//===- VectorOps.td - Vector op definitions ---------------*- tablegen -*-====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines MLIR vector operations.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_VECTOR_IR_VECTOR_OPS
#define MLIR_DIALECT_VECTOR_IR_VECTOR_OPS
include "mlir/Dialect/Vector/IR/Vector.td"
include "mlir/Dialect/Vector/IR/VectorAttributes.td"
include "mlir/Dialect/Arith/IR/ArithBase.td"
include "mlir/Dialect/Arith/IR/ArithOpsInterfaces.td"
include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.td"
include "mlir/Dialect/Vector/Interfaces/MaskingOpInterface.td"
include "mlir/IR/EnumAttr.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/DestinationStyleOpInterface.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "mlir/Interfaces/VectorInterfaces.td"
include "mlir/Interfaces/ViewLikeInterface.td"
include "mlir/IR/BuiltinAttributes.td"
// TODO: Add an attribute to specify a different algebra with operators other
// than the current set: {*, +}.
def Vector_ContractionOp :
Vector_Op<"contract", [
Pure,
PredOpTrait<"lhs and rhs have same element type", TCopVTEtIsSameAs<0, 1>>,
PredOpTrait<"third operand acc and result have same element type",
TCresVTEtIsSameAsOpBase<0, 2>>,
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>
]>,
Arguments<(ins AnyVector:$lhs, AnyVector:$rhs, AnyType:$acc,
ArrayAttr:$indexing_maps,
Vector_IteratorTypeArrayAttr:$iterator_types,
DefaultValuedAttr<Vector_CombiningKindAttr,
"CombiningKind::ADD">:$kind)>,
Results<(outs AnyType)> {
let summary = "vector contraction operation";
let description = [{
Computes the sum of products of vector elements along contracting
dimension pairs from 2 vectors of rank M and N respectively, adds this
intermediate result to the accumulator argument of rank K, and returns a
vector result of rank K (where K = num_lhs_free_dims + num_rhs_free_dims +
num_batch_dims (see dimension type descriptions below)). For K = 0 (no
free or batch dimensions), the accumulator and output are a scalar.
If operands and the result have types of different bitwidths, operands are
promoted to have the same bitwidth as the result before performing the
contraction. For integer types, only signless integer types are supported,
and the promotion happens via sign extension.
An iterator type attribute list must be specified, where each element of
the list represents an iterator with one of the following types:
* "reduction": reduction dimensions are present in the lhs and rhs
arguments but not in the output (and accumulator
argument). These are the dimensions along which the vector
contraction op computes the sum of products, and
contracting dimension pair dimension sizes must match
between lhs/rhs.
* "parallel": Batch dimensions are iterator type "parallel", and
are non-contracting dimensions present in the lhs, rhs and
output. The lhs/rhs co-iterate along the batch dimensions,
which should be expressed in their indexing maps.
Free dimensions are iterator type "parallel", and are
non-contraction, non-batch dimensions accessed by either the
lhs or rhs (but not both). The lhs and rhs free dimensions
are unrelated to each other and do not co-iterate, which
should be expressed in their indexing maps.
An indexing map attribute list must be specified with an entry for lhs, rhs
and acc arguments. An indexing map attribute specifies a mapping from each
iterator in the iterator type list, to each dimension of an N-D vector.
An optional kind attribute may be used to specify the combining function
between the intermediate result and accumulator argument of rank K. This
attribute can take the values `add`/`mul`/`minsi`/`minui`/`maxsi`/`maxui`
/`and`/`or`/`xor` for integers, and `add`/`mul`/`minnumf`/`maxnumf`
/`minimumf`/`maximumf` for floats. The default is `add`.
Example:
```mlir
// Simple DOT product (K = 0).
#contraction_accesses = [
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> ()>
]
#contraction_trait = {
indexing_maps = #contraction_accesses,
iterator_types = ["reduction"]
}
%3 = vector.contract #contraction_trait %0, %1, %2
: vector<10xf32>, vector<10xf32> into f32
// 2D vector contraction with one contracting dimension (matmul, K = 2).
#contraction_accesses = [
affine_map<(i, j, k) -> (i, k)>,
affine_map<(i, j, k) -> (k, j)>,
affine_map<(i, j, k) -> (i, j)>
]
#contraction_trait = {
indexing_maps = #contraction_accesses,
iterator_types = ["parallel", "parallel", "reduction"]
}
%3 = vector.contract #contraction_trait %0, %1, %2
: vector<4x3xf32>, vector<3x7xf32> into vector<4x7xf32>
// 4D to 3D vector contraction with two contracting dimensions and
// one batch dimension (K = 3).
