//===- XtensaAsmParser.cpp - Parse Xtensa assembly to MCInst instructions -===//
//
// The LLVM Compiler Infrastructure
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/XtensaMCExpr.h"
#include "MCTargetDesc/XtensaMCTargetDesc.h"
#include "MCTargetDesc/XtensaTargetStreamer.h"
#include "TargetInfo/XtensaTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
using namespace llvm;
#define DEBUG_TYPE "xtensa-asm-parser"
struct XtensaOperand;
class XtensaAsmParser : public MCTargetAsmParser {
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
XtensaTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<XtensaTargetStreamer &>(TS);
}
ParseStatus parseDirective(AsmToken DirectiveID) override;
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out,
const MCSubtargetInfo *STI);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "XtensaGenAsmMatcher.inc"
ParseStatus parseImmediate(OperandVector &Operands);
ParseStatus parseRegister(OperandVector &Operands, bool AllowParens = false,
bool SR = false);
ParseStatus parseOperandWithModifier(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic,
bool SR = false);
bool ParseInstructionWithSR(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands);
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) override {
return ParseStatus::NoMatch;
}
ParseStatus parsePCRelTarget(OperandVector &Operands);
bool parseLiteralDirective(SMLoc L);
public:
enum XtensaMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "XtensaGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
XtensaAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
};
// Return true if Expr is in the range [MinValue, MaxValue].
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
return Value >= MinValue && Value <= MaxValue;
}
return false;
}
struct XtensaOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
} Kind;
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
};
XtensaOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
XtensaOperand(const XtensaOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Token:
Tok = o.Tok;
break;
}
}
bool isToken() const override { return Kind == Token; }
bool isReg() const override { return Kind == Register; }
bool isImm() const override { return Kind == Immediate; }
bool isMem() const override { return false; }
bool isImm(int64_t MinValue, int64_t MaxValue) const {
return Kind == Immediate && inRange(getImm(), MinValue, MaxValue);
}
bool isImm8() const { return isImm(-128, 127); }
bool isImm8_sh8() const {
return isImm(-32768, 32512) &&
((cast<MCConstantExpr>(getImm())->getValue() & 0xFF) == 0);
}
bool isImm12() const { return isImm(-2048, 2047); }
// Convert MOVI to literal load, when immediate is not in range (-2048, 2047)
bool isImm12m() const { return Kind == Immediate; }
bool isOffset4m32() const {
return isImm(0, 60) &&
((cast<MCConstantExpr>(getImm())->getValue() & 0x3) == 0);
}
bool isOffset8m8() const { return isImm(0, 255); }
bool isOffset8m16() const {
return isImm(0, 510) &&
((cast<MCConstantExpr>(getImm())->getValue() & 0x1) == 0);
}
bool isOffset8m32() const {
return isImm(0, 1020) &&
((cast<MCConstantExpr>(getImm())->getValue() & 0x3) == 0);
}
bool isUimm4() const { return isImm(0, 15); }
bool isUimm5() const { return isImm(0, 31); }
bool isImm8n_7() const { return isImm(-8, 7); }
bool isShimm1_31() const { return isImm(1, 31); }
bool isImm16_31() const { return isImm(16, 31); }
bool isImm1_16() const { return isImm(1, 16); }
bool isB4const() const {
if (Kind != Immediate)
return false;
if (auto *CE = dyn_cast<MCConstantExpr>(getImm())) {
int64_t Value = CE->getValue();
switch (Value) {
case -1:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 10:
case 12:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
default:
return false;
}
}
return false;
}
bool isB4constu() const {
if (Kind != Immediate)
return false;
if (auto *CE = dyn_cast<MCConstantExpr>(getImm())) {
int64_t Value = CE->getValue();
switch (Value) {
case 32768:
case 65536:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 10:
case 12:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
default:
return false;
}
}
return false;
}
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
MCRegister getReg() const override {
assert(Kind == Register && "Invalid type access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Immediate:
OS << *getImm();
break;
case Register:
OS << "<register x";
OS << getReg() << ">";
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
static std::unique_ptr<XtensaOperand> createToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<XtensaOperand>(Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<XtensaOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<XtensaOperand>(Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<XtensaOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<XtensaOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
bool IsConstant = false;
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
IsConstant = true;
Imm = CE->getValue();
}
if (IsConstant)
Inst.addOperand(MCOperand::createImm(Imm));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
};
