//===-- OpBase.td - Base op definition file ----------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the base operation definition file.
//
//===----------------------------------------------------------------------===//
#ifndef OP_BASE
#define OP_BASE
include "mlir/IR/Constraints.td"
include "mlir/IR/DialectBase.td"
include "mlir/IR/Interfaces.td"
include "mlir/IR/Properties.td"
include "mlir/IR/Traits.td"
include "mlir/IR/Utils.td"
include "mlir/IR/AttrTypeBase.td"
//===----------------------------------------------------------------------===//
// OpTrait definitions
//===----------------------------------------------------------------------===//
// A trait that describes the structure of operation will be marked with
// `StructuralOpTrait` and they will be verified first.
class StructuralOpTrait;
// These classes are used to define operation specific traits.
// Specify op specific declarations and definitions in `extraOpDeclaration`
// and `extraOpDefinition` template arguments.
class NativeOpTrait<string name, list<Trait> traits = [],
code extraOpDeclaration = [{}],
code extraOpDefinition = [{}]>
: NativeTrait<name, "Op", extraOpDeclaration, extraOpDefinition> {
// Specify the list of traits that need to be verified before the verification
// of this NativeOpTrait.
list<Trait> dependentTraits = traits;
}
class ParamNativeOpTrait<string prop, string params,
list<Trait> traits = []>
: ParamNativeTrait<prop, params, "Op"> {
// Specify the list of traits that need to be verified before the verification
// of this ParamNativeOpTrait.
list<Trait> dependentTraits = traits;
}
class GenInternalOpTrait<string prop, list<Trait> traits = []>
: GenInternalTrait<prop, "Op"> {
// Specify the list of traits that need to be verified before the verification
// of this GenInternalOpTrait.
list<Trait> dependentTraits = traits;
}
class PredOpTrait<string descr, Pred pred, list<Trait> traits = []>
: PredTrait<descr, pred> {
// Specify the list of traits that need to be verified before the verification
// of this PredOpTrait.
list<Trait> dependentTraits = traits;
}
// Op defines an affine scope.
def AffineScope : NativeOpTrait<"AffineScope">;
// Op defines an automatic allocation scope.
def AutomaticAllocationScope :
NativeOpTrait<"AutomaticAllocationScope">;
// Op supports operand broadcast behavior.
def ResultsBroadcastableShape :
NativeOpTrait<"ResultsBroadcastableShape">;
// X op Y == Y op X
def Commutative : NativeOpTrait<"IsCommutative">;
// op op X == op X (unary) / X op X == X (binary)
// FIXME: Idempotent should depend on SameOperandsAndResultType
def Idempotent : NativeOpTrait<"IsIdempotent">;
// op op X == X
// FIXME: Involution should depend on SameOperandsAndResultType
def Involution : NativeOpTrait<"IsInvolution">;
// Op behaves like a constant.
def ConstantLike : NativeOpTrait<"ConstantLike">;
// Op is isolated from above.
def IsolatedFromAbove : NativeOpTrait<"IsIsolatedFromAbove">;
// Op results are float or vectors/tensors thereof.
def ResultsAreFloatLike : NativeOpTrait<"ResultsAreFloatLike">;
// Op has the same operand type.
def SameTypeOperands : NativeOpTrait<"SameTypeOperands">;
// Op has same shape for all operands.
def SameOperandsShape : NativeOpTrait<"SameOperandsShape">;
// Op has same operand and result shape.
def SameOperandsAndResultShape :
NativeOpTrait<"SameOperandsAndResultShape">;
// Op has the same element type (or type itself, if scalar) for all operands.
def SameOperandsElementType :
NativeOpTrait<"SameOperandsElementType">;
// Op has the same operand and result element type (or type itself, if scalar).
def SameOperandsAndResultElementType :
NativeOpTrait<"SameOperandsAndResultElementType">;
// Op is a terminator.
def Terminator : NativeOpTrait<"IsTerminator">;
// Op can be safely normalized in the presence of MemRefs with
// non-identity maps.
def MemRefsNormalizable : NativeOpTrait<"MemRefsNormalizable">;
// Op is elementwise on tensor/vector operands and results.
def Elementwise : NativeOpTrait<"Elementwise">;
// Elementwise op can be applied to scalars instead tensor/vector operands.
def Scalarizable : NativeOpTrait<"Scalarizable", [Elementwise]>;
// Elementwise op can be applied to all-vector operands.