#contraction_accesses = [
affine_map<(b0, f0, f1, c0, c1) -> (c0, b0, c1, f0)>,
affine_map<(b0, f0, f1, c0, c1) -> (b0, c1, c0, f1)>,
affine_map<(b0, f0, f1, c0, c1) -> (b0, f0, f1)>
]
#contraction_trait = {
indexing_maps = #contraction_accesses,
iterator_types = ["parallel", "parallel", "parallel",
"reduction", "reduction"]
}
%4 = vector.contract #contraction_trait %0, %1, %2
: vector<7x8x16x15xf32>, vector<8x16x7x5xf32> into vector<8x15x5xf32>
// Vector contraction with mixed typed. lhs/rhs have different element
// types than accumulator/result.
%5 = vector.contract #contraction_trait %0, %1, %2
: vector<10xf16>, vector<10xf16> into f32
// Contract with max (K = 0).
#contraction_accesses = [
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> ()>
]
#contraction_trait = {
indexing_maps = #contraction_accesses,
iterator_types = ["reduction"],
kind = #vector.kind<maxnumf>
}
%6 = vector.contract #contraction_trait %0, %1, %2
: vector<10xf32>, vector<10xf32> into f32
```
}];
let builders = [
OpBuilder<(ins "Value":$lhs, "Value":$rhs, "Value":$acc,
"ArrayAttr":$indexingMaps, "ArrayAttr":$iteratorTypes)>,
OpBuilder<(ins "Value":$lhs, "Value":$rhs, "Value":$acc,
"ArrayRef<ArrayRef<AffineExpr>>":$indexingExprs,
"ArrayRef<IteratorType>":$iteratorTypes)>,
OpBuilder<(ins "Value":$lhs, "Value":$rhs, "Value":$acc,
"ArrayAttr":$indexingMaps, "ArrayAttr":$iteratorTypes,
"CombiningKind":$kind)>
];
let extraClassDeclaration = [{
VectorType getLhsType() {
return ::llvm::cast<VectorType>(getLhs().getType());
}
VectorType getRhsType() {
return ::llvm::cast<VectorType>(getRhs().getType());
}
Type getAccType() { return getAcc().getType(); }
Type getResultType() { return getResult().getType(); }
SmallVector<StringRef> getTraitAttrNames();
static unsigned getAccOperandIndex() { return 2; }
llvm::SmallVector<::mlir::AffineMap, 4> getIndexingMapsArray() {
return llvm::to_vector<4>(getIndexingMaps().getAsValueRange<::mlir::AffineMapAttr>());
}
// Returns the bounds of each dimension in the iteration space spanned
// by the iterator types of this operation.
void getIterationBounds(SmallVectorImpl<int64_t> &iterationBounds);
// Returns a list of index maps, where there is a list entry for each
// op indexing map attribute (i.e. one for each input and output, with
// the output listed last). Each index map, maps from this operations
// iteration space, to vector dimensions of the maps input/output.
void getIterationIndexMap(
std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap);
std::vector<std::pair<int64_t, int64_t>> getContractingDimMap();
std::vector<std::pair<int64_t, int64_t>> getBatchDimMap();
static CombiningKind getDefaultKind() {
return CombiningKind::ADD;
}
SmallVector<IteratorType> getIteratorTypesArray() {
auto range =
getIteratorTypes()
.template getAsValueRange<IteratorTypeAttr, IteratorType>();
return {range.begin(), range.end()};
}
}];
let hasCanonicalizer = 1;
let hasCustomAssemblyFormat = 1;
let hasVerifier = 1;
}
def Vector_ReductionOp :
Vector_Op<"reduction", [Pure,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
OptionalTypesMatchWith<"dest and acc have the same type",
"dest", "acc", "::llvm::cast<Type>($_self)">,
DeclareOpInterfaceMethods<ArithFastMathInterface>,
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>
]>,
Arguments<(ins Vector_CombiningKindAttr:$kind,
AnyVectorOfAnyRank:$vector,
Optional<AnyType>:$acc,
DefaultValuedAttr<
Arith_FastMathAttr,
"::mlir::arith::FastMathFlags::none">:$fastmath)>,
Results<(outs AnyType:$dest)> {
let summary = "reduction operation";
let description = [{
Reduces an 1-D vector "horizontally" into a scalar using the given
operation: `add`/`mul`/`minsi`/`minui`/`maxsi`/`maxui`/`and`/`or`/`xor` for
integers, and `add`/`mul`/`minnumf`/`maxnumf`/`minimumf`/`maximumf` for
floats. Reductions also allow an optional fused accumulator.
Note that these operations are restricted to 1-D vectors to remain
close to the corresponding LLVM intrinsics:
http://llvm.org/docs/LangRef.html#vector-reduction-intrinsics
Example:
```mlir
%1 = vector.reduction <add>, %0 : vector<16xf32> into f32
%3 = vector.reduction <xor>, %2 : vector<4xi32> into i32
%4 = vector.reduction <mul>, %0, %1 : vector<16xf32> into f32
```
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
}];
let builders = [
// Builder that infers the type of `dest`.
OpBuilder<(ins "CombiningKind":$kind, "Value":$vector, "Value":$acc,
CArg<"::mlir::arith::FastMathFlags",
"::mlir::arith::FastMathFlags::none">:$fastMathFlags)>,
// Builder that infers the type of `dest` and has no accumulator.
