//===----------------------------------------------------------------------===//
// ARM Subtarget state.
//
// True if compiling for Thumb, false for ARM.
def ModeThumb : SubtargetFeature<"thumb-mode", "IsThumb",
"true", "Thumb mode">;
// True if we're using software floating point features.
def ModeSoftFloat : SubtargetFeature<"soft-float","UseSoftFloat",
"true", "Use software floating "
"point features.">;
//===----------------------------------------------------------------------===//
// ARM Subtarget features.
//
// This is currently only used by AArch64, but is required here because ARM and
// AArch64 share a tablegen backend for TargetParser.
class Extension<
string TargetFeatureName, // String used for -target-feature.
string Spelling, // The XYZ in HasXYZ and AEK_XYZ.
string Desc, // Description.
list<SubtargetFeature> Implies = [] // List of dependent features.
> : SubtargetFeature<TargetFeatureName, "Has" # Spelling, "true", Desc, Implies>
{
string ArchExtKindSpelling = "AEK_" # Spelling; // ArchExtKind enum name.
}
// Floating Point, HW Division and Neon Support
// FP loads/stores/moves, shared between VFP and MVE (even in the integer-only
// version).
def FeatureFPRegs : SubtargetFeature<"fpregs", "HasFPRegs", "true",
"Enable FP registers">;
// 16-bit FP loads/stores/moves, shared between VFP (with the v8.2A FP16
// extension) and MVE (even in the integer-only version).
def FeatureFPRegs16 : SubtargetFeature<"fpregs16", "HasFPRegs16", "true",
"Enable 16-bit FP registers",
[FeatureFPRegs]>;
def FeatureFPRegs64 : SubtargetFeature<"fpregs64", "HasFPRegs64", "true",
"Enable 64-bit FP registers",
[FeatureFPRegs]>;
// True if the floating point unit supports double precision.
def FeatureFP64 : SubtargetFeature<"fp64", "HasFP64", "true",
"Floating point unit supports "
"double precision",
[FeatureFPRegs64]>;
// True if subtarget has the full 32 double precision FP registers for VFPv3.
def FeatureD32 : SubtargetFeature<"d32", "HasD32", "true",
"Extend FP to 32 double registers">;
/// Versions of the VFP flags restricted to single precision, or to
/// 16 d-registers, or both.
multiclass VFPver<string name, string query, string description,
list<SubtargetFeature> prev,
list<SubtargetFeature> otherimplies,
list<SubtargetFeature> vfp2prev = []> {
def _D16_SP: SubtargetFeature<
name#"d16sp", query#"D16SP", "true",
description#" with only 16 d-registers and no double precision",
!foreach(v, prev, !cast<SubtargetFeature>(v # "_D16_SP")) #
!foreach(v, vfp2prev, !cast<SubtargetFeature>(v # "_SP")) #
otherimplies>;
def _SP: SubtargetFeature<
name#"sp", query#"SP", "true",
description#" with no double precision",
!foreach(v, prev, !cast<SubtargetFeature>(v # "_SP")) #
otherimplies # [FeatureD32, !cast<SubtargetFeature>(NAME # "_D16_SP")]>;
def _D16: SubtargetFeature<
name#"d16", query#"D16", "true",
description#" with only 16 d-registers",
!foreach(v, prev, !cast<SubtargetFeature>(v # "_D16")) #
vfp2prev #
otherimplies # [FeatureFP64, !cast<SubtargetFeature>(NAME # "_D16_SP")]>;
def "": SubtargetFeature<
name, query, "true", description,
prev # otherimplies # [
!cast<SubtargetFeature>(NAME # "_D16"),
!cast<SubtargetFeature>(NAME # "_SP")]>;
}
def FeatureVFP2_SP : SubtargetFeature<"vfp2sp", "HasVFPv2SP", "true",
"Enable VFP2 instructions with "
"no double precision",
[FeatureFPRegs]>;
def FeatureVFP2 : SubtargetFeature<"vfp2", "HasVFPv2", "true",
"Enable VFP2 instructions",
[FeatureFP64, FeatureVFP2_SP]>;
defm FeatureVFP3: VFPver<"vfp3", "HasVFPv3", "Enable VFP3 instructions",
[], [], [FeatureVFP2]>;
def FeatureNEON : SubtargetFeature<"neon", "HasNEON", "true",
"Enable NEON instructions",
[FeatureVFP3]>;
// True if subtarget supports half-precision FP conversions.
