//===-- Utilities to convert floating point values to string ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC___SUPPORT_FLOAT_TO_STRING_H #define LLVM_LIBC_SRC___SUPPORT_FLOAT_TO_STRING_H #include <stdint.h> #include "src/__support/CPP/limits.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/dyadic_float.h" #include "src/__support/big_int.h" #include "src/__support/common.h" #include "src/__support/libc_assert.h" #include "src/__support/macros/attributes.h" #include "src/__support/macros/config.h" // This file has 5 compile-time flags to allow the user to configure the float // to string behavior. These were used to explore tradeoffs during the design // phase, and can still be used to gain specific properties. Unless you // specifically know what you're doing, you should leave all these flags off. // LIBC_COPT_FLOAT_TO_STR_NO_SPECIALIZE_LD // This flag disables the separate long double conversion implementation. It is // not based on the Ryu algorithm, instead generating the digits by // multiplying/dividing the written-out number by 10^9 to get blocks. It's // significantly faster than INT_CALC, only about 10x slower than MEGA_TABLE, // and is small in binary size. Its downside is that it always calculates all // of the digits above the decimal point, making it inefficient for %e calls // with large exponents. This specialization overrides other flags, so this // flag must be set for other flags to effect the long double behavior. // LIBC_COPT_FLOAT_TO_STR_USE_MEGA_LONG_DOUBLE_TABLE // The Mega Table is ~5 megabytes when compiled. It lists the constants needed // to perform the Ryu Printf algorithm (described below) for all long double // values. This makes it extremely fast for both doubles and long doubles, in // exchange for large binary size. // LIBC_COPT_FLOAT_TO_STR_USE_DYADIC_FLOAT // Dyadic floats are software floating point numbers, and their accuracy can be // as high as necessary. This option uses 256 bit dyadic floats to calculate // the table values that Ryu Printf needs. This is reasonably fast and very // small compared to the Mega Table, but the 256 bit floats only give accurate // results for the first ~50 digits of the output. In practice this shouldn't // be a problem since long doubles are only accurate for ~35 digits, but the // trailing values all being 0s may cause brittle tests to fail. // LIBC_COPT_FLOAT_TO_STR_USE_INT_CALC // Integer Calculation uses wide integers to do the calculations for the Ryu // Printf table, which is just as accurate as the Mega Table without requiring // as much code size. These integers can be very large (~32KB at max, though // always on the stack) to handle the edges of the long double range. They are // also very slow, taking multiple seconds on a powerful CPU to calculate the // values at the end of the range. If no flag is set, this is used for long // doubles, the flag only changes the double behavior. // LIBC_COPT_FLOAT_TO_STR_NO_TABLE // This flag doesn't change the actual calculation method, instead it is used // to disable the normal Ryu Printf table for configurations that don't use any // table at all. // Default Config: // If no flags are set, doubles use the normal (and much more reasonably sized) // Ryu Printf table and long doubles use their specialized implementation. This // provides good performance and binary size. #ifdef LIBC_COPT_FLOAT_TO_STR_USE_MEGA_LONG_DOUBLE_TABLE #include "src/__support/ryu_long_double_constants.h" #elif !defined(LIBC_COPT_FLOAT_TO_STR_NO_TABLE) #include "src/__support/ryu_constants.h" #else constexpr size_t IDX_SIZE = 1; constexpr size_t MID_INT_SIZE = 192; #endif // This implementation is based on the Ryu Printf algorithm by Ulf Adams: // Ulf Adams. 2019. Ryū revisited: printf floating point conversion. // Proc. ACM Program. Lang. 3, OOPSLA, Article 169 (October 2019), 23 pages. // https://doi.org/10.1145/3360595 // This version is modified to require significantly less memory (it doesn't use // a large buffer to store the result). // The general concept of this algorithm is as follows: // We want to calculate a 9 digit segment of a floating point number using this // formula: floor((mantissa * 2^exponent)/10^i) % 10^9. // To do so normally would involve large integers (~1000 bits for doubles), so // we use a shortcut. We can avoid calculating 2^exponent / 10^i by using a // lookup table. The resulting intermediate value needs to be about 192 bits to // store the result with enough precision. Since this is all being done with // integers for appropriate precision, we would run into a problem if // i > exponent since then 2^exponent / 10^i would be less than 1. To correct // for this, the actual calculation done is 2^(exponent + c) / 10^i, and then // when multiplying by the mantissa we reverse this by dividing by 2^c, like so: // floor((mantissa * table[exponent][i])/(2^c)) % 10^9. // This gives a 9 digit value, which is small enough to fit in a 32 bit integer, // and that