OpBuilder<(ins "CombiningKind":$kind, "Value":$vector,
CArg<"::mlir::arith::FastMathFlags",
"::mlir::arith::FastMathFlags::none">:$fastMathFlags)>
];
let assemblyFormat = "$kind `,` $vector (`,` $acc^)? (`fastmath` `` $fastmath^)?"
" attr-dict `:` type($vector) `into` type($dest)";
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_MultiDimReductionOp :
Vector_Op<"multi_reduction", [Pure,
AllTypesMatch<["dest", "acc"]>,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
DeclareOpInterfaceMethods<InferTypeOpInterface>,
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface,
["getShapeForUnroll"]>]>,
Arguments<(ins Vector_CombiningKindAttr:$kind,
AnyVector:$source,
AnyType:$acc,
DenseI64ArrayAttr:$reduction_dims)>,
Results<(outs AnyType:$dest)> {
let summary = "Multi-dimensional reduction operation";
let description = [{
Reduces an n-D vector into an (n-k)-D vector (or a scalar when k == n)
using the given operation: `add`/`mul`/`minsi`/`minui`/`maxsi`/`maxui`
/`and`/`or`/`xor` for integers, and `add`/`mul`/`minnumf`/`maxnumf`/`minimumf`
/`maximumf` for floats.
Takes an initial accumulator operand.
Example:
```mlir
%1 = vector.multi_reduction <add>, %0, %acc0 [1, 3] :
vector<4x8x16x32xf32> to vector<4x16xf32>
%2 = vector.multi_reduction <add>, %1, %acc1 [0, 1] :
vector<4x16xf32> to f32
```
}];
let builders = [
OpBuilder<(ins "Value":$source, "Value":$acc,
"ArrayRef<bool>":$reductionMask, "CombiningKind":$kind)>
];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
Type getDestType() {
return getDest().getType();
}
bool isReducedDim(int64_t d) {
assert(d >= 0 && d < static_cast<int64_t>(getReductionMask().size()) &&
"d overflows the number of dims");
return getReductionMask()[d];
}
SmallVector<bool> getReductionMask() {
SmallVector<bool> res(getSourceVectorType().getRank(), false);
for (int64_t dim : getReductionDims())
res[dim] = true;
return res;
}
static SmallVector<bool> getReductionMask(
ArrayRef<int64_t> reductionDims, unsigned sourceRank) {
SmallVector<bool> res(sourceRank, false);
for (auto idx : reductionDims)
res[idx] = true;
return res;
}
}];
let assemblyFormat =
"$kind `,` $source `,` $acc attr-dict $reduction_dims `:` type($source) `to` type($dest)";
let hasFolder = 1;
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_BroadcastOp :
Vector_Op<"broadcast", [Pure,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]>,
Arguments<(ins AnyType:$source)>,
Results<(outs AnyVectorOfAnyRank:$vector)> {
let summary = "broadcast operation";
let description = [{
Broadcasts the scalar or k-D vector value in the source operand
to a n-D result vector such that the broadcast makes sense, i.e.,
the source operand is duplicated to match the given rank and sizes
in the result vector. The legality rules are:
* the source operand must have the same element type as the result type
* a k-D vector <s_1 x .. x s_k x type> can be broadcast to
a n-D vector <t_1 x .. x t_n x type> if
* k <= n, and
* the sizes in the trailing dimensions n-k < i <= n with j=i+k-n
match exactly as s_j = t_i or s_j = 1:
```
t_1 x .. t_n-k x t_n-k+1 x .. x t_i x .. x t_n
s_1 x .. x s_j x .. x s_k
<duplication> <potential stretch>
```
* in addition, any scalable unit dimension, `[1]`, must match exactly.
The source operand is duplicated over all the missing leading dimensions
and stretched over the trailing dimensions where the source has a non-equal
dimension of 1. These rules imply that any scalar broadcast (k=0) to any
shaped vector with the same element type is always legal.
Example:
```mlir
%0 = arith.constant 0.0 : f32
%1 = vector.broadcast %0 : f32 to vector<16xf32>
%2 = vector.broadcast %1 : vector<16xf32> to vector<4x16xf32>
```
}];
let extraClassDeclaration = [{
Type getSourceType() { return getSource().getType(); }
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
/// Return the dimensions of the result vector that were formerly ones in the
/// source tensor and thus correspond to "dim-1" broadcasting.
llvm::SetVector<int64_t> computeBroadcastedUnitDims();
/// Broadcast `value` to a vector of `dstShape`, knowing that exactly the
/// `broadcastedDims` dimensions in the dstShape are broadcasted.
/// This requires (and asserts) that the broadcast is free of dim-1
/// broadcasting.
/// Since vector.broadcast only allows expanding leading dimensions, an extra
/// vector.transpose may be inserted to make the broadcast possible.
