//===---- CSKYAsmParser.cpp - Parse CSKY assembly to MCInst instructions --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/CSKYInstPrinter.h"
#include "MCTargetDesc/CSKYMCExpr.h"
#include "MCTargetDesc/CSKYMCTargetDesc.h"
#include "MCTargetDesc/CSKYTargetStreamer.h"
#include "TargetInfo/CSKYTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CSKYAttributes.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/TargetParser/CSKYTargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "csky-asm-parser"
// Include the auto-generated portion of the compress emitter.
#define GEN_COMPRESS_INSTR
#include "CSKYGenCompressInstEmitter.inc"
STATISTIC(CSKYNumInstrsCompressed,
"Number of C-SKY Compressed instructions emitted");
static cl::opt<bool>
EnableCompressedInst("enable-csky-asm-compressed-inst", cl::Hidden,
cl::init(false),
cl::desc("Enable C-SKY asm compressed instruction"));
namespace {
struct CSKYOperand;
class CSKYAsmParser : public MCTargetAsmParser {
const MCRegisterInfo *MRI;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper,
const Twine &Msg);
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
ParseStatus parseDirective(AsmToken DirectiveID) override;
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
MCStreamer &Out);
bool processLRW(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
bool processJSRI(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
bool processJMPI(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
CSKYTargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<CSKYTargetStreamer &>(TS);
}
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "CSKYGenAsmMatcher.inc"
ParseStatus parseImmediate(OperandVector &Operands);
ParseStatus parseRegister(OperandVector &Operands);
ParseStatus parseBaseRegImm(OperandVector &Operands);
ParseStatus parseCSKYSymbol(OperandVector &Operands);
ParseStatus parseConstpoolSymbol(OperandVector &Operands);
ParseStatus parseDataSymbol(OperandVector &Operands);
ParseStatus parsePSRFlag(OperandVector &Operands);
ParseStatus parseRegSeq(OperandVector &Operands);
ParseStatus parseRegList(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
bool parseDirectiveAttribute();
public:
enum CSKYMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
Match_RequiresSameSrcAndDst,
Match_InvalidRegOutOfRange,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "CSKYGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
CSKYAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
MCAsmParserExtension::Initialize(Parser);
// Cache the MCRegisterInfo.
MRI = getContext().getRegisterInfo();
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
getTargetStreamer().emitTargetAttributes(STI);
}
};
/// Instances of this class represent a parsed machine instruction.
struct CSKYOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
RegisterSeq,
CPOP,
RegisterList
} Kind;
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
struct ConstpoolOp {
const MCExpr *Val;
};
struct RegSeqOp {
unsigned RegNumFrom;
unsigned RegNumTo;
};
struct RegListOp {
unsigned List1From = 0;
unsigned List1To = 0;
unsigned List2From = 0;
unsigned List2To = 0;
unsigned List3From = 0;
unsigned List3To = 0;
unsigned List4From = 0;
unsigned List4To = 0;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
ConstpoolOp CPool;
RegSeqOp RegSeq;
RegListOp RegList;
};
CSKYOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
CSKYOperand(const CSKYOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Register:
Reg = o.Reg;
break;
case RegisterSeq:
RegSeq = o.RegSeq;
break;
case CPOP:
CPool = o.CPool;
break;
case Immediate:
Imm = o.Imm;
break;
case Token:
Tok = o.Tok;
break;
case RegisterList:
RegList = o.RegList;
break;
}
}
bool isToken() const override { return Kind == Token; }
bool isReg() const override { return Kind == Register; }
bool isImm() const override { return Kind == Immediate; }
bool isRegisterSeq() const { return Kind == RegisterSeq; }
bool isRegisterList() const { return Kind == RegisterList; }
bool isConstPoolOp() const { return Kind == CPOP; }
bool isMem() const override { return false; }
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm) {
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
Imm = CE->getValue();
return true;
}
return false;
}
template <unsigned num, unsigned shift = 0> bool isUImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedUInt<num, shift>(Imm);
}
template <unsigned num> bool isOImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isUInt<num>(Imm - 1);
