//===-- Utilities for double-double data type. ------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_DOUBLE_DOUBLE_H #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_DOUBLE_DOUBLE_H #include "multiply_add.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA #include "src/__support/number_pair.h" namespace LIBC_NAMESPACE_DECL { namespace fputil { DoubleDouble; // The output of Dekker's FastTwoSum algorithm is correct, i.e.: // r.hi + r.lo = a + b exactly // and |r.lo| < eps(r.lo) // Assumption: |a| >= |b|, or a = 0. template <bool FAST2SUM = true> LIBC_INLINE constexpr DoubleDouble exact_add(double a, double b) { … } // Assumption: |a.hi| >= |b.hi| LIBC_INLINE constexpr DoubleDouble add(const DoubleDouble &a, const DoubleDouble &b) { … } // Assumption: |a.hi| >= |b| LIBC_INLINE constexpr DoubleDouble add(const DoubleDouble &a, double b) { … } // Veltkamp's Splitting for double precision. // Note: This is proved to be correct for all rounding modes: // Zimmermann, P., "Note on the Veltkamp/Dekker Algorithms with Directed // Roundings," https://inria.hal.science/hal-04480440. // Default splitting constant = 2^ceil(prec(double)/2) + 1 = 2^27 + 1. template <size_t N = 27> LIBC_INLINE constexpr DoubleDouble split(double a) { … } // Note: When FMA instruction is not available, the `exact_mult` function is // only correct for round-to-nearest mode. See: // Zimmermann, P., "Note on the Veltkamp/Dekker Algorithms with Directed // Roundings," https://inria.hal.science/hal-04480440. // Using Theorem 1 in the paper above, without FMA instruction, if we restrict // the generated constants to precision <= 51, and splitting it by 2^28 + 1, // then a * b = r.hi + r.lo is exact for all rounding modes. template <bool NO_FMA_ALL_ROUNDINGS = false> LIBC_INLINE DoubleDouble exact_mult(double a, double b) { … } LIBC_INLINE DoubleDouble quick_mult(double a, const DoubleDouble &b) { … } template <bool NO_FMA_ALL_ROUNDINGS = false> LIBC_INLINE DoubleDouble quick_mult(const DoubleDouble &a, const DoubleDouble &b) { … } // Assuming |c| >= |a * b|. template <> LIBC_INLINE DoubleDouble multiply_add<DoubleDouble>(const DoubleDouble &a, const DoubleDouble &b, const DoubleDouble &c) { … } // Accurate double-double division, following Karp-Markstein's trick for // division, implemented in the CORE-MATH project at: // https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/tan/tan.c#L1855 // // Error bounds: // Let a = ah + al, b = bh + bl. // Let r = rh + rl be the approximation of (ah + al) / (bh + bl). // Then: // (ah + al) / (bh + bl) - rh = // = ((ah - bh * rh) + (al - bl * rh)) / (bh + bl) // = (1 + O(bl/bh)) * ((ah - bh * rh) + (al - bl * rh)) / bh // Let q = round(1/bh), then the above expressions are approximately: // = (1 + O(bl / bh)) * (1 + O(2^-52)) * q * ((ah - bh * rh) + (al - bl * rh)) // So we can compute: // rl = q * (ah - bh * rh) + q * (al - bl * rh) // as accurate as possible, then the error is bounded by: // |(ah + al) / (bh + bl) - (rh + rl)| < O(bl/bh) * (2^-52 + al/ah + bl/bh) LIBC_INLINE DoubleDouble div(const DoubleDouble &a, const DoubleDouble &b) { … } } // namespace fputil } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_DOUBLE_DOUBLE_H