/// `value`, `dstShape` and `broadcastedDims` must be properly specified or
/// the helper will assert. This means:
/// 1. `dstShape` must not be empty.
/// 2. `broadcastedDims` must be confined to [0 .. rank(value.getResultVectorType)]
/// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims`
// must match the `value` shape.
static Value createOrFoldBroadcastOp(
OpBuilder &b, Value value,
ArrayRef<int64_t> dstShape,
const llvm::SetVector<int64_t> &broadcastedDims);
}];
let assemblyFormat = "$source attr-dict `:` type($source) `to` type($vector)";
let hasFolder = 1;
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_ShuffleOp :
Vector_Op<"shuffle", [Pure,
PredOpTrait<"first operand v1 and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
PredOpTrait<"second operand v2 and result have same element type",
TCresVTEtIsSameAsOpBase<0, 1>>,
InferTypeOpAdaptor]>,
Arguments<(ins AnyFixedVector:$v1, AnyFixedVector:$v2,
DenseI64ArrayAttr:$mask)>,
Results<(outs AnyVector:$vector)> {
let summary = "shuffle operation";
let description = [{
The shuffle operation constructs a permutation (or duplication) of elements
from two input vectors, returning a vector with the same element type as
the input and a length that is the same as the shuffle mask. The two input
vectors must have the same element type, same rank , and trailing dimension
sizes and shuffles their values in the
leading dimension (which may differ in size) according to the given mask.
The legality rules are:
* the two operands must have the same element type as the result
- Either, the two operands and the result must have the same
rank and trailing dimension sizes, viz. given two k-D operands
v1 : <s_1 x s_2 x .. x s_k x type> and
v2 : <t_1 x t_2 x .. x t_k x type>
we have s_i = t_i for all 1 < i <= k
- Or, the two operands must be 0-D vectors and the result is a 1-D vector.
* the mask length equals the leading dimension size of the result
* numbering the input vector indices left to right across the operands, all
mask values must be within range, viz. given two k-D operands v1 and v2
above, all mask values are in the range [0,s_1+t_1)
Note, scalable vectors are not supported.
Example:
```mlir
%0 = vector.shuffle %a, %b[0, 3]
: vector<2xf32>, vector<2xf32> ; yields vector<2xf32>
%1 = vector.shuffle %c, %b[0, 1, 2]
: vector<2x16xf32>, vector<1x16xf32> ; yields vector<3x16xf32>
%2 = vector.shuffle %a, %b[3, 2, 1, 0]
: vector<2xf32>, vector<2xf32> ; yields vector<4xf32>
%3 = vector.shuffle %a, %b[0, 1]
: vector<f32>, vector<f32> ; yields vector<2xf32>
```
}];
let extraClassDeclaration = [{
VectorType getV1VectorType() {
return ::llvm::cast<VectorType>(getV1().getType());
}
VectorType getV2VectorType() {
return ::llvm::cast<VectorType>(getV2().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
}];
let assemblyFormat = "operands $mask attr-dict `:` type(operands)";
let hasFolder = 1;
let hasVerifier = 1;
let hasCanonicalizer = 1;
}
def ResultIsDoubleSourceVectorType : TypesMatchWith<
"type of 'result' is double the width of the inputs",
"lhs", "result",
[{
[&]() -> ::mlir::VectorType {
auto vectorType = ::llvm::cast<::mlir::VectorType>($_self);
::mlir::VectorType::Builder builder(vectorType);
if (vectorType.getRank() == 0) {
static constexpr int64_t v2xTyShape[] = {2};
return builder.setShape(v2xTyShape);
}
auto lastDim = vectorType.getRank() - 1;
return builder.setDim(lastDim, vectorType.getDimSize(lastDim) * 2);
}()
}]>;
def Vector_InterleaveOp :
Vector_Op<"interleave", [Pure, AllTypesMatch<["lhs", "rhs"]>,
ResultIsDoubleSourceVectorType]> {
let summary = "constructs a vector by interleaving two input vectors";
let description = [{
The interleave operation constructs a new vector by interleaving the
elements from the trailing (or final) dimension of two input vectors,
returning a new vector where the trailing dimension is twice the size.
Note that for the n-D case this differs from the interleaving possible with
`vector.shuffle`, which would only operate on the leading dimension.
Another key difference is this operation supports scalable vectors, though
currently a general LLVM lowering is limited to the case where only the
trailing dimension is scalable.
Example:
```mlir
%a = arith.constant dense<[0, 1]> : vector<2xi32>
%b = arith.constant dense<[2, 3]> : vector<2xi32>
// The value of `%0` is `[0, 2, 1, 3]`.
%0 = vector.interleave %a, %b : vector<2xi32> -> vector<4xi32>
// Examples showing allowed input and result types.