def FeatureFP16 : SubtargetFeature<"fp16", "HasFP16", "true",
"Enable half-precision "
"floating point">;
defm FeatureVFP4: VFPver<"vfp4", "HasVFPv4", "Enable VFP4 instructions",
[FeatureVFP3], [FeatureFP16]>;
defm FeatureFPARMv8: VFPver<"fp-armv8", "HasFPARMv8", "Enable ARMv8 FP",
[FeatureVFP4], []>;
// True if subtarget supports half-precision FP operations.
def FeatureFullFP16 : SubtargetFeature<"fullfp16", "HasFullFP16", "true",
"Enable full half-precision "
"floating point",
[FeatureFPARMv8_D16_SP, FeatureFPRegs16]>;
// True if subtarget supports half-precision FP fml operations.
def FeatureFP16FML : SubtargetFeature<"fp16fml", "HasFP16FML", "true",
"Enable full half-precision "
"floating point fml instructions",
[FeatureFullFP16]>;
// True if subtarget supports [su]div in Thumb mode.
def FeatureHWDivThumb : SubtargetFeature<"hwdiv",
"HasDivideInThumbMode", "true",
"Enable divide instructions in Thumb">;
// True if subtarget supports [su]div in ARM mode.
def FeatureHWDivARM : SubtargetFeature<"hwdiv-arm",
"HasDivideInARMMode", "true",
"Enable divide instructions in ARM mode">;
// Atomic Support
// True if the subtarget supports DMB / DSB data barrier instructions.
def FeatureDB : SubtargetFeature<"db", "HasDataBarrier", "true",
"Has data barrier (dmb/dsb) instructions">;
// True if the subtarget supports CLREX instructions.
def FeatureV7Clrex : SubtargetFeature<"v7clrex", "HasV7Clrex", "true",
"Has v7 clrex instruction">;
// True if the subtarget supports DFB data barrier instruction.
def FeatureDFB : SubtargetFeature<"dfb", "HasFullDataBarrier", "true",
"Has full data barrier (dfb) instruction">;
// True if the subtarget supports v8 atomics (LDA/LDAEX etc) instructions.
def FeatureAcquireRelease : SubtargetFeature<"acquire-release",
"HasAcquireRelease", "true",
"Has v8 acquire/release (lda/ldaex "
" etc) instructions">;
// True if floating point compare + branch is slow.
def FeatureSlowFPBrcc : SubtargetFeature<"slow-fp-brcc", "IsFPBrccSlow", "true",
"FP compare + branch is slow">;
// True if the processor supports the Performance Monitor Extensions. These
// include a generic cycle-counter as well as more fine-grained (often
// implementation-specific) events.
def FeaturePerfMon : SubtargetFeature<"perfmon", "HasPerfMon", "true",
"Enable support for Performance "
"Monitor extensions">;
// TrustZone Security Extensions
// True if processor supports TrustZone security extensions.
def FeatureTrustZone : SubtargetFeature<"trustzone", "HasTrustZone", "true",
"Enable support for TrustZone "
"security extensions">;
// True if processor supports ARMv8-M Security Extensions.
def Feature8MSecExt : SubtargetFeature<"8msecext", "Has8MSecExt", "true",
"Enable support for ARMv8-M "
"Security Extensions">;
// True if processor supports SHA1 and SHA256.
def FeatureSHA2 : SubtargetFeature<"sha2", "HasSHA2", "true",
"Enable SHA1 and SHA256 support", [FeatureNEON]>;
def FeatureAES : SubtargetFeature<"aes", "HasAES", "true",
"Enable AES support", [FeatureNEON]>;
// True if processor supports Cryptography extensions.
def FeatureCrypto : SubtargetFeature<"crypto", "HasCrypto", "true",
"Enable support for "
"Cryptography extensions",
[FeatureNEON, FeatureSHA2, FeatureAES]>;
// True if processor supports CRC instructions.
def FeatureCRC : SubtargetFeature<"crc", "HasCRC", "true",
"Enable support for CRC instructions">;
// True if the ARMv8.2A dot product instructions are supported.
def FeatureDotProd : SubtargetFeature<"dotprod", "HasDotProd", "true",
"Enable support for dot product instructions",
[FeatureNEON]>;
// True if the processor supports RAS extensions.
// Not to be confused with FeatureHasRetAddrStack (return address stack).
def FeatureRAS : SubtargetFeature<"ras", "HasRAS", "true",
"Enable Reliability, Availability "
"and Serviceability extensions">;
// Fast computation of non-negative address offsets.