integer is converted into a string as normal, and called a block. In // this implementation, the most recent block is buffered, so that if rounding // is necessary the block can be adjusted before being written to the output. // Any block that is all 9s adds one to the max block counter and doesn't clear // the buffer because they can cause the block above them to be rounded up. namespace LIBC_NAMESPACE_DECL { BlockInt; constexpr uint32_t BLOCK_SIZE = …; constexpr uint64_t EXP5_9 = …; constexpr uint64_t EXP10_9 = …; FPBits; // Larger numbers prefer a slightly larger constant than is used for the smaller // numbers. constexpr size_t CALC_SHIFT_CONST = …; namespace internal { // Returns floor(log_10(2^e)); requires 0 <= e <= 42039. LIBC_INLINE constexpr uint32_t log10_pow2(uint64_t e) { … } // Same as above, but with different constants. LIBC_INLINE constexpr uint32_t log2_pow5(uint64_t e) { … } // Returns 1 + floor(log_10(2^e). This could technically be off by 1 if any // power of 2 was also a power of 10, but since that doesn't exist this is // always accurate. This is used to calculate the maximum number of base-10 // digits a given e-bit number could have. LIBC_INLINE constexpr uint32_t ceil_log10_pow2(uint32_t e) { … } LIBC_INLINE constexpr uint32_t div_ceil(uint32_t num, uint32_t denom) { … } // Returns the maximum number of 9 digit blocks a number described by the given // index (which is ceil(exponent/16)) and mantissa width could need. LIBC_INLINE constexpr uint32_t length_for_num(uint32_t idx, uint32_t mantissa_width) { … } // The formula for the table when i is positive (or zero) is as follows: // floor(10^(-9i) * 2^(e + c_1) + 1) % (10^9 * 2^c_1) // Rewritten slightly we get: // floor(5^(-9i) * 2^(e + c_1 - 9i) + 1) % (10^9 * 2^c_1) // TODO: Fix long doubles (needs bigger table or alternate algorithm.) // Currently the table values are generated, which is very slow. template <size_t INT_SIZE> LIBC_INLINE constexpr UInt<MID_INT_SIZE> get_table_positive(int exponent, size_t i) { … } template <size_t INT_SIZE> LIBC_INLINE UInt<MID_INT_SIZE> get_table_positive_df(int exponent, size_t i) { … } // The formula for the table when i is negative (or zero) is as follows: // floor(10^(-9i) * 2^(c_0 - e)) % (10^9 * 2^c_0) // Since we know i is always negative, we just take it as unsigned and treat it // as negative. We do the same with exponent, while they're both always negative // in theory, in practice they're converted to positive for simpler // calculations. // The formula being used looks more like this: // floor(10^(9*(-i)) * 2^(c_0 + (-e))) % (10^9 * 2^c_0) template <size_t INT_SIZE> LIBC_INLINE UInt<MID_INT_SIZE> get_table_negative(int exponent, size_t i) { … } template <size_t INT_SIZE> LIBC_INLINE UInt<MID_INT_SIZE> get_table_negative_df(int exponent, size_t i) { … } LIBC_INLINE uint32_t fast_uint_mod_1e9(const UInt<MID_INT_SIZE> &val) { … } LIBC_INLINE uint32_t mul_shift_mod_1e9(const FPBits::StorageType mantissa, const UInt<MID_INT_SIZE> &large, const int32_t shift_amount) { … } } // namespace internal // Convert floating point values to their string representation. // Because the result may not fit in a reasonably sized array, the caller must // request blocks of digits and convert them from integers to strings themself. // Blocks contain the most digits that can be stored in an BlockInt. This is 9 // digits for a 32 bit int and 18 digits for a 64 bit int. // The intended use pattern is to create a FloatToString object of the // appropriate type, then call get_positive_blocks to get an approximate number // of blocks there are before the decimal point. Now the client code can start // calling get_positive_block in a loop from the number of positive blocks to // zero. This will give all digits before the decimal point. Then the user can // start calling get_negative_block in a loop from 0 until the number of digits // they need is reached. As an optimization, the client can use // zero_blocks_after_point to find the number of blocks that are guaranteed to // be zero after the decimal point and before the non-zero digits. Additionally, // is_lowest_block will return if the current block is the lowest non-zero // block. template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> class FloatToString { … }; #if !defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) && \ !defined(LIBC_COPT_FLOAT_TO_STR_NO_SPECIALIZE_LD) // --------------------------- LONG DOUBLE FUNCTIONS --------------------------- // this algorithm will work exactly the same for 80 bit and 128 bit long // doubles. They have the same max exponent, but even if they didn't the // constants should be calculated to be correct for any provided floating point // type. template <> class FloatToString<long double> { … }; #endif // !LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64 && // !LIBC_COPT_FLOAT_TO_STR_NO_SPECIALIZE_LD } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC___SUPPORT_FLOAT_TO_STRING_H