def Vectorizable : NativeOpTrait<"Vectorizable", [Elementwise]>;
// Elementwise op can be applied to all-tensor operands.
def Tensorizable : NativeOpTrait<"Tensorizable", [Elementwise]>;
// Group together `Elementwise`, `Scalarizable`, `Vectorizable`, and
// `Tensorizable` for convenience.
def ElementwiseMappable : TraitList<[
Elementwise,
Scalarizable,
Vectorizable,
Tensorizable,
]>;
// Op's regions have a single block.
def SingleBlock : NativeOpTrait<"SingleBlock">, StructuralOpTrait;
class SingleBlockImplicitTerminatorImpl<string op>
: ParamNativeOpTrait<"SingleBlockImplicitTerminator", op, [SingleBlock]>,
StructuralOpTrait;
// Op's regions have a single block with the specified terminator.
class SingleBlockImplicitTerminator<string op>
: TraitList<[SingleBlock, SingleBlockImplicitTerminatorImpl<op>]>;
// Op's regions don't have terminator.
def NoTerminator : NativeOpTrait<"NoTerminator">, StructuralOpTrait;
// Op's parent operation is the provided one.
class HasParent<string op>
: ParamNativeOpTrait<"HasParent", op>, StructuralOpTrait;
class ParentOneOf<list<string> ops>
: ParamNativeOpTrait<"HasParent", !interleave(ops, ", ")>,
StructuralOpTrait;
// Op result type is derived from the first attribute. If the attribute is an
// subclass of `TypeAttrBase`, its value is used, otherwise, the type of the
// attribute content is used.
def FirstAttrDerivedResultType :
GenInternalOpTrait<"FirstAttrDerivedResultType">;
// TODO: Turn the following into normal traits and generate verification for
// them.
// All variadic operands of the op have the same number of values.
// A variadic operand contains an array of values whose array size is only
// known at runtime. This trait requires all variadic operands of an op
// to have the same array size.
def SameVariadicOperandSize : GenInternalOpTrait<"SameVariadicOperandSize">;
// All variadic results of the op have the same number of values.
// A variadic result contains an array of values whose array size is only
// known at runtime. This trait requires all variadic results of an op
// to have the same array size.
def SameVariadicResultSize : GenInternalOpTrait<"SameVariadicResultSize">;
// Uses an attribute named `operandSegmentSizes` to specify how many actual
// operand each ODS-declared operand (variadic or not) corresponds to.
// This trait is used for ops that have multiple variadic operands but do
// not know statically their size relationship. The attribute must be a 1D
// vector that has the same number of elements as the number of ODS declared
// operands. That means even if some operands are non-variadic, the attribute
// still need to have an element for its size, which is always 1.
def AttrSizedOperandSegments :
NativeOpTrait<"AttrSizedOperandSegments">, StructuralOpTrait;
// Similar to AttrSizedOperandSegments, but used for results. The attribute
// should be named as `resultSegmentSizes`.
def AttrSizedResultSegments :
NativeOpTrait<"AttrSizedResultSegments">, StructuralOpTrait;
// Op attached regions have no arguments
def NoRegionArguments : NativeOpTrait<"NoRegionArguments">, StructuralOpTrait;
//===----------------------------------------------------------------------===//
// Successor definitions
//===----------------------------------------------------------------------===//
class Successor<Pred condition, string descr = ""> :
SuccessorConstraint<condition, descr>;
// Any successor.
def AnySuccessor : Successor<?, "any successor">;
// A variadic successor constraint. It expands to zero or more of the base
// successor.
class VariadicSuccessor<Successor successor>
: Successor<successor.predicate, successor.summary>;
//===----------------------------------------------------------------------===//
// Region definitions
//===----------------------------------------------------------------------===//
class Region<Pred condition, string descr = ""> :
RegionConstraint<condition, descr>;
// Any region.
def AnyRegion : Region<CPred<"true">, "any region">;
// A region with the given number of blocks.
class SizedRegion<int numBlocks> : Region<
CPred<"::llvm::hasNItems($_self, " # numBlocks # ")">,
"region with " # numBlocks # " blocks">;
// A region with at least the given number of blocks.
class MinSizedRegion<int numBlocks> : Region<
CPred<"::llvm::hasNItemsOrMore($_self, " # numBlocks # ")">,
"region with at least " # numBlocks # " blocks">;
// A region with at most the given number of blocks.
class MaxSizedRegion<int numBlocks> : Region<
CPred<"::llvm::hasNItemsOrLess($_self, " # numBlocks # ")">,
"region with at most " # numBlocks # " blocks">;
// A variadic region constraint. It expands to zero or more of the base region.
class VariadicRegion<Region region>
: Region<region.predicate, region.summary>;
//===----------------------------------------------------------------------===//
// Markers
//===----------------------------------------------------------------------===//
// Marker used to identify the region list.
def region;
// Marker used to identify the successor list.
def successor;
//===----------------------------------------------------------------------===//
// Op definitions
//===----------------------------------------------------------------------===//
// Class for defining a custom builder.