// True if processor does positive address offset computation faster.
def FeatureFPAO : SubtargetFeature<"fpao", "HasFPAO", "true",
"Enable fast computation of "
"positive address offsets">;
// Fast execution of AES crypto operations.
// True if processor executes back to back AES instruction pairs faster.
def FeatureFuseAES : SubtargetFeature<"fuse-aes", "HasFuseAES", "true",
"CPU fuses AES crypto operations">;
// Fast execution of bottom and top halves of literal generation.
// True if processor executes back to back bottom and top halves of literal generation faster.
def FeatureFuseLiterals : SubtargetFeature<"fuse-literals", "HasFuseLiterals", "true",
"CPU fuses literal generation operations">;
// Choice of hardware register to use as the thread pointer, if any.
def FeatureReadTpTPIDRURW : SubtargetFeature<"read-tp-tpidrurw", "IsReadTPTPIDRURW", "true",
"Reading thread pointer from TPIDRURW register">;
def FeatureReadTpTPIDRURO : SubtargetFeature<"read-tp-tpidruro", "IsReadTPTPIDRURO", "true",
"Reading thread pointer from TPIDRURO register">;
def FeatureReadTpTPIDRPRW : SubtargetFeature<"read-tp-tpidrprw", "IsReadTPTPIDRPRW", "true",
"Reading thread pointer from TPIDRPRW register">;
// Cyclone can zero VFP registers in 0 cycles.
// True if the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
// particularly effective at zeroing a VFP register.
def FeatureZCZeroing : SubtargetFeature<"zcz", "HasZeroCycleZeroing", "true",
"Has zero-cycle zeroing instructions">;
// Whether it is profitable to unpredicate certain instructions during if-conversion.
// True if if conversion may decide to leave some instructions unpredicated.
def FeatureProfUnpredicate : SubtargetFeature<"prof-unpr",
"IsProfitableToUnpredicate", "true",
"Is profitable to unpredicate">;
// Some targets (e.g. Swift) have microcoded VGETLNi32.
// True if VMOV will be favored over VGETLNi32.
def FeatureSlowVGETLNi32 : SubtargetFeature<"slow-vgetlni32",
"HasSlowVGETLNi32", "true",
"Has slow VGETLNi32 - prefer VMOV">;
// Some targets (e.g. Swift) have microcoded VDUP32.
// True if VMOV will be favored over VDUP.
def FeatureSlowVDUP32 : SubtargetFeature<"slow-vdup32", "HasSlowVDUP32",
"true",
"Has slow VDUP32 - prefer VMOV">;
// Some targets (e.g. Cortex-A9) prefer VMOVSR to VMOVDRR even when using NEON
// for scalar FP, as this allows more effective execution domain optimization.
// True if VMOVSR will be favored over VMOVDRR.
def FeaturePreferVMOVSR : SubtargetFeature<"prefer-vmovsr", "PreferVMOVSR",
"true", "Prefer VMOVSR">;
// Swift has ISHST barriers compatible with Atomic Release semantics but weaker
// than ISH.
// True if ISHST barriers will be used for Release semantics.
def FeaturePrefISHSTBarrier : SubtargetFeature<"prefer-ishst", "PreferISHSTBarriers",
"true", "Prefer ISHST barriers">;
// Some targets (e.g. Cortex-A9) have muxed AGU and NEON/FPU.
// True if the AGU and NEON/FPU units are multiplexed.
def FeatureMuxedUnits : SubtargetFeature<"muxed-units", "HasMuxedUnits",
"true",
"Has muxed AGU and NEON/FPU">;
// Whether VLDM/VSTM starting with odd register number need more microops
// than single VLDRS.
// True if a VLDM/VSTM starting with an odd register number is considered to
// take more microops than single VLDRS/VSTRS.
def FeatureSlowOddRegister : SubtargetFeature<"slow-odd-reg", "HasSlowOddRegister",
"true", "VLDM/VSTM starting "
"with an odd register is slow">;
// Some targets have a renaming dependency when loading into D subregisters.
// True if loading into a D subregister will be penalized.
def FeatureSlowLoadDSubreg : SubtargetFeature<"slow-load-D-subreg",
"HasSlowLoadDSubregister", "true",
"Loading into D subregs is slow">;
// True if use a wider stride when allocating VFP registers.
def FeatureUseWideStrideVFP : SubtargetFeature<"wide-stride-vfp",
"UseWideStrideVFP", "true",
"Use a wide stride when allocating VFP registers">;
// Some targets (e.g. Cortex-A15) never want VMOVS to be widened to VMOVD.