%1 = vector.interleave %c, %d : vector<f16> -> vector<2xf16>
%2 = vector.interleave %e, %f : vector<6x3xf32> -> vector<6x6xf32>
%3 = vector.interleave %g, %h : vector<[4]xi32> -> vector<[8]xi32>
%4 = vector.interleave %i, %j : vector<2x4x[2]xf64> -> vector<2x4x[4]xf64>
```
}];
let arguments = (ins AnyVectorOfAnyRank:$lhs, AnyVectorOfAnyRank:$rhs);
let results = (outs AnyVector:$result);
let assemblyFormat = [{
$lhs `,` $rhs attr-dict `:` type($lhs) `->` type($result)
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getLhs().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
}
class ResultIsHalfSourceVectorType<string result> : TypesMatchWith<
"the trailing dimension of the results is half the width of source trailing dimension",
"source", result,
[{
[&]() -> ::mlir::VectorType {
auto vectorType = ::llvm::cast<mlir::VectorType>($_self);
::mlir::VectorType::Builder builder(vectorType);
auto lastDim = vectorType.getRank() - 1;
auto newDimSize = vectorType.getDimSize(lastDim) / 2;;
if (newDimSize <= 0)
return vectorType; // (invalid input type)
return builder.setDim(lastDim, newDimSize);
}()
}]
>;
def SourceVectorEvenElementCount : PredOpTrait<
"the trailing dimension of the source vector has an even number of elements",
CPred<[{
[&](){
auto srcVec = getSourceVectorType();
return srcVec.getDimSize(srcVec.getRank() - 1) % 2 == 0;
}()
}]>
>;
def Vector_DeinterleaveOp :
Vector_Op<"deinterleave", [Pure,
SourceVectorEvenElementCount,
ResultIsHalfSourceVectorType<"res1">,
AllTypesMatch<["res1", "res2"]>
]> {
let summary = "constructs two vectors by deinterleaving an input vector";
let description = [{
The deinterleave operation constructs two vectors from a single input
vector. The first result vector contains the elements from even indexes
of the input, and the second contains elements from odd indexes. This is
the inverse of a `vector.interleave` operation.
Each output's trailing dimension is half of the size of the input
vector's trailing dimension. This operation requires the input vector
to have a rank > 0 and an even number of elements in its trailing
dimension.
The operation supports scalable vectors.
Example:
```mlir
%0, %1 = vector.deinterleave %a
: vector<8xi8> -> vector<4xi8>
%2, %3 = vector.deinterleave %b
: vector<2x8xi8> -> vector<2x4xi8>
%4, %5 = vector.deinterleave %c
: vector<2x8x4xi8> -> vector<2x8x2xi8>
%6, %7 = vector.deinterleave %d
: vector<[8]xf32> -> vector<[4]xf32>
%8, %9 = vector.deinterleave %e
: vector<2x[6]xf64> -> vector<2x[3]xf64>
%10, %11 = vector.deinterleave %f
: vector<2x4x[6]xf64> -> vector<2x4x[3]xf64>
```
}];
let arguments = (ins AnyVector:$source);
let results = (outs AnyVector:$res1, AnyVector:$res2);
let assemblyFormat = [{
$source attr-dict `:` type($source) `->` type($res1)
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getRes1().getType());
}
}];
}
def Vector_ExtractElementOp :
Vector_Op<"extractelement", [Pure,
TypesMatchWith<"result type matches element type of vector operand",
"vector", "result",
"::llvm::cast<VectorType>($_self).getElementType()">]>,
Arguments<(ins AnyVectorOfAnyRank:$vector,
Optional<AnySignlessIntegerOrIndex>:$position)>,
Results<(outs AnyType:$result)> {
let summary = "extractelement operation";
let description = [{
Takes a 0-D or 1-D vector and a optional dynamic index position and
extracts the scalar at that position.
Note that this instruction resembles vector.extract, but is restricted to
0-D and 1-D vectors and relaxed to dynamic indices.
If the vector is 0-D, the position must be std::nullopt.
It is meant to be closer to LLVM's version:
https://llvm.org/docs/LangRef.html#extractelement-instruction
Example:
```mlir
%c = arith.constant 15 : i32
%1 = vector.extractelement %0[%c : i32]: vector<16xf32>
%2 = vector.extractelement %z[]: vector<f32>
```
}];
let assemblyFormat = [{
$vector `[` ($position^ `:` type($position))? `]` attr-dict `:` type($vector)
}];
let builders = [
// 0-D builder.
OpBuilder<(ins "Value":$source)>,
];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
}];
let hasVerifier = 1;
let hasFolder = 1;
}
def Vector_ExtractOp :
Vector_Op<"extract", [Pure,
PredOpTrait<"operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
InferTypeOpAdaptorWithIsCompatible]> {
let summary = "extract operation";
let description = [{
Takes an n-D vector and a k-D position and extracts the (n-k)-D vector at
the proper position. Degenerates to an element type if n-k is zero.
Dynamic indices must be greater or equal to zero and less than the size of
the corresponding dimension. The result is undefined if any index is
out-of-bounds.