//
// TableGen generates several generic builders for each op by default (see
// comment in the `Op` class). If the default generated ones cannot cover
// some use case, custom builders can be defined using instances of this class.
//
// The signature of the builder is always
//
// ```c++
// static void build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
// <other-parameters>...) {
// <body>...
// }
// ```
//
// To define a custom builder, the parameter list (*excluding* the
// `OpBuilder &builder, OperationState &state` part) and body should be passed
// in as separate template arguments to this class. The parameter list is a
// TableGen DAG with `ins` operation with named arguments, which has either:
// - string initializers ("Type":$name) to represent a typed parameter, or
// - CArg-typed initializers (CArg<"Type", "default">:$name) to represent a
// typed parameter that may have a default value.
// The type string is used verbatim to produce code and, therefore, must be a
// valid C++ type. It is used inside the C++ namespace of the parent Op's
// dialect; explicit namespace qualification like `::mlir` may be necessary if
// Ops are not placed inside the `mlir` namespace. The default value string is
// used verbatim to produce code and must be a valid C++ initializer the given
// type. For example, the following signature specification
//
// ```
// OpBuilder<(ins "int":$integerArg, CArg<"float", "3.0f">:$floatArg)>
// ```
//
// has an integer parameter and a float parameter with a default value.
//
// If an empty string is passed in for `body`, then *only* the builder
// declaration will be generated; this provides a way to define complicated
// builders entirely in C++.
class OpBuilder<dag p, code b = ""> {
dag dagParams = p;
code body = b;
}
// OpBuilder like the above, but the emitted 'build' method is marked as
// deprecated in C++. Use of it will emit a warning by the C++ compiler
// with the given reason.
class DeprecatedOpBuilder<string reason, dag p, code b = "">
: OpBuilder<p, b>, CppDeprecated<reason>;
// A base decorator class that may optionally be added to OpVariables.
class OpVariableDecorator;
// Class for providing additional information on the variables, i.e. arguments
// and results, of an operation.
class OpVariable<Constraint varConstraint, string desc = "",
list<OpVariableDecorator> varDecorators = []> {
// The constraint, either attribute or type, of the argument.
Constraint constraint = varConstraint;
// One-line human-readable description of the argument.
string summary = desc;
// The list of decorators for this variable, e.g. side effects.
list<OpVariableDecorator> decorators = varDecorators;
}
class Arg<Constraint constraint, string desc = "",
list<OpVariableDecorator> decorators = []>
: OpVariable<constraint, desc, decorators>;
class Res<Constraint constraint, string desc = "",
list<OpVariableDecorator> decorators = []>
: OpVariable<constraint, desc, decorators>;
// Marker to group ops together for documentation purposes.
class OpDocGroup {
// Single line summary of the group of ops.
string summary;
// Longer description of documentation group.
string description;
}
// Base class for all ops.
class Op<Dialect dialect, string mnemonic, list<Trait> props = []> {
// The dialect of the op.
Dialect opDialect = dialect;
// The mnemonic of the op.
string opName = mnemonic;
// The C++ namespace to use for this op.
string cppNamespace = dialect.cppNamespace;
// One-line human-readable description of what the op does.
string summary = "";
// Additional, longer human-readable description of what the op does.
string description = "";
// Optional. The group of ops this op is part of.
OpDocGroup opDocGroup = ?;
// Dag containing the arguments of the op. Default to 0 arguments.
dag arguments = (ins);
// The list of results of the op. Default to 0 results.
dag results = (outs);
// The list of regions of the op. Default to 0 regions.
dag regions = (region);
// The list of successors of the op. Default to 0 successors.
dag successors = (successor);
// Attribute getters can be added to the op by adding an Attr member
// with the name and type of the attribute. E.g., adding int attribute
// with name "value" and type "i32":
// I32Attr value;
// Define the hooks used for building, parsing, printing, verification.