// True if VMOVS will never be widened to VMOVD.
def FeatureDontWidenVMOVS : SubtargetFeature<"dont-widen-vmovs",
"DontWidenVMOVS", "true",
"Don't widen VMOVS to VMOVD">;
// Some targets (e.g. Cortex-A15) prefer to avoid mixing operations on different
// VFP register widths.
// True if splat a register between VFP and NEON instructions.
def FeatureSplatVFPToNeon : SubtargetFeature<"splat-vfp-neon",
"UseSplatVFPToNeon", "true",
"Splat register from VFP to NEON",
[FeatureDontWidenVMOVS]>;
// Whether or not it is profitable to expand VFP/NEON MLA/MLS instructions.
// True if run the MLx expansion pass.
def FeatureExpandMLx : SubtargetFeature<"expand-fp-mlx",
"ExpandMLx", "true",
"Expand VFP/NEON MLA/MLS instructions">;
// Some targets have special RAW hazards for VFP/NEON VMLA/VMLS.
// True if VFP/NEON VMLA/VMLS have special RAW hazards.
def FeatureHasVMLxHazards : SubtargetFeature<"vmlx-hazards", "HasVMLxHazards",
"true", "Has VMLx hazards">;
// Some targets (e.g. Cortex-A9) want to convert VMOVRS, VMOVSR and VMOVS from
// VFP to NEON, as an execution domain optimization.
// True if VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
def FeatureNEONForFPMovs : SubtargetFeature<"neon-fpmovs",
"UseNEONForFPMovs", "true",
"Convert VMOVSR, VMOVRS, "
"VMOVS to NEON">;
// Some processors benefit from using NEON instructions for scalar
// single-precision FP operations. This affects instruction selection and should
// only be enabled if the handling of denormals is not important.
// Use the method useNEONForSinglePrecisionFP() to determine if NEON should actually be used.
def FeatureNEONForFP : SubtargetFeature<"neonfp",
"HasNEONForFP",
"true",
"Use NEON for single precision FP">;
// On some processors, VLDn instructions that access unaligned data take one
// extra cycle. Take that into account when computing operand latencies.
// True if VLDn instructions take an extra cycle for unaligned accesses.
def FeatureCheckVLDnAlign : SubtargetFeature<"vldn-align", "CheckVLDnAccessAlignment",
"true",
"Check for VLDn unaligned access">;
// Some processors have a nonpipelined VFP coprocessor.
// True if VFP instructions are not pipelined.
def FeatureNonpipelinedVFP : SubtargetFeature<"nonpipelined-vfp",
"NonpipelinedVFP", "true",
"VFP instructions are not pipelined">;
// Some processors have FP multiply-accumulate instructions that don't
// play nicely with other VFP / NEON instructions, and it's generally better
// to just not use them.
// If the VFP2 / NEON instructions are available, indicates
// whether the FP VML[AS] instructions are slow (if so, don't use them).
def FeatureHasSlowFPVMLx : SubtargetFeature<"slowfpvmlx", "SlowFPVMLx", "true",
"Disable VFP / NEON MAC instructions">;
// VFPv4 added VFMA instructions that can similarly be fast or slow.
// If the VFP4 / NEON instructions are available, indicates
// whether the FP VFM[AS] instructions are slow (if so, don't use them).
def FeatureHasSlowFPVFMx : SubtargetFeature<"slowfpvfmx", "SlowFPVFMx", "true",
"Disable VFP / NEON FMA instructions">;
// Cortex-A8 / A9 Advanced SIMD has multiplier accumulator forwarding.
/// True if NEON has special multiplier accumulator
/// forwarding to allow mul + mla being issued back to back.
def FeatureVMLxForwarding : SubtargetFeature<"vmlx-forwarding",
"HasVMLxForwarding", "true",
"Has multiplier accumulator forwarding">;
// Disable 32-bit to 16-bit narrowing for experimentation.