}
template <unsigned num, unsigned shift = 0> bool isSImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedInt<num, shift>(Imm);
}
bool isUImm1() const { return isUImm<1>(); }
bool isUImm2() const { return isUImm<2>(); }
bool isUImm3() const { return isUImm<3>(); }
bool isUImm4() const { return isUImm<4>(); }
bool isUImm5() const { return isUImm<5>(); }
bool isUImm6() const { return isUImm<6>(); }
bool isUImm7() const { return isUImm<7>(); }
bool isUImm8() const { return isUImm<8>(); }
bool isUImm12() const { return isUImm<12>(); }
bool isUImm16() const { return isUImm<16>(); }
bool isUImm20() const { return isUImm<20>(); }
bool isUImm24() const { return isUImm<24>(); }
bool isOImm3() const { return isOImm<3>(); }
bool isOImm4() const { return isOImm<4>(); }
bool isOImm5() const { return isOImm<5>(); }
bool isOImm6() const { return isOImm<6>(); }
bool isOImm8() const { return isOImm<8>(); }
bool isOImm12() const { return isOImm<12>(); }
bool isOImm16() const { return isOImm<16>(); }
bool isSImm8() const { return isSImm<8>(); }
bool isUImm5Shift1() { return isUImm<5, 1>(); }
bool isUImm5Shift2() { return isUImm<5, 2>(); }
bool isUImm7Shift1() { return isUImm<7, 1>(); }
bool isUImm7Shift2() { return isUImm<7, 2>(); }
bool isUImm7Shift3() { return isUImm<7, 3>(); }
bool isUImm8Shift2() { return isUImm<8, 2>(); }
bool isUImm8Shift3() { return isUImm<8, 3>(); }
bool isUImm8Shift8() { return isUImm<8, 8>(); }
bool isUImm8Shift16() { return isUImm<8, 16>(); }
bool isUImm8Shift24() { return isUImm<8, 24>(); }
bool isUImm12Shift1() { return isUImm<12, 1>(); }
bool isUImm12Shift2() { return isUImm<12, 2>(); }
bool isUImm16Shift8() { return isUImm<16, 8>(); }
bool isUImm16Shift16() { return isUImm<16, 16>(); }
bool isUImm24Shift8() { return isUImm<24, 8>(); }
bool isSImm16Shift1() { return isSImm<16, 1>(); }
bool isCSKYSymbol() const { return isImm(); }
bool isConstpool() const { return isConstPoolOp(); }
bool isDataSymbol() const { return isConstPoolOp(); }
bool isPSRFlag() const {
int64_t Imm;
// Must be of 'immediate' type and a constant.
if (!isImm() || !evaluateConstantImm(getImm(), Imm))
return false;
return isUInt<5>(Imm);
}
template <unsigned MIN, unsigned MAX> bool isRegSeqTemplate() const {
if (!isRegisterSeq())
return false;
std::pair<unsigned, unsigned> regSeq = getRegSeq();
return MIN <= regSeq.first && regSeq.first <= regSeq.second &&
regSeq.second <= MAX;
}
bool isRegSeq() const { return isRegSeqTemplate<CSKY::R0, CSKY::R31>(); }
bool isRegSeqV1() const {
return isRegSeqTemplate<CSKY::F0_32, CSKY::F15_32>();
}
bool isRegSeqV2() const {
return isRegSeqTemplate<CSKY::F0_32, CSKY::F31_32>();
}
static bool isLegalRegList(unsigned from, unsigned to) {
if (from == 0 && to == 0)
return true;
if (from == to) {
if (from != CSKY::R4 && from != CSKY::R15 && from != CSKY::R16 &&
from != CSKY::R28)
return false;
return true;
} else {
if (from != CSKY::R4 && from != CSKY::R16)
return false;
if (from == CSKY::R4 && to > CSKY::R4 && to < CSKY::R12)
return true;
else if (from == CSKY::R16 && to > CSKY::R16 && to < CSKY::R18)
return true;
else
return false;
}
}
bool isRegList() const {
if (!isRegisterList())
return false;
auto regList = getRegList();
if (!isLegalRegList(regList.List1From, regList.List1To))
return false;
if (!isLegalRegList(regList.List2From, regList.List2To))
return false;
if (!isLegalRegList(regList.List3From, regList.List3To))
return false;
if (!isLegalRegList(regList.List4From, regList.List4To))
return false;
return true;
}
bool isExtImm6() {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
if (!IsConstantImm)
return false;
int uimm4 = Imm & 0xf;
return isShiftedUInt<6, 0>(Imm) && uimm4 >= 0 && uimm4 <= 14;
}
/// Gets location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// Gets location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
MCRegister getReg() const override {
assert(Kind == Register && "Invalid type access!");
return Reg.RegNum;
}
std::pair<unsigned, unsigned> getRegSeq() const {
assert(Kind == RegisterSeq && "Invalid type access!");
return std::pair<unsigned, unsigned>(RegSeq.RegNumFrom, RegSeq.RegNumTo);
}
RegListOp getRegList() const {
assert(Kind == RegisterList && "Invalid type access!");
return RegList;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid type access!");
return Imm.Val;
}
const MCExpr *getConstpoolOp() const {
assert(Kind == CPOP && "Invalid type access!");
return CPool.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