Example:
```mlir
%1 = vector.extract %0[3]: vector<8x16xf32> from vector<4x8x16xf32>
%2 = vector.extract %0[2, 1, 3]: f32 from vector<4x8x16xf32>
%3 = vector.extract %1[]: vector<f32> from vector<f32>
%4 = vector.extract %0[%a, %b, %c]: f32 from vector<4x8x16xf32>
%5 = vector.extract %0[2, %b]: vector<16xf32> from vector<4x8x16xf32>
```
}];
let arguments = (ins
AnyVectorOfAnyRank:$vector,
Variadic<Index>:$dynamic_position,
DenseI64ArrayAttr:$static_position
);
let results = (outs AnyType:$result);
let builders = [
OpBuilder<(ins "Value":$source, "int64_t":$position)>,
OpBuilder<(ins "Value":$source, "OpFoldResult":$position)>,
OpBuilder<(ins "Value":$source, "ArrayRef<int64_t>":$position)>,
OpBuilder<(ins "Value":$source, "ArrayRef<OpFoldResult>":$position)>,
];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
/// Return a vector with all the static and dynamic position indices.
SmallVector<OpFoldResult> getMixedPosition() {
OpBuilder builder(getContext());
return getMixedValues(getStaticPosition(), getDynamicPosition(), builder);
}
unsigned getNumIndices() {
return getStaticPosition().size();
}
/// Return "true" if the op has at least one dynamic position.
bool hasDynamicPosition() {
return !getDynamicPosition().empty();
}
}];
let assemblyFormat = [{
$vector ``
custom<DynamicIndexList>($dynamic_position, $static_position)
attr-dict `:` type($result) `from` type($vector)
}];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
def Vector_FMAOp :
Op<Vector_Dialect, "fma", [
Pure, AllTypesMatch<["lhs", "rhs", "acc", "result"]>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>
] # ElementwiseMappable.traits>,
Arguments<(ins VectorOfAnyRankOf<[AnyFloat]>:$lhs,
VectorOfAnyRankOf<[AnyFloat]>:$rhs,
VectorOfAnyRankOf<[AnyFloat]>:$acc)>,
Results<(outs VectorOfAnyRankOf<[AnyFloat]>:$result)> {
let summary = "vector fused multiply-add";
let description = [{
Multiply-add expressions operate on n-D vectors and compute a fused
pointwise multiply-and-accumulate: `$result = `$lhs * $rhs + $acc`.
All operands and result have the same vector type. The semantics
of the operation correspond to those of the `llvm.fma`
[intrinsic](https://llvm.org/docs/LangRef.html#int-fma). In the
particular case of lowering to LLVM, this is guaranteed to lower
to the `llvm.fma.*` intrinsic.
Example:
```mlir
%3 = vector.fma %0, %1, %2: vector<8x16xf32>
```
}];
let assemblyFormat = "$lhs `,` $rhs `,` $acc attr-dict `:` type($lhs)";
let extraClassDeclaration = [{
VectorType getVectorType() { return ::llvm::cast<VectorType>(getLhs().getType()); }
}];
}
def Vector_FromElementsOp : Vector_Op<"from_elements", [
Pure,
TypesMatchWith<"operand types match result element type",
"result", "elements", "SmallVector<Type>("
"::llvm::cast<VectorType>($_self).getNumElements(), "
"::llvm::cast<VectorType>($_self).getElementType())">]> {
let summary = "operation that defines a vector from scalar elements";
let description = [{
This operation defines a vector from one or multiple scalar elements. The
number of elements must match the number of elements in the result type.
All elements must have the same type, which must match the element type of
the result vector type.
`elements` are a flattened version of the result vector in row-major order.
Example:
```mlir
// %f1
%0 = vector.from_elements %f1 : vector<f32>
// [%f1, %f2]
%1 = vector.from_elements %f1, %f2 : vector<2xf32>
// [[%f1, %f2, %f3], [%f4, %f5, %f6]]
%2 = vector.from_elements %f1, %f2, %f3, %f4, %f5, %f6 : vector<2x3xf32>
// [[[%f1, %f2]], [[%f3, %f4]], [[%f5, %f6]]]
%3 = vector.from_elements %f1, %f2, %f3, %f4, %f5, %f6 : vector<3x1x2xf32>
```
}];
let arguments = (ins Variadic<AnyType>:$elements);
let results = (outs AnyVectorOfAnyRank:$result);
let assemblyFormat = "$elements attr-dict `:` type($result)";
let hasCanonicalizer = 1;
}
def Vector_InsertElementOp :
Vector_Op<"insertelement", [Pure,
TypesMatchWith<"source operand type matches element type of result",
"result", "source",
"::llvm::cast<VectorType>($_self).getElementType()">,
AllTypesMatch<["dest", "result"]>]>,
Arguments<(ins AnyType:$source, AnyVectorOfAnyRank:$dest,
Optional<AnySignlessIntegerOrIndex>:$position)>,
Results<(outs AnyVectorOfAnyRank:$result)> {
let summary = "insertelement operation";
let description = [{
Takes a scalar source, a 0-D or 1-D destination vector and a dynamic index
position and inserts the source into the destination at the proper position.