// True if codegen would prefer 32-bit Thumb instructions over 16-bit ones.
def FeaturePref32BitThumb : SubtargetFeature<"32bit", "Prefers32BitThumb", "true",
"Prefer 32-bit Thumb instrs">;
def FeaturePrefLoopAlign32 : SubtargetFeature<"loop-align", "PrefLoopLogAlignment","2",
"Prefer 32-bit alignment for loops">;
def FeatureMVEVectorCostFactor1 : SubtargetFeature<"mve1beat", "MVEVectorCostFactor", "4",
"Model MVE instructions as a 1 beat per tick architecture">;
def FeatureMVEVectorCostFactor2 : SubtargetFeature<"mve2beat", "MVEVectorCostFactor", "2",
"Model MVE instructions as a 2 beats per tick architecture">;
def FeatureMVEVectorCostFactor4 : SubtargetFeature<"mve4beat", "MVEVectorCostFactor", "1",
"Model MVE instructions as a 4 beats per tick architecture">;
/// Some instructions update CPSR partially, which can add false dependency for
/// out-of-order implementation, e.g. Cortex-A9, unless each individual bit is
/// mapped to a separate physical register. Avoid partial CPSR update for these
/// processors.
/// True if codegen would avoid using instructions
/// that partially update CPSR and add false dependency on the previous
/// CPSR setting instruction.
def FeatureAvoidPartialCPSR : SubtargetFeature<"avoid-partial-cpsr",
"AvoidCPSRPartialUpdate", "true",
"Avoid CPSR partial update for OOO execution">;
/// Disable +1 predication cost for instructions updating CPSR.
/// Enabled for Cortex-A57.
/// True if disable +1 predication cost for instructions updating CPSR. Enabled for Cortex-A57.
def FeatureCheapPredicableCPSR : SubtargetFeature<"cheap-predicable-cpsr",
"CheapPredicableCPSRDef",
"true",
"Disable +1 predication cost for instructions updating CPSR">;
// True if codegen should avoid using flag setting movs with shifter operand (i.e. asr, lsl, lsr).
def FeatureAvoidMOVsShOp : SubtargetFeature<"avoid-movs-shop",
"AvoidMOVsShifterOperand", "true",
"Avoid movs instructions with "
"shifter operand">;
// Some processors perform return stack prediction. CodeGen should avoid issue
// "normal" call instructions to callees which do not return.
def FeatureHasRetAddrStack : SubtargetFeature<"ret-addr-stack",
"HasRetAddrStack", "true",
"Has return address stack">;
// Some processors have no branch predictor, which changes the expected cost of
// taking a branch which affects the choice of whether to use predicated
// instructions.
// True if the subtarget has a branch predictor. Having
// a branch predictor or not changes the expected cost of taking a branch
// which affects the choice of whether to use predicated instructions.
def FeatureHasNoBranchPredictor : SubtargetFeature<"no-branch-predictor",
"HasBranchPredictor", "false",
"Has no branch predictor">;
/// DSP extension.
/// True if the subtarget supports the DSP (saturating arith and such) instructions.
def FeatureDSP : SubtargetFeature<"dsp", "HasDSP", "true",
"Supports DSP instructions in "
"ARM and/or Thumb2">;
// True if the subtarget supports Multiprocessing extension (ARMv7 only).
def FeatureMP : SubtargetFeature<"mp", "HasMPExtension", "true",
"Supports Multiprocessing extension">;
// Virtualization extension - requires HW divide (ARMv7-AR ARMARM - 4.4.8).
def FeatureVirtualization : SubtargetFeature<"virtualization",
"HasVirtualization", "true",
"Supports Virtualization extension",
[FeatureHWDivThumb, FeatureHWDivARM]>;
// Special TRAP encoding for NaCl, which looks like a TRAP in Thumb too.
// See ARMInstrInfo.td for details.
// True if NaCl TRAP instruction is generated instead of the regular TRAP.
def FeatureNaClTrap : SubtargetFeature<"nacl-trap", "UseNaClTrap", "true",
"NaCl trap">;
// True if the subtarget disallows unaligned memory
// accesses for some types. For details, see
// ARMTargetLowering::allowsMisalignedMemoryAccesses().
def FeatureStrictAlign : SubtargetFeature<"strict-align",
"StrictAlign", "true",
"Disallow all unaligned memory "
"access">;
// Generate calls via indirect call instructions.
def FeatureLongCalls : SubtargetFeature<"long-calls", "GenLongCalls", "true",
"Generate calls via indirect call "
"instructions">;
// Generate code that does not contain data access to code sections.
def FeatureExecuteOnly : SubtargetFeature<"execute-only",
"GenExecuteOnly", "true",
"Enable the generation of "
"execute only code.">;
// True if R9 is not available as a general purpose register.