auto RegName = [](MCRegister Reg) {
if (Reg)
return CSKYInstPrinter::getRegisterName(Reg);
else
return "noreg";
};
switch (Kind) {
case CPOP:
OS << *getConstpoolOp();
break;
case Immediate:
OS << *getImm();
break;
case KindTy::Register:
OS << "<register " << RegName(getReg()) << ">";
break;
case RegisterSeq:
OS << "<register-seq ";
OS << RegName(getRegSeq().first) << "-" << RegName(getRegSeq().second)
<< ">";
break;
case RegisterList:
OS << "<register-list ";
OS << RegName(getRegList().List1From) << "-"
<< RegName(getRegList().List1To) << ",";
OS << RegName(getRegList().List2From) << "-"
<< RegName(getRegList().List2To) << ",";
OS << RegName(getRegList().List3From) << "-"
<< RegName(getRegList().List3To) << ",";
OS << RegName(getRegList().List4From) << "-"
<< RegName(getRegList().List4To);
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
static std::unique_ptr<CSKYOperand> createToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<CSKYOperand>(Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<CSKYOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<CSKYOperand> createRegSeq(unsigned RegNoFrom,
unsigned RegNoTo, SMLoc S) {
auto Op = std::make_unique<CSKYOperand>(RegisterSeq);
Op->RegSeq.RegNumFrom = RegNoFrom;
Op->RegSeq.RegNumTo = RegNoTo;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<CSKYOperand>
createRegList(SmallVector<unsigned, 4> reglist, SMLoc S) {
auto Op = std::make_unique<CSKYOperand>(RegisterList);
Op->RegList.List1From = 0;
Op->RegList.List1To = 0;
Op->RegList.List2From = 0;
Op->RegList.List2To = 0;
Op->RegList.List3From = 0;
Op->RegList.List3To = 0;
Op->RegList.List4From = 0;
Op->RegList.List4To = 0;
for (unsigned i = 0; i < reglist.size(); i += 2) {
if (Op->RegList.List1From == 0) {
Op->RegList.List1From = reglist[i];
Op->RegList.List1To = reglist[i + 1];
} else if (Op->RegList.List2From == 0) {
Op->RegList.List2From = reglist[i];
Op->RegList.List2To = reglist[i + 1];
} else if (Op->RegList.List3From == 0) {
Op->RegList.List3From = reglist[i];
Op->RegList.List3To = reglist[i + 1];
} else if (Op->RegList.List4From == 0) {
Op->RegList.List4From = reglist[i];
Op->RegList.List4To = reglist[i + 1];
} else {
assert(0);
}
}
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<CSKYOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<CSKYOperand> createConstpoolOp(const MCExpr *Val,
SMLoc S, SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(CPOP);
Op->CPool.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addConstpoolOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createExpr(getConstpoolOp()));
}
void addRegSeqOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
auto regSeq = getRegSeq();
Inst.addOperand(MCOperand::createReg(regSeq.first));
Inst.addOperand(MCOperand::createReg(regSeq.second));
}
static unsigned getListValue(unsigned ListFrom, unsigned ListTo) {
if (ListFrom == ListTo && ListFrom == CSKY::R15)
return (1 << 4);
else if (ListFrom == ListTo && ListFrom == CSKY::R28)
return (1 << 8);
else if (ListFrom == CSKY::R4)
return ListTo - ListFrom + 1;
else if (ListFrom == CSKY::R16)
return ((ListTo - ListFrom + 1) << 5);
else
return 0;
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
auto regList = getRegList();
unsigned V = 0;
unsigned T = getListValue(regList.List1From, regList.List1To);
if (T != 0)
V = V | T;
T = getListValue(regList.List2From, regList.List2To);
if (T != 0)
V = V | T;
T = getListValue(regList.List3From, regList.List3To);
if (T != 0)
V = V | T;
T = getListValue(regList.List4From, regList.List4To);
if (T != 0)
V = V | T;
Inst.addOperand(MCOperand::createImm(V));
}
bool isValidForTie(const CSKYOperand &Other) const {
if (Kind != Other.Kind)
return false;
switch (Kind) {
default:
llvm_unreachable("Unexpected kind");
return false;
case Register:
return Reg.RegNum == Other.Reg.RegNum;
}
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "CSKYGenAsmMatcher.inc"
static MCRegister convertFPR32ToFPR64(MCRegister Reg) {
assert(Reg >= CSKY::F0_32 && Reg <= CSKY::F31_32 && "Invalid register");
return Reg - CSKY::F0_32 + CSKY::F0_64;
}
static std::string CSKYMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
unsigned VariantID = 0);
bool CSKYAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
const Twine &Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool CSKYAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
return processInstruction(Inst, IDLoc, Operands, Out);
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
ListSeparator LS;