// Custom builder.
// In addition to the custom builder provided here, and unless
// skipDefaultBuilders is set, two default builders are generated, with the
// following signatures:
//
// ```c++
// static void build(OpBuilder &, OperationState &odsState,
// Type <result0-name>, Type <result1-name>, ...,
// Value <arg0-name>, Value <arg1-name>, ...,
// Attribute <attr0-name>, Attribute <attr1-name>, ...);
// ```
// * where the attributes follow the same declaration order as in the op.
//
// ```c++
// static void build(OpBuilder &, OperationState &odsState,
// TypeRange resultTypes,
// ValueRange operands,
// ArrayRef<NamedAttribute> attributes);
// ```
list<OpBuilder> builders = ?;
// Avoid generating default build functions. Custom builders must be
// provided.
bit skipDefaultBuilders = 0;
// Custom assembly format.
/// This field corresponds to a declarative description of the assembly format
/// for this operation. If populated, the `hasCustomAssemblyFormat` field is
/// ignored.
string assemblyFormat = ?;
/// This field indicates that the operation has a custom assembly format
/// implemented in C++. When set to `1` a `parse` and `print` method are generated
/// on the operation class. The operation should implement these methods to
/// support the custom format of the operation. The methods have the form:
/// * ParseResult parse(OpAsmParser &parser, OperationState &result)
/// * void print(OpAsmPrinter &p)
bit hasCustomAssemblyFormat = 0;
// A bit indicating if the operation has additional invariants that need to
// verified (aside from those verified by other ODS constructs). If set to `1`,
// an additional `LogicalResult verify()` declaration will be generated on the
// operation class. The operation should implement this method and verify the
// additional necessary invariants. This verifier shouldn't access any nested
// operations because those operations may ill-formed. Use the
// `hasRegionVerifier` below instead.
bit hasVerifier = 0;
// A bit indicating if the operation has additional invariants that need to
// verified and which associate with regions (aside from those verified by the
// traits). If set to `1`, an additional `LogicalResult verifyRegions()`
// declaration will be generated on the operation class. The operation should
// implement this method and verify the additional necessary invariants
// associated with regions. Note that this method is invoked after all the
// region ops are verified.
bit hasRegionVerifier = 0;
// Whether this op has associated canonicalization patterns.
bit hasCanonicalizer = 0;
// Whether this op has a static "canonicalize" method to perform "match and
// rewrite patterns".
bit hasCanonicalizeMethod = 0;
// Whether this op has a folder.
bit hasFolder = 0;
// Whether to let ops implement their custom `readProperties` and
// `writeProperties` methods to emit bytecode.
bit useCustomPropertiesEncoding = 0;
// Op traits.
// Note: The list of traits will be uniqued by ODS.
list<Trait> traits = props;
// Additional code that will be added to the public part of the generated
// C++ code of the op declaration.
code extraClassDeclaration = ?;
// Additional code that will be added to the generated source file. The
// generated code is placed inside the op's C++ namespace. `$cppClass` is
// replaced by the op's C++ class name.
code extraClassDefinition = ?;
}
// The arguments of an op.
class Arguments<dag args> {
dag arguments = args;
}
// The results of an op.
class Results<dag rets> {
dag results = rets;
}
//===----------------------------------------------------------------------===//
// Common promised interface constraints
//===----------------------------------------------------------------------===//
// This constrait represents a promise or an implementation of an attr interface.
class PromisedAttrInterface<AttrInterface interface> : AttrConstraint<
CPred<"$_self.hasPromiseOrImplementsInterface<" #
!if(!empty(interface.cppNamespace),
"",
interface.cppNamespace # "::") # interface.cppInterfaceName #">()">,
"promising or implementing the `" # interface.cppInterfaceName # "` attr interface">;
// This predicate checks if the type promises or implementats a type interface.
class HasPromiseOrImplementsTypeInterface<TypeInterface interface> :
CPred<"$_self.hasPromiseOrImplementsInterface<" #
!if(!empty(interface.cppNamespace),
"",
interface.cppNamespace # "::") # interface.cppInterfaceName #">()">;
// This constrait represents a promise or an implementation of a type interface.
class PromisedTypeInterface<TypeInterface interface> : TypeConstraint<
HasPromiseOrImplementsTypeInterface<interface>,
"promising or implementing the `" # interface.cppInterfaceName # "` type interface">;
//===----------------------------------------------------------------------===//
// Common op type constraints
//===----------------------------------------------------------------------===//
// These traits are for verifying properties of an op that require knowledge of
// multiple arguments or results. For verifying properties of a single argument
// or result, prefer operand type constraints.