def FeatureReserveR9 : SubtargetFeature<"reserve-r9", "ReserveR9", "true",
"Reserve R9, making it unavailable"
" as GPR">;
// True if MOVT / MOVW pairs are not used for materialization of
// 32-bit imms (including global addresses).
def FeatureNoMovt : SubtargetFeature<"no-movt", "NoMovt", "true",
"Don't use movt/movw pairs for "
"32-bit imms">;
/// Implicitly convert an instruction to a different one if its immediates
/// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1.
def FeatureNoNegativeImmediates
: SubtargetFeature<"no-neg-immediates",
"NegativeImmediates", "false",
"Convert immediates and instructions "
"to their negated or complemented "
"equivalent when the immediate does "
"not fit in the encoding.">;
// Use the MachineScheduler for instruction scheduling for the subtarget.
def FeatureUseMISched: SubtargetFeature<"use-misched", "UseMISched", "true",
"Use the MachineScheduler">;
// Use the MachinePipeliner for instruction scheduling for the subtarget.
def FeatureUseMIPipeliner: SubtargetFeature<"use-mipipeliner", "UseMIPipeliner", "true",
"Use the MachinePipeliner">;
// False if scheduling should happen again after register allocation.
def FeatureNoPostRASched : SubtargetFeature<"disable-postra-scheduler",
"DisablePostRAScheduler", "true",
"Don't schedule again after register allocation">;
// Armv8.5-A extensions
// Has speculation barrier.
def FeatureSB : SubtargetFeature<"sb", "HasSB", "true",
"Enable v8.5a Speculation Barrier" >;
// Armv8.6-A extensions
// True if subtarget supports BFloat16 floating point operations.
def FeatureBF16 : SubtargetFeature<"bf16", "HasBF16", "true",
"Enable support for BFloat16 instructions", [FeatureNEON]>;
// True if subtarget supports 8-bit integer matrix multiply.
def FeatureMatMulInt8 : SubtargetFeature<"i8mm", "HasMatMulInt8",
"true", "Enable Matrix Multiply Int8 Extension", [FeatureNEON]>;
// Armv8.1-M extensions
// True if the processor supports the Low Overhead Branch extension.
def FeatureLOB : SubtargetFeature<"lob", "HasLOB", "true",
"Enable Low Overhead Branch "
"extensions">;
// Mitigate against the cve-2021-35465 security vulnurability.
def FeatureFixCMSE_CVE_2021_35465 : SubtargetFeature<"fix-cmse-cve-2021-35465",
"FixCMSE_CVE_2021_35465", "true",
"Mitigate against the cve-2021-35465 "
"security vulnurability">;
def FeaturePACBTI : SubtargetFeature<"pacbti", "HasPACBTI", "true",
"Enable Pointer Authentication and Branch "
"Target Identification">;
/// Don't place a BTI instruction after return-twice constructs (setjmp).
def FeatureNoBTIAtReturnTwice : SubtargetFeature<"no-bti-at-return-twice",
"NoBTIAtReturnTwice", "true",
"Don't place a BTI instruction "
"after a return-twice">;
// Armv8.9-A/Armv9.4-A 2022 Architecture Extensions
def FeatureCLRBHB : SubtargetFeature<"clrbhb", "HasCLRBHB", "true",
"Enable Clear BHB instruction">;
def FeatureFixCortexA57AES1742098 : SubtargetFeature<"fix-cortex-a57-aes-1742098",
"FixCortexA57AES1742098", "true",
"Work around Cortex-A57 Erratum 1742098 / Cortex-A72 Erratum 1655431 (AES)">;
// If frame pointers are in use, they must follow the AAPCS definition, which
// always uses R11 as the frame pointer. If this is not set, we can use R7 as
// the frame pointer for Thumb1-only code, which is more efficient, but less
// compatible. Note that this feature does not control whether frame pointers
// are emitted, that is controlled by the "frame-pointer" function attribute.
def FeatureAAPCSFrameChain : SubtargetFeature<"aapcs-frame-chain",
"CreateAAPCSFrameChain", "true",
"Create an AAPCS compliant frame chain">;
// Assume that lock-free 32-bit atomics are available, even if the target
// and operating system combination would not usually provide them. The user
// is responsible for providing any necessary __sync implementations. Code
// built with this feature is not ABI-compatible with code built without this
// feature, if atomic variables are exposed across the ABI boundary.