std::string Msg = "instruction requires the following: ";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += LS;
Msg += getSubtargetFeatureName(i);
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion =
CSKYMnemonicSpellCheck(((CSKYOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidTiedOperand:
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch (Result) {
default:
break;
case Match_InvalidSImm8:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 7),
(1 << 7) - 1);
case Match_InvalidOImm3:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 3));
case Match_InvalidOImm4:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 4));
case Match_InvalidOImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5));
case Match_InvalidOImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6));
case Match_InvalidOImm8:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 8));
case Match_InvalidOImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 12));
case Match_InvalidOImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 16));
case Match_InvalidUImm1:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 1) - 1);
case Match_InvalidUImm2:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
case Match_InvalidUImm3:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 3) - 1);
case Match_InvalidUImm4:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
case Match_InvalidUImm7:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 7) - 1);
case Match_InvalidUImm8:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 8) - 1);
case Match_InvalidUImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1);
case Match_InvalidUImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 16) - 1);
case Match_InvalidUImm5Shift1:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 5) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm12Shift1:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm5Shift2:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 5) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm7Shift1:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm7Shift2:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Shift2:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Shift3:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm8Shift8:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 256,
"immediate must be a multiple of 256 bytes in the range");
case Match_InvalidUImm12Shift2:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 12) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidCSKYSymbol: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a symbol name");
}
case Match_InvalidConstpool: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constpool symbol name");
}
case Match_InvalidPSRFlag: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "psrset operand is not valid");
}
case Match_InvalidRegSeq: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "Register sequence is not valid");
}
case Match_InvalidRegOutOfRange: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "register is out of range");
}
case Match_RequiresSameSrcAndDst: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "src and dst operand must be same");
}
case Match_InvalidRegList: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "invalid register list");
}
}
LLVM_DEBUG(dbgs() << "Result = " << Result);
llvm_unreachable("Unknown match type detected!");
}
bool CSKYAsmParser::processLRW(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out) {
Inst.setLoc(IDLoc);
unsigned Opcode;
MCOperand Op;
if (Inst.getOpcode() == CSKY::PseudoLRW16)
Opcode = CSKY::LRW16;
else
Opcode = CSKY::LRW32;
if (Inst.getOperand(1).isImm()) {
if (isUInt<8>(Inst.getOperand(1).getImm()) &&
Inst.getOperand(0).getReg() <= CSKY::R7) {
Opcode = CSKY::MOVI16;
} else if (getSTI().hasFeature(CSKY::HasE2) &&
isUInt<16>(Inst.getOperand(1).getImm())) {
Opcode = CSKY::MOVI32;
} else {
auto *Expr = getTargetStreamer().addConstantPoolEntry(
MCConstantExpr::create(Inst.getOperand(1).getImm(), getContext()),
Inst.getLoc());
Inst.erase(std::prev(Inst.end()));
Inst.addOperand(MCOperand::createExpr(Expr));
}
} else {
const MCExpr *AdjustExpr = nullptr;
if (const CSKYMCExpr *CSKYExpr =
dyn_cast<CSKYMCExpr>(Inst.getOperand(1).getExpr())) {
if (CSKYExpr->getKind() == CSKYMCExpr::VK_CSKY_TLSGD ||
CSKYExpr->getKind() == CSKYMCExpr::VK_CSKY_TLSIE ||
CSKYExpr->getKind() == CSKYMCExpr::VK_CSKY_TLSLDM) {
MCSymbol *Dot = getContext().createNamedTempSymbol();
