//===-- SPIRVMergeRegionExitTargets.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Merge the multiple exit targets of a convergence region into a single block.
// Each exit target will be assigned a constant value, and a phi node + switch
// will allow the new exit target to re-route to the correct basic block.
//
//===----------------------------------------------------------------------===//
#include "Analysis/SPIRVConvergenceRegionAnalysis.h"
#include "SPIRV.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
using namespace llvm;
namespace llvm {
void initializeSPIRVMergeRegionExitTargetsPass(PassRegistry &);
class SPIRVMergeRegionExitTargets : public FunctionPass {
public:
static char ID;
SPIRVMergeRegionExitTargets() : FunctionPass(ID) {
initializeSPIRVMergeRegionExitTargetsPass(*PassRegistry::getPassRegistry());
};
// Gather all the successors of |BB|.
// This function asserts if the terminator neither a branch, switch or return.
std::unordered_set<BasicBlock *> gatherSuccessors(BasicBlock *BB) {
std::unordered_set<BasicBlock *> output;
auto *T = BB->getTerminator();
if (auto *BI = dyn_cast<BranchInst>(T)) {
output.insert(BI->getSuccessor(0));
if (BI->isConditional())
output.insert(BI->getSuccessor(1));
return output;
}
if (auto *SI = dyn_cast<SwitchInst>(T)) {
output.insert(SI->getDefaultDest());
for (auto &Case : SI->cases())
output.insert(Case.getCaseSuccessor());
return output;
}
assert(isa<ReturnInst>(T) && "Unhandled terminator type.");
return output;
}
/// Create a value in BB set to the value associated with the branch the block
/// terminator will take.
llvm::Value *createExitVariable(
BasicBlock *BB,
const DenseMap<BasicBlock *, ConstantInt *> &TargetToValue) {
auto *T = BB->getTerminator();
if (isa<ReturnInst>(T))
return nullptr;
IRBuilder<> Builder(BB);
Builder.SetInsertPoint(T);
if (auto *BI = dyn_cast<BranchInst>(T)) {
BasicBlock *LHSTarget = BI->getSuccessor(0);
BasicBlock *RHSTarget =
BI->isConditional() ? BI->getSuccessor(1) : nullptr;
Value *LHS = TargetToValue.count(LHSTarget) != 0
? TargetToValue.at(LHSTarget)
: nullptr;
Value *RHS = TargetToValue.count(RHSTarget) != 0
? TargetToValue.at(RHSTarget)
: nullptr;
if (LHS == nullptr || RHS == nullptr)
return LHS == nullptr ? RHS : LHS;
return Builder.CreateSelect(BI->getCondition(), LHS, RHS);
}
// TODO: add support for switch cases.
llvm_unreachable("Unhandled terminator type.");
}
/// Replaces |BB|'s branch targets present in |ToReplace| with |NewTarget|.
void replaceBranchTargets(BasicBlock *BB,
const SmallPtrSet<BasicBlock *, 4> &ToReplace,
BasicBlock *NewTarget) {
auto *T = BB->getTerminator();
if (isa<ReturnInst>(T))
return;
if (auto *BI = dyn_cast<BranchInst>(T)) {
for (size_t i = 0; i < BI->getNumSuccessors(); i++) {
if (ToReplace.count(BI->getSuccessor(i)) != 0)
BI->setSuccessor(i, NewTarget);
}
return;
}
if (auto *SI = dyn_cast<SwitchInst>(T)) {
for (size_t i = 0; i < SI->getNumSuccessors(); i++) {
if (ToReplace.count(SI->getSuccessor(i)) != 0)
SI->setSuccessor(i, NewTarget);
}
return;
}
assert(false && "Unhandled terminator type.");
}
// Run the pass on the given convergence region, ignoring the sub-regions.
// Returns true if the CFG changed, false otherwise.
bool runOnConvergenceRegionNoRecurse(LoopInfo &LI,
const SPIRV::ConvergenceRegion *CR) {
// Gather all the exit targets for this region.
SmallPtrSet<BasicBlock *, 4> ExitTargets;
for (BasicBlock *Exit : CR->Exits) {
for (BasicBlock *Target : gatherSuccessors(Exit)) {
if (CR->Blocks.count(Target) == 0)
ExitTargets.insert(Target);
}
}
// If we have zero or one exit target, nothing do to.
if (ExitTargets.size() <= 1)
return false;
// Create the new single exit target.
auto F = CR->Entry->getParent();
auto NewExitTarget = BasicBlock::Create(F->getContext(), "new.exit", F);
IRBuilder<> Builder(NewExitTarget);
// CodeGen output needs to be stable. Using the set as-is would order
// the targets differently depending on the allocation pattern.