def FeatureAtomics32 : SubtargetFeature<
"atomics-32", "HasForced32BitAtomics", "true",
"Assume that lock-free 32-bit atomics are available">;
//===----------------------------------------------------------------------===//
// ARM architecture class
//
// A-series ISA
def FeatureAClass : SubtargetFeature<"aclass", "ARMProcClass", "AClass",
"Is application profile ('A' series)">;
// R-series ISA
def FeatureRClass : SubtargetFeature<"rclass", "ARMProcClass", "RClass",
"Is realtime profile ('R' series)">;
// M-series ISA
def FeatureMClass : SubtargetFeature<"mclass", "ARMProcClass", "MClass",
"Is microcontroller profile ('M' series)">;
// True if Thumb2 instructions are supported.
def FeatureThumb2 : SubtargetFeature<"thumb2", "HasThumb2", "true",
"Enable Thumb2 instructions">;
// True if subtarget does not support ARM mode execution.
def FeatureNoARM : SubtargetFeature<"noarm", "NoARM", "true",
"Does not support ARM mode execution">;
//===----------------------------------------------------------------------===//
// ARM ISAa.
//
// Specify whether target support specific ARM ISA variants.
def HasV4TOps : SubtargetFeature<"v4t", "HasV4TOps", "true",
"Support ARM v4T instructions">;
def HasV5TOps : SubtargetFeature<"v5t", "HasV5TOps", "true",
"Support ARM v5T instructions",
[HasV4TOps]>;
def HasV5TEOps : SubtargetFeature<"v5te", "HasV5TEOps", "true",
"Support ARM v5TE, v5TEj, and "
"v5TExp instructions",
[HasV5TOps]>;
def HasV6Ops : SubtargetFeature<"v6", "HasV6Ops", "true",
"Support ARM v6 instructions",
[HasV5TEOps]>;
def HasV6MOps : SubtargetFeature<"v6m", "HasV6MOps", "true",
"Support ARM v6M instructions",
[HasV6Ops]>;
def HasV8MBaselineOps : SubtargetFeature<"v8m", "HasV8MBaselineOps", "true",
"Support ARM v8M Baseline instructions",
[HasV6MOps]>;
def HasV6KOps : SubtargetFeature<"v6k", "HasV6KOps", "true",
"Support ARM v6k instructions",
[HasV6Ops]>;
def HasV6T2Ops : SubtargetFeature<"v6t2", "HasV6T2Ops", "true",
"Support ARM v6t2 instructions",
[HasV8MBaselineOps, HasV6KOps, FeatureThumb2]>;
def HasV7Ops : SubtargetFeature<"v7", "HasV7Ops", "true",
"Support ARM v7 instructions",
[HasV6T2Ops, FeatureV7Clrex]>;
def HasV8MMainlineOps :
SubtargetFeature<"v8m.main", "HasV8MMainlineOps", "true",
"Support ARM v8M Mainline instructions",
[HasV7Ops]>;
def HasV8Ops : SubtargetFeature<"v8", "HasV8Ops", "true",
"Support ARM v8 instructions",
[HasV7Ops, FeaturePerfMon, FeatureAcquireRelease]>;
def HasV8_1aOps : SubtargetFeature<"v8.1a", "HasV8_1aOps", "true",
"Support ARM v8.1a instructions",
[HasV8Ops]>;
def HasV8_2aOps : SubtargetFeature<"v8.2a", "HasV8_2aOps", "true",
"Support ARM v8.2a instructions",
[HasV8_1aOps]>;
def HasV8_3aOps : SubtargetFeature<"v8.3a", "HasV8_3aOps", "true",
"Support ARM v8.3a instructions",
[HasV8_2aOps]>;
def HasV8_4aOps : SubtargetFeature<"v8.4a", "HasV8_4aOps", "true",
"Support ARM v8.4a instructions",
[HasV8_3aOps, FeatureDotProd]>;
def HasV8_5aOps : SubtargetFeature<"v8.5a", "HasV8_5aOps", "true",
"Support ARM v8.5a instructions",
[HasV8_4aOps, FeatureSB]>;
def HasV8_6aOps : SubtargetFeature<"v8.6a", "HasV8_6aOps", "true",
"Support ARM v8.6a instructions",
[HasV8_5aOps, FeatureBF16,
FeatureMatMulInt8]>;
def HasV8_7aOps : SubtargetFeature<"v8.7a", "HasV8_7aOps", "true",
"Support ARM v8.7a instructions",
[HasV8_6aOps]>;
def HasV8_8aOps : SubtargetFeature<"v8.8a", "HasV8_8aOps", "true",
"Support ARM v8.8a instructions",
[HasV8_7aOps]>;
def HasV8_9aOps : SubtargetFeature<"v8.9a", "HasV8_9aOps", "true",
"Support ARM v8.9a instructions",
[HasV8_8aOps, FeatureCLRBHB]>;
def HasV9_0aOps : SubtargetFeature<"v9a", "HasV9_0aOps", "true",
"Support ARM v9a instructions",
[HasV8_5aOps]>;
def HasV9_1aOps : SubtargetFeature<"v9.1a", "HasV9_1aOps", "true",
"Support ARM v9.1a instructions",
[HasV8_6aOps, HasV9_0aOps]>;
def HasV9_2aOps : SubtargetFeature<"v9.2a", "HasV9_2aOps", "true",
"Support ARM v9.2a instructions",
[HasV8_7aOps, HasV9_1aOps]>;
def HasV9_3aOps : SubtargetFeature<"v9.3a", "HasV9_3aOps", "true",
"Support ARM v9.3a instructions",
[HasV8_8aOps, HasV9_2aOps]>;
def HasV9_4aOps : SubtargetFeature<"v9.4a", "HasV9_4aOps", "true",
"Support ARM v9.4a instructions",
[HasV8_9aOps, HasV9_3aOps]>;
// Armv9.5-A is a v9-only architecture. From v9.5-A onwards there's no mapping
// to an equivalent v8.x version.