Out.emitLabel(Dot);
AdjustExpr = MCSymbolRefExpr::create(Dot, getContext());
}
}
auto *Expr = getTargetStreamer().addConstantPoolEntry(
Inst.getOperand(1).getExpr(), Inst.getLoc(), AdjustExpr);
Inst.erase(std::prev(Inst.end()));
Inst.addOperand(MCOperand::createExpr(Expr));
}
Inst.setOpcode(Opcode);
Out.emitInstruction(Inst, getSTI());
return false;
}
bool CSKYAsmParser::processJSRI(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out) {
Inst.setLoc(IDLoc);
if (Inst.getOperand(0).isImm()) {
const MCExpr *Expr = getTargetStreamer().addConstantPoolEntry(
MCConstantExpr::create(Inst.getOperand(0).getImm(), getContext()),
Inst.getLoc());
Inst.setOpcode(CSKY::JSRI32);
Inst.erase(std::prev(Inst.end()));
Inst.addOperand(MCOperand::createExpr(Expr));
} else {
const MCExpr *Expr = getTargetStreamer().addConstantPoolEntry(
Inst.getOperand(0).getExpr(), Inst.getLoc());
Inst.setOpcode(CSKY::JBSR32);
Inst.addOperand(MCOperand::createExpr(Expr));
}
Out.emitInstruction(Inst, getSTI());
return false;
}
bool CSKYAsmParser::processJMPI(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out) {
Inst.setLoc(IDLoc);
if (Inst.getOperand(0).isImm()) {
const MCExpr *Expr = getTargetStreamer().addConstantPoolEntry(
MCConstantExpr::create(Inst.getOperand(0).getImm(), getContext()),
Inst.getLoc());
Inst.setOpcode(CSKY::JMPI32);
Inst.erase(std::prev(Inst.end()));
Inst.addOperand(MCOperand::createExpr(Expr));
} else {
const MCExpr *Expr = getTargetStreamer().addConstantPoolEntry(
Inst.getOperand(0).getExpr(), Inst.getLoc());
Inst.setOpcode(CSKY::JBR32);
Inst.addOperand(MCOperand::createExpr(Expr));
}
Out.emitInstruction(Inst, getSTI());
return false;
}
bool CSKYAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
OperandVector &Operands,
MCStreamer &Out) {
switch (Inst.getOpcode()) {
default:
break;
case CSKY::LDQ32:
case CSKY::STQ32:
if (Inst.getOperand(1).getReg() != CSKY::R4 ||
Inst.getOperand(2).getReg() != CSKY::R7) {
return Error(IDLoc, "Register sequence is not valid. 'r4-r7' expected");
}
Inst.setOpcode(Inst.getOpcode() == CSKY::LDQ32 ? CSKY::LDM32 : CSKY::STM32);
break;
case CSKY::SEXT32:
case CSKY::ZEXT32:
if (Inst.getOperand(2).getImm() < Inst.getOperand(3).getImm())
return Error(IDLoc, "msb must be greater or equal to lsb");
break;
case CSKY::INS32:
if (Inst.getOperand(3).getImm() < Inst.getOperand(4).getImm())
return Error(IDLoc, "msb must be greater or equal to lsb");
break;
case CSKY::IDLY32:
if (Inst.getOperand(0).getImm() > 32 || Inst.getOperand(0).getImm() < 0)
return Error(IDLoc, "n must be in range [0,32]");
break;
case CSKY::ADDC32:
case CSKY::SUBC32:
case CSKY::ADDC16:
case CSKY::SUBC16:
Inst.erase(std::next(Inst.begin()));
Inst.erase(std::prev(Inst.end()));
Inst.insert(std::next(Inst.begin()), MCOperand::createReg(CSKY::C));
Inst.insert(Inst.end(), MCOperand::createReg(CSKY::C));
break;
case CSKY::CMPNEI32:
case CSKY::CMPNEI16:
case CSKY::CMPNE32:
case CSKY::CMPNE16:
case CSKY::CMPHSI32:
case CSKY::CMPHSI16:
case CSKY::CMPHS32:
case CSKY::CMPHS16:
case CSKY::CMPLTI32:
case CSKY::CMPLTI16:
case CSKY::CMPLT32:
case CSKY::CMPLT16:
case CSKY::BTSTI32:
Inst.erase(Inst.begin());
Inst.insert(Inst.begin(), MCOperand::createReg(CSKY::C));
break;
case CSKY::MVCV32:
Inst.erase(std::next(Inst.begin()));
Inst.insert(Inst.end(), MCOperand::createReg(CSKY::C));
break;
case CSKY::PseudoLRW16:
case CSKY::PseudoLRW32:
return processLRW(Inst, IDLoc, Out);
case CSKY::PseudoJSRI32:
return processJSRI(Inst, IDLoc, Out);
case CSKY::PseudoJMPI32:
return processJMPI(Inst, IDLoc, Out);
case CSKY::JBSR32:
case CSKY::JBR16:
case CSKY::JBT16:
case CSKY::JBF16:
case CSKY::JBR32:
case CSKY::JBT32:
case CSKY::JBF32:
unsigned Num = Inst.getNumOperands() - 1;
assert(Inst.getOperand(Num).isExpr());
const MCExpr *Expr = getTargetStreamer().addConstantPoolEntry(
Inst.getOperand(Num).getExpr(), Inst.getLoc());
Inst.addOperand(MCOperand::createExpr(Expr));
break;
}
emitToStreamer(Out, Inst);
return false;
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), setting RegNo to the matching register. Upon
// failure, returns true and sets RegNo to 0.
static bool matchRegisterNameHelper(const MCSubtargetInfo &STI, MCRegister &Reg,
StringRef Name) {
Reg = MatchRegisterName(Name);
if (Reg == CSKY::NoRegister)
Reg = MatchRegisterAltName(Name);
return Reg == CSKY::NoRegister;
}
bool CSKYAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
if (!matchRegisterNameHelper(getSTI(), Reg, Name)) {
getParser().Lex(); // Eat identifier token.