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "XtensaGenAsmMatcher.inc"
unsigned XtensaAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
return Match_InvalidOperand;
}
static SMLoc RefineErrorLoc(const SMLoc Loc, const OperandVector &Operands,
uint64_t ErrorInfo) {
if (ErrorInfo != ~0ULL && ErrorInfo < Operands.size()) {
SMLoc ErrorLoc = Operands[ErrorInfo]->getStartLoc();
if (ErrorLoc == SMLoc())
return Loc;
return ErrorLoc;
}
return Loc;
}
bool XtensaAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out,
const MCSubtargetInfo *STI) {
Inst.setLoc(IDLoc);
const unsigned Opcode = Inst.getOpcode();
switch (Opcode) {
case Xtensa::L32R: {
const MCSymbolRefExpr *OpExpr =
static_cast<const MCSymbolRefExpr *>(Inst.getOperand(1).getExpr());
XtensaMCExpr::VariantKind Kind = XtensaMCExpr::VK_Xtensa_None;
const MCExpr *NewOpExpr = XtensaMCExpr::create(OpExpr, Kind, getContext());
Inst.getOperand(1).setExpr(NewOpExpr);
break;
}
case Xtensa::MOVI: {
XtensaTargetStreamer &TS = this->getTargetStreamer();
// Expand MOVI operand
if (!Inst.getOperand(1).isExpr()) {
uint64_t ImmOp64 = Inst.getOperand(1).getImm();
int32_t Imm = ImmOp64;
if (!isInt<12>(Imm)) {
XtensaTargetStreamer &TS = this->getTargetStreamer();
MCInst TmpInst;
TmpInst.setLoc(IDLoc);
TmpInst.setOpcode(Xtensa::L32R);
const MCExpr *Value = MCConstantExpr::create(ImmOp64, getContext());
MCSymbol *Sym = getContext().createTempSymbol();
const MCExpr *Expr = MCSymbolRefExpr::create(
Sym, MCSymbolRefExpr::VK_None, getContext());
const MCExpr *OpExpr = XtensaMCExpr::create(
Expr, XtensaMCExpr::VK_Xtensa_None, getContext());
TmpInst.addOperand(Inst.getOperand(0));
MCOperand Op1 = MCOperand::createExpr(OpExpr);
TmpInst.addOperand(Op1);
TS.emitLiteral(Sym, Value, true, IDLoc);
Inst = TmpInst;
}
} else {
MCInst TmpInst;
TmpInst.setLoc(IDLoc);
TmpInst.setOpcode(Xtensa::L32R);
const MCExpr *Value = Inst.getOperand(1).getExpr();
MCSymbol *Sym = getContext().createTempSymbol();
const MCExpr *Expr =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
const MCExpr *OpExpr = XtensaMCExpr::create(
Expr, XtensaMCExpr::VK_Xtensa_None, getContext());
TmpInst.addOperand(Inst.getOperand(0));
MCOperand Op1 = MCOperand::createExpr(OpExpr);
TmpInst.addOperand(Op1);
Inst = TmpInst;
TS.emitLiteral(Sym, Value, true, IDLoc);
}
break;
}
default:
break;
}
return true;
}
bool XtensaAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
auto Result =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
processInstruction(Inst, IDLoc, Out, STI);
Inst.setLoc(IDLoc);
Out.emitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature:
return Error(IDLoc, "instruction use requires an option to be enabled");
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((XtensaOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_InvalidImm8:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [-128, 127]");
case Match_InvalidImm8_sh8:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [-32768, 32512], first 8 bits "
"should be zero");
case Match_InvalidB4const:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected b4const immediate");
case Match_InvalidB4constu:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected b4constu immediate");
case Match_InvalidImm12:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [-2048, 2047]");
case Match_InvalidImm12m:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [-2048, 2047]");
case Match_InvalidImm1_16:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [1, 16]");
case Match_InvalidShimm1_31:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [1, 31]");
case Match_InvalidUimm4:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [0, 15]");
case Match_InvalidUimm5:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [0, 31]");
case Match_InvalidOffset8m8:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [0, 255]");
case Match_InvalidOffset8m16:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [0, 510], first bit "
"should be zero");
case Match_InvalidOffset8m32:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [0, 1020], first 2 bits "
"should be zero");
case Match_InvalidOffset4m32:
return Error(RefineErrorLoc(IDLoc, Operands, ErrorInfo),
"expected immediate in range [0, 60], first 2 bits "
"should be zero");
}
report_fatal_error("Unknown match type detected!");
}
ParseStatus XtensaAsmParser::parsePCRelTarget(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
LLVM_DEBUG(dbgs() << "parsePCRelTarget\n");
SMLoc S = getLexer().getLoc();
// Expressions are acceptable
const MCExpr *Expr = nullptr;
if (Parser.parseExpression(Expr)) {
// We have no way of knowing if a symbol was consumed so we must ParseFail
return ParseStatus::Failure;
}
// Currently not support constants
if (Expr->getKind() == MCExpr::ExprKind::Constant)
return Error(getLoc(), "unknown operand");
Operands.push_back(XtensaOperand::createImm(Expr, S, getLexer().getLoc()));
return ParseStatus::Success;
}
bool XtensaAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
Reg = Xtensa::NoRegister;
StringRef Name = getLexer().getTok().getIdentifier();
if (!MatchRegisterName(Name) && !MatchRegisterAltName(Name)) {
getParser().Lex(); // Eat identifier token.