Note that this instruction resembles vector.insert, but is restricted to 0-D
and 1-D vectors and relaxed to dynamic indices.
It is meant to be closer to LLVM's version:
https://llvm.org/docs/LangRef.html#insertelement-instruction
Example:
```mlir
%c = arith.constant 15 : i32
%f = arith.constant 0.0f : f32
%1 = vector.insertelement %f, %0[%c : i32]: vector<16xf32>
%2 = vector.insertelement %f, %z[]: vector<f32>
```
}];
let assemblyFormat = [{
$source `,` $dest `[` ($position^ `:` type($position))? `]` attr-dict `:`
type($result)
}];
let builders = [
// 0-D builder.
OpBuilder<(ins "Value":$source, "Value":$dest)>,
];
let extraClassDeclaration = [{
Type getSourceType() { return getSource().getType(); }
VectorType getDestVectorType() {
return ::llvm::cast<VectorType>(getDest().getType());
}
}];
let hasVerifier = 1;
let hasFolder = 1;
}
def Vector_InsertOp :
Vector_Op<"insert", [Pure,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
AllTypesMatch<["dest", "result"]>]> {
let summary = "insert operation";
let description = [{
Takes an n-D source vector, an (n+k)-D destination vector and a k-D position
and inserts the n-D source into the (n+k)-D destination at the proper
position. Degenerates to a scalar or a 0-d vector source type when n = 0.
Dynamic indices must be greater or equal to zero and less than the size of
the corresponding dimension. The result is undefined if any index is
out-of-bounds.
Example:
```mlir
%2 = vector.insert %0, %1[3] : vector<8x16xf32> into vector<4x8x16xf32>
%5 = vector.insert %3, %4[2, 1, 3] : f32 into vector<4x8x16xf32>
%8 = vector.insert %6, %7[] : f32 into vector<f32>
%11 = vector.insert %9, %10[%a, %b, %c] : vector<f32> into vector<4x8x16xf32>
%12 = vector.insert %4, %10[2, %b] : vector<16xf32> into vector<4x8x16xf32>
```
}];
let arguments = (ins
AnyType:$source,
AnyVectorOfAnyRank:$dest,
Variadic<Index>:$dynamic_position,
DenseI64ArrayAttr:$static_position
);
let results = (outs AnyVectorOfAnyRank:$result);
let builders = [
OpBuilder<(ins "Value":$source, "Value":$dest, "int64_t":$position)>,
OpBuilder<(ins "Value":$source, "Value":$dest, "OpFoldResult":$position)>,
OpBuilder<(ins "Value":$source, "Value":$dest, "ArrayRef<int64_t>":$position)>,
OpBuilder<(ins "Value":$source, "Value":$dest, "ArrayRef<OpFoldResult>":$position)>,
];
let extraClassDeclaration = [{
Type getSourceType() { return getSource().getType(); }
VectorType getDestVectorType() {
return ::llvm::cast<VectorType>(getDest().getType());
}
/// Return a vector with all the static and dynamic position indices.
SmallVector<OpFoldResult> getMixedPosition() {
OpBuilder builder(getContext());
return getMixedValues(getStaticPosition(), getDynamicPosition(), builder);
}
unsigned getNumIndices() {
return getStaticPosition().size();
}
bool hasDynamicPosition() {
return llvm::any_of(getDynamicPosition(),
[](Value operand) { return operand != nullptr; });
}
}];
let assemblyFormat = [{
$source `,` $dest custom<DynamicIndexList>($dynamic_position, $static_position)
attr-dict `:` type($source) `into` type($dest)
}];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
def Vector_ScalableInsertOp :
Vector_Op<"scalable.insert", [Pure,
AllElementTypesMatch<["source", "dest"]>,
AllTypesMatch<["dest", "res"]>,
PredOpTrait<"position is a multiple of the source length.",
CPred<
"(getPos() % getSourceVectorType().getNumElements()) == 0"
>>]>,
Arguments<(ins VectorOfRank<[1]>:$source,
ScalableVectorOfRank<[1]>:$dest,
I64Attr:$pos)>,
Results<(outs ScalableVectorOfRank<[1]>:$res)> {
let summary = "insert subvector into scalable vector operation";
// NOTE: This operation is designed to map to `llvm.vector.insert`, and its
// documentation should be kept aligned with LLVM IR:
// https://llvm.org/docs/LangRef.html#llvm-vector-insert-intrinsic
let description = [{
This operations takes a rank-1 fixed-length or scalable subvector and
inserts it within the destination scalable vector starting from the
position specificed by `pos`. If the source vector is scalable, the
insertion position will be scaled by the runtime scaling factor of the
source subvector.
The insertion position must be a multiple of the minimum size of the source
vector. For the operation to be well defined, the source vector must fit in
the destination vector from the specified position. Since the destination
vector is scalable and its runtime length is unknown, the validity of the
operation can't be verified nor guaranteed at compile time.