// These traits often require including "mlir/IR/TypeUtilities.h".
// TODO: Improve the autogenerated error messages.
class Rank<string name> :
StrFunc<"::llvm::cast<::mlir::ShapedType>($" # name # ".getType()).getRank()">;
class Shape<string name> :
StrFunc<"::llvm::cast<::mlir::ShapedType>($" # name # ".getType()).getShape()">;
class ElementCount<string name> :
StrFunc<"llvm::cast<::mlir::ShapedType>($" # name # ".getType())"
".getNumElements()">;
class ElementType<string name> : StrFunc<"getElementTypeOrSelf($" # name # ")">;
class AnyPred<list<string> values> :
CPred<!if(!lt(!size(values), 1),
"false",
!foldl("(" # !head(values) # ")", !tail(values), acc, v,
acc # " || (" # v # ")"))>;
class AllMatchPred<list<string> values> :
CPred<!if(!lt(!size(values), 2),
"true",
!foldl("(" # !head(values) # ")", !tail(values), acc, v,
acc # " == (" # v # ") && (" # v # ")")
# " == (" # !head(values) # ")")>;
class AllMatch<list<string> values, string summary> :
PredOpTrait<summary, AllMatchPred<values>>;
// TODO: Only works for non-variadic.
class AllMatchSameOperatorPred<list<string> names, string operator> :
AllMatchPred<!foreach(n, names, !subst("$_self", "$" # n, operator))>;
class AllMatchSameOperatorTrait<list<string> names, string operator,
string summary> :
PredOpTrait<
"all of {" # !interleave(names, ", ") # "} have same " # summary,
AllMatchSameOperatorPred<names, operator>> {
list<string> values = names;
}
class AnyMatchOperatorPred<list<string> names, string operator> :
AnyPred<!foreach(n, names, !subst("$_self", "$" # n, operator))>;
class AnyMatchOperatorTrait<list<string> names, string operator,
string summary> :
PredOpTrait<
"any of {" # !interleave(names, ", ") # "} has " # summary,
AnyMatchOperatorPred<names, operator>> {
list<string> values = names;
}
class AllElementCountsMatch<list<string> names> :
AllMatchSameOperatorTrait<names, ElementCount<"_self">.result,
"element count">;
class AllElementTypesMatch<list<string> names> :
AllMatchSameOperatorTrait<names, ElementType<"_self">.result,
"element type">;
class AllRanksMatch<list<string> names> :
AllMatchSameOperatorTrait<names, Rank<"_self">.result, "rank">;
class AllShapesMatch<list<string> names> :
AllMatchSameOperatorTrait<names, Shape<"_self">.result, "shape">;
class AllTypesMatch<list<string> names> :
AllMatchSameOperatorTrait<names, "$_self.getType()", "type">;
// A type constraint that denotes `transform(lhs.getType()) == rhs.getType()`.
// An optional comparator function may be provided that changes the above form
// into: `comparator(transform(lhs.getType()), rhs.getType())`.
class TypesMatchWith<string summary, string lhsArg, string rhsArg,
string transform, string comparator = "std::equal_to<>()">
: PredOpTrait<summary, CPred<
comparator # "(" #
!subst("$_self", "$" # lhsArg # ".getType()", transform) #
", $" # rhsArg # ".getType())">> {
string lhs = lhsArg;
string rhs = rhsArg;
string transformer = transform;
}
// The same as TypesMatchWith but if either `lhsArg` or `rhsArg` are optional
// and not present returns success.
class OptionalTypesMatchWith<string summary, string lhsArg, string rhsArg,
string transform, string comparator = "std::equal_to<>()">
: TypesMatchWith<summary, lhsArg, rhsArg, transform,
"!get" # snakeCaseToCamelCase<lhsArg>.ret # "()"
# " || !get" # snakeCaseToCamelCase<rhsArg>.ret # "() || " # comparator>;
// Special variant of `TypesMatchWith` that provides a comparator suitable for
// ranged arguments.
class RangedTypesMatchWith<string summary, string lhsArg, string rhsArg,
string transform>
: TypesMatchWith<summary, lhsArg, rhsArg, transform, "llvm::equal">;
// Type Constraint operand `idx`'s Element type is `type`.