// Sorting per basic-block ordering in the function.
std::vector<BasicBlock *> SortedExitTargets;
std::vector<BasicBlock *> SortedExits;
for (BasicBlock &BB : *F) {
if (ExitTargets.count(&BB) != 0)
SortedExitTargets.push_back(&BB);
if (CR->Exits.count(&BB) != 0)
SortedExits.push_back(&BB);
}
// Creating one constant per distinct exit target. This will be route to the
// correct target.
DenseMap<BasicBlock *, ConstantInt *> TargetToValue;
for (BasicBlock *Target : SortedExitTargets)
TargetToValue.insert(
std::make_pair(Target, Builder.getInt32(TargetToValue.size())));
// Creating one variable per exit node, set to the constant matching the
// targeted external block.
std::vector<std::pair<BasicBlock *, Value *>> ExitToVariable;
for (auto Exit : SortedExits) {
llvm::Value *Value = createExitVariable(Exit, TargetToValue);
ExitToVariable.emplace_back(std::make_pair(Exit, Value));
}
// Gather the correct value depending on the exit we came from.
llvm::PHINode *node =
Builder.CreatePHI(Builder.getInt32Ty(), ExitToVariable.size());
for (auto [BB, Value] : ExitToVariable) {
node->addIncoming(Value, BB);
}
// Creating the switch to jump to the correct exit target.
llvm::SwitchInst *Sw = Builder.CreateSwitch(node, SortedExitTargets[0],
SortedExitTargets.size() - 1);
for (size_t i = 1; i < SortedExitTargets.size(); i++) {
BasicBlock *BB = SortedExitTargets[i];
Sw->addCase(TargetToValue[BB], BB);
}
// Fix exit branches to redirect to the new exit.
for (auto Exit : CR->Exits)
replaceBranchTargets(Exit, ExitTargets, NewExitTarget);
return true;
}
/// Run the pass on the given convergence region and sub-regions (DFS).
/// Returns true if a region/sub-region was modified, false otherwise.
/// This returns as soon as one region/sub-region has been modified.
bool runOnConvergenceRegion(LoopInfo &LI,
const SPIRV::ConvergenceRegion *CR) {
for (auto *Child : CR->Children)
if (runOnConvergenceRegion(LI, Child))
return true;
return runOnConvergenceRegionNoRecurse(LI, CR);
}
#if !NDEBUG
/// Validates each edge exiting the region has the same destination basic
/// block.
void validateRegionExits(const SPIRV::ConvergenceRegion *CR) {
for (auto *Child : CR->Children)
validateRegionExits(Child);
std::unordered_set<BasicBlock *> ExitTargets;
for (auto *Exit : CR->Exits) {
auto Set = gatherSuccessors(Exit);
for (auto *BB : Set) {
if (CR->Blocks.count(BB) == 0)
ExitTargets.insert(BB);
}
}
assert(ExitTargets.size() <= 1);
}
#endif
virtual bool runOnFunction(Function &F) override {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
const auto *TopLevelRegion =
getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
.getRegionInfo()
.getTopLevelRegion();
// FIXME: very inefficient method: each time a region is modified, we bubble
// back up, and recompute the whole convergence region tree. Once the
// algorithm is completed and test coverage good enough, rewrite this pass
// to be efficient instead of simple.
bool modified = false;
while (runOnConvergenceRegion(LI, TopLevelRegion)) {
TopLevelRegion = getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
.getRegionInfo()
.getTopLevelRegion();
modified = true;
}
#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
validateRegionExits(TopLevelRegion);
#endif
return modified;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<SPIRVConvergenceRegionAnalysisWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
};
} // namespace llvm
char SPIRVMergeRegionExitTargets::ID = 0;
INITIALIZE_PASS_BEGIN(SPIRVMergeRegionExitTargets, "split-region-exit-blocks",
"SPIRV split region exit blocks", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SPIRVConvergenceRegionAnalysisWrapperPass)
INITIALIZE_PASS_END(SPIRVMergeRegionExitTargets, "split-region-exit-blocks",
"SPIRV split region exit blocks", false, false)
FunctionPass *llvm::createSPIRVMergeRegionExitTargetsPass() {
return new SPIRVMergeRegionExitTargets();
}