return false;
}
return Error(StartLoc, "invalid register name");
}
ParseStatus XtensaAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens, bool SR) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken Buf[2];
StringRef RegName;
// If this a parenthesised register name is allowed, parse it atomically
if (AllowParens && getLexer().is(AsmToken::LParen)) {
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
if ((Buf[0].getKind() == AsmToken::Integer) && (!SR))
return ParseStatus::NoMatch;
HadParens = true;
getParser().Lex(); // Eat '('
}
}
unsigned RegNo = 0;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::Integer:
if (!SR)
return ParseStatus::NoMatch;
RegName = getLexer().getTok().getString();
RegNo = MatchRegisterName(RegName);
if (RegNo == 0)
RegNo = MatchRegisterAltName(RegName);
break;
case AsmToken::Identifier:
RegName = getLexer().getTok().getIdentifier();
RegNo = MatchRegisterName(RegName);
if (RegNo == 0)
RegNo = MatchRegisterAltName(RegName);
break;
}
if (RegNo == 0) {
if (HadParens)
getLexer().UnLex(Buf[0]);
return ParseStatus::NoMatch;
}
if (HadParens)
Operands.push_back(XtensaOperand::createToken("(", FirstS));
SMLoc S = getLoc();
SMLoc E = getParser().getTok().getEndLoc();
getLexer().Lex();
Operands.push_back(XtensaOperand::createReg(RegNo, S, E));
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(XtensaOperand::createToken(")", getLoc()));
}
return ParseStatus::Success;
}
ParseStatus XtensaAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String:
if (getParser().parseExpression(Res))
return ParseStatus::Failure;
break;
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
break;
}
case AsmToken::Percent:
return parseOperandWithModifier(Operands);
}
E = SMLoc::getFromPointer(S.getPointer() - 1);
Operands.push_back(XtensaOperand::createImm(Res, S, E));
return ParseStatus::Success;
}
ParseStatus XtensaAsmParser::parseOperandWithModifier(OperandVector &Operands) {
return ParseStatus::Failure;
}
/// Looks at a token type and creates the relevant operand
/// from this information, adding to Operands.
/// If operand was parsed, returns false, else true.
bool XtensaAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic,
bool SR) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic);
if (Res.isSuccess())
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (Res.isFailure())
return true;
// Attempt to parse token as register
if (parseRegister(Operands, true, SR).isSuccess())
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands).isSuccess())
return false;
// Finally we have exhausted all options and must declare defeat.
return Error(getLoc(), "unknown operand");
}
bool XtensaAsmParser::ParseInstructionWithSR(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
if ((Name.starts_with("wsr.") || Name.starts_with("rsr.") ||
Name.starts_with("xsr.")) &&
(Name.size() > 4)) {
// Parse case when instruction name is concatenated with SR register
// name, like "wsr.sar a1"
// First operand is token for instruction
Operands.push_back(XtensaOperand::createToken(Name.take_front(3), NameLoc));
StringRef RegName = Name.drop_front(4);
unsigned RegNo = MatchRegisterName(RegName);
if (RegNo == 0)
RegNo = MatchRegisterAltName(RegName);
if (RegNo == 0)
return Error(NameLoc, "invalid register name");
// Parse operand
if (parseOperand(Operands, Name))
return true;
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
Operands.push_back(XtensaOperand::createReg(RegNo, S, E));
} else {
// First operand is token for instruction
Operands.push_back(XtensaOperand::createToken(Name, NameLoc));
// Parse first operand
if (parseOperand(Operands, Name))
return true;
if (!parseOptionalToken(AsmToken::Comma)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
// Parse second operand
if (parseOperand(Operands, Name, true))
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
bool XtensaAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
if (Name.starts_with("wsr") || Name.starts_with("rsr") ||
Name.starts_with("xsr")) {
return ParseInstructionWithSR(Info, Name, NameLoc, Operands);
}
// First operand is token for instruction
Operands.push_back(XtensaOperand::createToken(Name, NameLoc));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands
while (parseOptionalToken(AsmToken::Comma))
if (parseOperand(Operands, Name))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
bool XtensaAsmParser::parseLiteralDirective(SMLoc L) {
MCAsmParser &Parser = getParser();
const MCExpr *Value;
SMLoc LiteralLoc = getLexer().getLoc();
XtensaTargetStreamer &TS = this->getTargetStreamer();
if (Parser.parseExpression(Value))
return true;
const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Value);
if (!SE)
return Error(LiteralLoc, "literal label must be a symbol");
if (Parser.parseComma())
return true;
SMLoc OpcodeLoc = getLexer().getLoc();
if (parseOptionalToken(AsmToken::EndOfStatement))
return Error(OpcodeLoc, "expected value");
if (Parser.parseExpression(Value))
return true;
if (parseEOL())
return true;
MCSymbol *Sym = getContext().getOrCreateSymbol(SE->getSymbol().getName());
TS.emitLiteral(Sym, Value, true, LiteralLoc);
return false;
}
ParseStatus XtensaAsmParser::parseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
SMLoc Loc = getLexer().getLoc();
if (IDVal == ".literal_position") {
XtensaTargetStreamer &TS = this->getTargetStreamer();
TS.emitLiteralPosition();
return parseEOL();
}
if (IDVal == ".literal") {
return parseLiteralDirective(Loc);
}
return ParseStatus::NoMatch;
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeXtensaAsmParser() {
RegisterMCAsmParser<XtensaAsmParser> X(getTheXtensaTarget());
}