return false;
}
return true;
}
ParseStatus CSKYAsmParser::parseRegister(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::Identifier: {
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister Reg;
if (matchRegisterNameHelper(getSTI(), Reg, Name))
return ParseStatus::NoMatch;
getLexer().Lex();
Operands.push_back(CSKYOperand::createReg(Reg, S, E));
return ParseStatus::Success;
}
}
}
ParseStatus CSKYAsmParser::parseBaseRegImm(OperandVector &Operands) {
assert(getLexer().is(AsmToken::LParen));
Operands.push_back(CSKYOperand::createToken("(", getLoc()));
auto Tok = getParser().Lex(); // Eat '('
if (!parseRegister(Operands).isSuccess()) {
getLexer().UnLex(Tok);
Operands.pop_back();
return ParseStatus::NoMatch;
}
if (getLexer().is(AsmToken::RParen)) {
Operands.push_back(CSKYOperand::createToken(")", getLoc()));
getParser().Lex(); // Eat ')'
return ParseStatus::Success;
}
if (getLexer().isNot(AsmToken::Comma))
return Error(getLoc(), "expected ','");
getParser().Lex(); // Eat ','
if (parseRegister(Operands).isSuccess()) {
if (getLexer().isNot(AsmToken::LessLess))
return Error(getLoc(), "expected '<<'");
Operands.push_back(CSKYOperand::createToken("<<", getLoc()));
getParser().Lex(); // Eat '<<'
if (!parseImmediate(Operands).isSuccess())
return Error(getLoc(), "expected imm");
} else if (!parseImmediate(Operands).isSuccess()) {
return Error(getLoc(), "expected imm");
}
if (getLexer().isNot(AsmToken::RParen))
return Error(getLoc(), "expected ')'");
Operands.push_back(CSKYOperand::createToken(")", getLoc()));
getParser().Lex(); // Eat ')'
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parseImmediate(OperandVector &Operands) {
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String:
break;
}
const MCExpr *IdVal;
SMLoc S = getLoc();
if (getParser().parseExpression(IdVal))
return Error(getLoc(), "unknown expression");
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
Operands.push_back(CSKYOperand::createImm(IdVal, S, E));
return ParseStatus::Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool CSKYAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
ParseStatus Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result.isSuccess())
return false;
if (Result.isFailure())
return true;
// Attempt to parse token as register
auto Res = parseRegister(Operands);
if (Res.isSuccess())
return false;
if (Res.isFailure())
return true;
// Attempt to parse token as (register, imm)
if (getLexer().is(AsmToken::LParen)) {
Res = parseBaseRegImm(Operands);
if (Res.isSuccess())
return false;
if (Res.isFailure())
return true;
}
Res = parseImmediate(Operands);
if (Res.isSuccess())
return false;
if (Res.isFailure())
return true;
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
ParseStatus CSKYAsmParser::parseCSKYSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
StringRef Identifier;
AsmToken Tok = getLexer().getTok();
if (getParser().parseIdentifier(Identifier))
return Error(getLoc(), "unknown identifier");
CSKYMCExpr::VariantKind Kind = CSKYMCExpr::VK_CSKY_None;
if (Identifier.consume_back("@GOT"))
Kind = CSKYMCExpr::VK_CSKY_GOT;
else if (Identifier.consume_back("@GOTOFF"))
Kind = CSKYMCExpr::VK_CSKY_GOTOFF;
else if (Identifier.consume_back("@PLT"))
Kind = CSKYMCExpr::VK_CSKY_PLT;
else if (Identifier.consume_back("@GOTPC"))
Kind = CSKYMCExpr::VK_CSKY_GOTPC;
else if (Identifier.consume_back("@TLSGD32"))
Kind = CSKYMCExpr::VK_CSKY_TLSGD;
else if (Identifier.consume_back("@GOTTPOFF"))
Kind = CSKYMCExpr::VK_CSKY_TLSIE;
else if (Identifier.consume_back("@TPOFF"))
Kind = CSKYMCExpr::VK_CSKY_TLSLE;
else if (Identifier.consume_back("@TLSLDM32"))
Kind = CSKYMCExpr::VK_CSKY_TLSLDM;
else if (Identifier.consume_back("@TLSLDO32"))
Kind = CSKYMCExpr::VK_CSKY_TLSLDO;
MCSymbol *Sym = getContext().getInlineAsmLabel(Identifier);
if (!Sym)
Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return Error(getLoc(), "unknown symbol");
}
Res = V;
} else
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
if (Kind != CSKYMCExpr::VK_CSKY_None)
Res = CSKYMCExpr::create(Res, Kind, getContext());
Operands.push_back(CSKYOperand::createImm(Res, S, E));
return ParseStatus::Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
break;
}
getLexer().Lex(); // eat + or -
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return Error(getLoc(), "unknown expression");
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(CSKYOperand::createImm(Res, S, E));
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parseDataSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (!parseOptionalToken(AsmToken::LBrac))
return ParseStatus::NoMatch;
if (getLexer().getKind() != AsmToken::Identifier) {
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return Error(getLoc(), "unknown expression");
if (parseToken(AsmToken::RBrac, "expected ']'"))
return ParseStatus::Failure;
Operands.push_back(CSKYOperand::createConstpoolOp(Expr, S, E));
return ParseStatus::Success;
}
AsmToken Tok = getLexer().getTok();
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return Error(getLoc(), "unknown identifier " + Identifier);
CSKYMCExpr::VariantKind Kind = CSKYMCExpr::VK_CSKY_None;
if (Identifier.consume_back("@GOT"))
Kind = CSKYMCExpr::VK_CSKY_GOT_IMM18_BY4;
else if (Identifier.consume_back("@PLT"))
Kind = CSKYMCExpr::VK_CSKY_PLT_IMM18_BY4;
MCSymbol *Sym = getContext().getInlineAsmLabel(Identifier);
if (!Sym)
Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return Error(getLoc(), "unknown symbol");
}
Res = V;
} else {
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
}
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
return Error(getLoc(), "unknown symbol");
case AsmToken::RBrac:
getLexer().Lex(); // Eat ']'.