class TCopVTEtIs<int idx, Type type> : And<[
CPred<"$_op.getNumOperands() > " # idx>,
SubstLeaves<"$_self", "$_op.getOperand(" # idx # ").getType()",
IsShapedTypePred>,
SubstLeaves<"$_self", "getElementTypeOrSelf($_op.getOperand(" # idx # "))",
type.predicate>]>;
// Predicate to verify that a named argument or result's element type matches a
// given type.
class TypeIsPred<string name, Type type> :
SubstLeaves<"$_self", "$" # name # ".getType()", type.predicate>;
class TypeIs<string name, Type type> : PredOpTrait<
"'" # name # "' is " # type.summary, TypeIsPred<name, type>>;
// Predicate to verify that a named argument or result's element type matches a
// given type.
class ElementTypeIsPred<string name, Type type> : And<[
SubstLeaves<"$_self", "$" # name # ".getType()", IsShapedTypePred>,
SubstLeaves<"$_self", "getElementTypeOrSelf($" # name # ")",
type.predicate>]>;
class ElementTypeIs<string name, Type type> : PredOpTrait<
"'" # name # "' is " # type.summary, ElementTypeIsPred<name, type>>;
// Predicate to verify that the i'th operand and the j'th operand have the same
// elemental type.
// Type Constraint operand `i`'s Element type is Same As operand `j`'s Element
// type.
class TCopVTEtIsSameAs<int i, int j> : And<[
CPred<"$_op.getNumOperands() > " # !if(!gt(i,j),i,j)>,
SubstLeaves<"$_self", "$_op.getOperand(" # i # ").getType()",
IsShapedTypePred>,
SubstLeaves<"$_self", "$_op.getOperand(" # j # ").getType()",
IsShapedTypePred>,
CPred<"::mlir::getElementTypeOrSelf($_op.getOperand(" # i # ")) == "
"::mlir::getElementTypeOrSelf($_op.getOperand(" # j # "))">]>;
// Predicate to verify that the i'th result and the j'th operand exist and has
// shaped types.
class TCOpResIsShapedTypePred<int i, int j> : And<[
CPred<"$_op.getNumResults() > " # i>,
CPred<"$_op.getNumOperands() > " # j>,
SubstLeaves<"$_self", "$_op.getResult(" # i # ").getType()",
IsShapedTypePred>,
SubstLeaves<"$_self", "$_op.getOperand(" # j # ").getType()",
IsShapedTypePred>]>;
// Predicate to verify that the i'th result and the j'th operand have the same
// type.
class TCresIsSameAsOpBase<int i, int j> :
CPred<"$_op.getResult(" # i # ").getType() == "
"$_op.getOperand(" # j # ").getType()">;
// Basic Predicate to verify that the i'th result and the j'th operand have the
// same elemental type.
class TCresVTEtIsSameAsOpBase<int i, int j> :
CPred<"getElementTypeOrSelf($_op.getResult(" # i # ")) == "
"getElementTypeOrSelf($_op.getOperand(" # j # "))">;
// Predicate to verify that the i'th result and the j'th operand have the same
// elemental type.
// Type Constraint result`i`'s Element type is Same As Operand `j`'s Element
// type.
class TCresVTEtIsSameAsOp<int i, int j> : And<[
TCOpResIsShapedTypePred<i, j>,
TCresVTEtIsSameAsOpBase<i, j>]>;
// Predicate to verify that the opId'th operand can be broadcasted to the type
// of the resId'th result.
class TCOpIsBroadcastableToRes<int opId, int resId> : And<[
TCOpResIsShapedTypePred<opId, resId>,
CPred<"::mlir::OpTrait::util::getBroadcastedType("
"$_op.getOperand(" # opId # ").getType(), "
"$_op.getResult(" # resId # ").getType())">]>;
// Predicate to verify that all the operands at the given `indices`
// have the same element type.
// Type Constraint operands' Element type are all Same At the given `indices`.
// We query the operands' types into a list and check they are all the same.
// Precondition:
// 1) all operands involved are of shaped type and
// 2) the indices are not out of range.
class TCopVTEtAreSameAt<list<int> indices> : CPred<
"::llvm::all_equal(::llvm::map_range("
"::mlir::ArrayRef<unsigned>({" # !interleave(indices, ", ") # "}), "
"[this](unsigned i) { return getElementTypeOrSelf(this->getOperand(i)); "
"}))">;
#endif // OP_BASE