// we can't just call runOnSpecificOperation here because the pass
// implementation only works when scoped to a particular func.func or
// fir.global
for (mlir::Region ®ion : mod->getRegions()) {
for (mlir::Block &block : region.getBlocks()) {
for (mlir::Operation &op : block.getOperations()) {
if (mlir::failed(runPipeline(pipeline, &op))) {
mlir::emitError(op.getLoc(), "Failed to run abstract result pass");
signalPassFailure();
return;
}
}
}
}
}
void runOnOperation() override {
auto *context = &this->getContext();
mlir::Operation *op = this->getOperation();
if (mlir::isa<mlir::ModuleOp>(op)) {
runOnModule();
return;
}
mlir::RewritePatternSet patterns(context);
mlir::ConversionTarget target = *context;
const bool shouldBoxResult = this->passResultAsBox.getValue();
mlir::TypeSwitch<mlir::Operation *, void>(op)
.Case<mlir::func::FuncOp, fir::GlobalOp>([&](auto op) {
runOnSpecificOperation(op, shouldBoxResult, patterns, target);
});
// Convert the calls and, if needed, the ReturnOp in the function body.
target.addLegalDialect<fir::FIROpsDialect, mlir::arith::ArithDialect,
mlir::func::FuncDialect>();
target.addIllegalOp<fir::SaveResultOp>();
target.addDynamicallyLegalOp<fir::CallOp>([](fir::CallOp call) {
return !hasAbstractResult(call.getFunctionType());
});
target.addDynamicallyLegalOp<fir::AddrOfOp>([](fir::AddrOfOp addrOf) {
if (auto funTy = mlir::dyn_cast<mlir::FunctionType>(addrOf.getType()))
return !hasAbstractResult(funTy);
return true;
});
target.addDynamicallyLegalOp<fir::DispatchOp>([](fir::DispatchOp dispatch) {
return !hasAbstractResult(dispatch.getFunctionType());
});
patterns.insert<CallConversion<fir::CallOp>>(context, shouldBoxResult);
patterns.insert<CallConversion<fir::DispatchOp>>(context, shouldBoxResult);
patterns.insert<SaveResultOpConversion>(context);
patterns.insert<AddrOfOpConversion>(context, shouldBoxResult);
if (mlir::failed(
mlir::applyPartialConversion(op, target, std::move(patterns)))) {
mlir::emitError(op->getLoc(), "error in converting abstract results\n");
this->signalPassFailure();
}
}
};
} // end anonymous namespace
} // namespace fir