if (Kind != CSKYMCExpr::VK_CSKY_None)
Res = CSKYMCExpr::create(Res, Kind, getContext());
Operands.push_back(CSKYOperand::createConstpoolOp(Res, S, E));
return ParseStatus::Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
break;
}
getLexer().Lex(); // eat + or -
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return Error(getLoc(), "unknown expression");
if (parseToken(AsmToken::RBrac, "expected ']'"))
return ParseStatus::Failure;
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(CSKYOperand::createConstpoolOp(Res, S, E));
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parseConstpoolSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (!parseOptionalToken(AsmToken::LBrac))
return ParseStatus::NoMatch;
if (getLexer().getKind() != AsmToken::Identifier) {
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return Error(getLoc(), "unknown expression");
if (parseToken(AsmToken::RBrac))
return ParseStatus::Failure;
Operands.push_back(CSKYOperand::createConstpoolOp(Expr, S, E));
return ParseStatus::Success;
}
AsmToken Tok = getLexer().getTok();
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return Error(getLoc(), "unknown identifier");
MCSymbol *Sym = getContext().getInlineAsmLabel(Identifier);
if (!Sym)
Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return Error(getLoc(), "unknown symbol");
}
Res = V;
} else {
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
}
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
return Error(getLoc(), "unknown symbol");
case AsmToken::RBrac:
getLexer().Lex(); // Eat ']'.
Operands.push_back(CSKYOperand::createConstpoolOp(Res, S, E));
return ParseStatus::Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
break;
}
getLexer().Lex(); // eat + or -
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return Error(getLoc(), "unknown expression");
if (parseToken(AsmToken::RBrac, "expected ']'"))
return ParseStatus::Failure;
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(CSKYOperand::createConstpoolOp(Res, S, E));
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parsePSRFlag(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
unsigned Flag = 0;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return Error(getLoc(), "unknown identifier " + Identifier);
if (Identifier == "sie")
Flag = (1 << 4) | Flag;
else if (Identifier == "ee")
Flag = (1 << 3) | Flag;
else if (Identifier == "ie")
Flag = (1 << 2) | Flag;
else if (Identifier == "fe")
Flag = (1 << 1) | Flag;
else if (Identifier == "af")
Flag = (1 << 0) | Flag;
else
return Error(getLoc(), "expected " + Identifier);
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (parseToken(AsmToken::Comma, "expected ','"))
return ParseStatus::Failure;
}
Operands.push_back(
CSKYOperand::createImm(MCConstantExpr::create(Flag, getContext()), S, E));
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parseRegSeq(OperandVector &Operands) {
SMLoc S = getLoc();
if (!parseRegister(Operands).isSuccess())
return ParseStatus::NoMatch;
auto Ry = Operands.back()->getReg();
Operands.pop_back();
if (parseToken(AsmToken::Minus, "expected '-'"))
return ParseStatus::Failure;
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "invalid register");
auto Rz = Operands.back()->getReg();
Operands.pop_back();
Operands.push_back(CSKYOperand::createRegSeq(Ry, Rz, S));
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parseRegList(OperandVector &Operands) {
SMLoc S = getLoc();
SmallVector<unsigned, 4> reglist;
while (true) {
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "invalid register");
auto Ry = Operands.back()->getReg();
Operands.pop_back();
if (parseOptionalToken(AsmToken::Minus)) {
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "invalid register");
auto Rz = Operands.back()->getReg();
Operands.pop_back();
reglist.push_back(Ry);
reglist.push_back(Rz);
if (getLexer().is(AsmToken::EndOfStatement))
break;
(void)parseOptionalToken(AsmToken::Comma);
} else if (parseOptionalToken(AsmToken::Comma)) {
reglist.push_back(Ry);
reglist.push_back(Ry);
} else if (getLexer().is(AsmToken::EndOfStatement)) {
reglist.push_back(Ry);
reglist.push_back(Ry);
break;
} else {
return Error(getLoc(), "invalid register list");
}
}
Operands.push_back(CSKYOperand::createRegList(reglist, S));
return ParseStatus::Success;
}
bool CSKYAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
// First operand is token for instruction.