def HasV9_5aOps : SubtargetFeature<"v9.5a", "HasV9_5aOps", "true",
"Support ARM v9.5a instructions",
[HasV9_4aOps]>;
def HasV8_1MMainlineOps : SubtargetFeature<
"v8.1m.main", "HasV8_1MMainlineOps", "true",
"Support ARM v8-1M Mainline instructions",
[HasV8MMainlineOps]>;
def HasMVEIntegerOps : SubtargetFeature<
"mve", "HasMVEIntegerOps", "true",
"Support M-Class Vector Extension with integer ops",
[HasV8_1MMainlineOps, FeatureDSP, FeatureFPRegs16, FeatureFPRegs64]>;
def HasMVEFloatOps : SubtargetFeature<
"mve.fp", "HasMVEFloatOps", "true",
"Support M-Class Vector Extension with integer and floating ops",
[HasMVEIntegerOps, FeatureFPARMv8_D16_SP, FeatureFullFP16]>;
def HasCDEOps : SubtargetFeature<"cde", "HasCDEOps", "true",
"Support CDE instructions",
[HasV8MMainlineOps]>;
foreach i = {0-7} in
def FeatureCoprocCDE#i : SubtargetFeature<"cdecp"#i,
"CoprocCDE["#i#"]", "true",
"Coprocessor "#i#" ISA is CDEv1",
[HasCDEOps]>;
//===----------------------------------------------------------------------===//
// Control codegen mitigation against Straight Line Speculation vulnerability.
//===----------------------------------------------------------------------===//
/// Harden against Straight Line Speculation for Returns and Indirect Branches.
def FeatureHardenSlsRetBr : SubtargetFeature<"harden-sls-retbr",
"HardenSlsRetBr", "true",
"Harden against straight line speculation across RETurn and BranchRegister "
"instructions">;
/// Harden against Straight Line Speculation for indirect calls.
def FeatureHardenSlsBlr : SubtargetFeature<"harden-sls-blr",
"HardenSlsBlr", "true",
"Harden against straight line speculation across indirect calls">;
/// Generate thunk code for SLS mitigation in the normal text section.
def FeatureHardenSlsNoComdat : SubtargetFeature<"harden-sls-nocomdat",
"HardenSlsNoComdat", "true",
"Generate thunk code for SLS mitigation in the normal text section">;
//===----------------------------------------------------------------------===//
// Endianness of instruction encodings in memory.
//
// In the current Arm architecture, this is usually little-endian regardless of
// data endianness. But before Armv7 it was typical for instruction endianness
// to match data endianness, so that a big-endian system was consistently big-
// endian. And Armv7-R can be configured to use big-endian instructions.
//
// Additionally, even when targeting Armv7-A, big-endian instructions can be
// found in relocatable object files, because the Arm ABI specifies that the
// linker byte-reverses them depending on the target architecture.
//
// So we have a feature here to indicate that instructions are stored big-
// endian, which you can set when instantiating an MCDisassembler.
def ModeBigEndianInstructions : SubtargetFeature<"big-endian-instructions",
"BigEndianInstructions", "true",
"Expect instructions to be stored big-endian.">;