Operands.push_back(CSKYOperand::createToken(Name, NameLoc));
// If there are no more operands, then finish.
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand.
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands.
while (parseOptionalToken(AsmToken::Comma))
if (parseOperand(Operands, Name))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
ParseStatus CSKYAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
if (matchRegisterNameHelper(getSTI(), Reg, Name))
return ParseStatus::NoMatch;
getParser().Lex(); // Eat identifier token.
return ParseStatus::Success;
}
ParseStatus CSKYAsmParser::parseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".csky_attribute")
return parseDirectiveAttribute();
return ParseStatus::NoMatch;
}
/// parseDirectiveAttribute
/// ::= .attribute expression ',' ( expression | "string" )
bool CSKYAsmParser::parseDirectiveAttribute() {
MCAsmParser &Parser = getParser();
int64_t Tag;
SMLoc TagLoc;
TagLoc = Parser.getTok().getLoc();
if (Parser.getTok().is(AsmToken::Identifier)) {
StringRef Name = Parser.getTok().getIdentifier();
std::optional<unsigned> Ret =
ELFAttrs::attrTypeFromString(Name, CSKYAttrs::getCSKYAttributeTags());
if (!Ret)
return Error(TagLoc, "attribute name not recognised: " + Name);
Tag = *Ret;
Parser.Lex();
} else {
const MCExpr *AttrExpr;
TagLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(AttrExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
if (!CE)
return Error(TagLoc, "expected numeric constant");
Tag = CE->getValue();
}
if (Parser.parseComma())
return true;
StringRef StringValue;
int64_t IntegerValue = 0;
bool IsIntegerValue = ((Tag != CSKYAttrs::CSKY_ARCH_NAME) &&
(Tag != CSKYAttrs::CSKY_CPU_NAME) &&
(Tag != CSKYAttrs::CSKY_FPU_NUMBER_MODULE));
SMLoc ValueExprLoc = Parser.getTok().getLoc();
if (IsIntegerValue) {
const MCExpr *ValueExpr;
if (Parser.parseExpression(ValueExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
if (!CE)
return Error(ValueExprLoc, "expected numeric constant");
IntegerValue = CE->getValue();
} else {
if (Parser.getTok().isNot(AsmToken::String))
return Error(Parser.getTok().getLoc(), "expected string constant");
StringValue = Parser.getTok().getStringContents();
Parser.Lex();
}
if (Parser.parseEOL())
return true;
if (IsIntegerValue)
getTargetStreamer().emitAttribute(Tag, IntegerValue);
else if (Tag != CSKYAttrs::CSKY_ARCH_NAME && Tag != CSKYAttrs::CSKY_CPU_NAME)
getTargetStreamer().emitTextAttribute(Tag, StringValue);
else {
CSKY::ArchKind ID = (Tag == CSKYAttrs::CSKY_ARCH_NAME)
? CSKY::parseArch(StringValue)
: CSKY::parseCPUArch(StringValue);
if (ID == CSKY::ArchKind::INVALID)
return Error(ValueExprLoc, (Tag == CSKYAttrs::CSKY_ARCH_NAME)
? "unknown arch name"
: "unknown cpu name");
getTargetStreamer().emitTextAttribute(Tag, StringValue);
}
return false;
}
unsigned CSKYAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
CSKYOperand &Op = static_cast<CSKYOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
MCRegister Reg = Op.getReg();
if (CSKYMCRegisterClasses[CSKY::FPR32RegClassID].contains(Reg)) {
// As the parser couldn't differentiate an FPR64 from an FPR32, coerce the
// register from FPR32 to FPR64 if necessary.
if (Kind == MCK_FPR64 || Kind == MCK_sFPR64) {
Op.Reg.RegNum = convertFPR32ToFPR64(Reg);
if (Kind == MCK_sFPR64 &&
(Op.Reg.RegNum < CSKY::F0_64 || Op.Reg.RegNum > CSKY::F15_64))
return Match_InvalidRegOutOfRange;
if (Kind == MCK_FPR64 &&
(Op.Reg.RegNum < CSKY::F0_64 || Op.Reg.RegNum > CSKY::F31_64))
return Match_InvalidRegOutOfRange;
return Match_Success;
}
}
if (CSKYMCRegisterClasses[CSKY::GPRRegClassID].contains(Reg)) {
if (Kind == MCK_GPRPair) {
Op.Reg.RegNum = MRI->getEncodingValue(Reg) + CSKY::R0_R1;
return Match_Success;
}
}
return Match_InvalidOperand;
}
void CSKYAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = false;
if (EnableCompressedInst)
Res = compressInst(CInst, Inst, getSTI());
if (Res)
++CSKYNumInstrsCompressed;
S.emitInstruction((Res ? CInst : Inst), getSTI());
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeCSKYAsmParser() {
RegisterMCAsmParser<CSKYAsmParser> X(getTheCSKYTarget());
}