Example:
```mlir
%2 = vector.scalable.insert %0, %1[8] : vector<4xf32> into vector<[16]xf32>
%5 = vector.scalable.insert %3, %4[0] : vector<8xf32> into vector<[4]xf32>
%8 = vector.scalable.insert %6, %7[0] : vector<[4]xf32> into vector<[8]xf32>
```
Invalid example:
```mlir
%2 = vector.scalable.insert %0, %1[5] : vector<4xf32> into vector<[16]xf32>
```
}];
let assemblyFormat = [{
$source `,` $dest `[` $pos `]` attr-dict `:` type($source) `into` type($dest)
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getDestVectorType() {
return ::llvm::cast<VectorType>(getDest().getType());
}
}];
}
def Vector_ScalableExtractOp :
Vector_Op<"scalable.extract", [Pure,
AllElementTypesMatch<["source", "res"]>,
PredOpTrait<"position is a multiple of the result length.",
CPred<
"(getPos() % getResultVectorType().getNumElements()) == 0"
>>]>,
Arguments<(ins ScalableVectorOfRank<[1]>:$source,
I64Attr:$pos)>,
Results<(outs VectorOfRank<[1]>:$res)> {
let summary = "extract subvector from scalable vector operation";
// NOTE: This operation is designed to map to `llvm.vector.extract`, and its
// documentation should be kept aligned with LLVM IR:
// https://llvm.org/docs/LangRef.html#llvm-vector-extract-intrinsic
let description = [{
Takes rank-1 source vector and a position `pos` within the source
vector, and extracts a subvector starting from that position.
The extraction position must be a multiple of the minimum size of the result
vector. For the operation to be well defined, the destination vector must
fit within the source vector from the specified position. Since the source
vector is scalable and its runtime length is unknown, the validity of the
operation can't be verified nor guaranteed at compile time.
Example:
```mlir
%1 = vector.scalable.extract %0[8] : vector<4xf32> from vector<[8]xf32>
%3 = vector.scalable.extract %2[0] : vector<[4]xf32> from vector<[8]xf32>
```
Invalid example:
```mlir
%1 = vector.scalable.extract %0[5] : vector<4xf32> from vector<[16]xf32>
```
}];
let assemblyFormat = [{
$source `[` $pos `]` attr-dict `:` type($res) `from` type($source)
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getRes().getType());
}
}];
}
def Vector_InsertStridedSliceOp :
Vector_Op<"insert_strided_slice", [Pure,
PredOpTrait<"operand #0 and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
AllTypesMatch<["dest", "res"]>]>,
Arguments<(ins AnyVector:$source, AnyVector:$dest, I64ArrayAttr:$offsets,
I64ArrayAttr:$strides)>,
Results<(outs AnyVector:$res)> {
let summary = "strided_slice operation";
let description = [{
Takes a k-D source vector, an n-D destination vector (n >= k), n-sized
`offsets` integer array attribute, a k-sized `strides` integer array attribute
and inserts the k-D source vector as a strided subvector at the proper offset
into the n-D destination vector.
At the moment strides must contain only 1s.
Returns an n-D vector that is a copy of the n-D destination vector in which
the last k-D dimensions contain the k-D source vector elements strided at
the proper location as specified by the offsets.
Example:
```mlir
%2 = vector.insert_strided_slice %0, %1
{offsets = [0, 0, 2], strides = [1, 1]}:
vector<2x4xf32> into vector<16x4x8xf32>
```
}];
let assemblyFormat = [{
$source `,` $dest attr-dict `:` type($source) `into` type($dest)
}];
let builders = [
OpBuilder<(ins "Value":$source, "Value":$dest,
"ArrayRef<int64_t>":$offsets, "ArrayRef<int64_t>":$strides)>
];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getDestVectorType() {
return ::llvm::cast<VectorType>(getDest().getType());
}
bool hasNonUnitStrides() {
return llvm::any_of(getStrides(), [](Attribute attr) {
return ::llvm::cast<IntegerAttr>(attr).getInt() != 1;
});
}
}];
let hasFolder = 1;
let hasVerifier = 1;
let hasCanonicalizer = 1;
}
def Vector_OuterProductOp :
Vector_Op<"outerproduct", [Pure,
PredOpTrait<"lhs operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
PredOpTrait<"rhs operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 1>>,
DeclareOpInterfaceMethods<MaskableOpInterface>]>,
Arguments<(ins AnyVector:$lhs, AnyType:$rhs,
Optional<AnyVector>:$acc,
DefaultValuedAttr<Vector_CombiningKindAttr, "CombiningKind::ADD">:$kind)>,
Results<(outs AnyVector)> {
let summary = "vector outerproduct with optional fused add";
let description = [{
Takes 2 1-D vectors and returns the 2-D vector containing the outer-product,
as illustrated below:
```
outer | [c, d]
------+------------
[a, | [ [a*c, a*d],
b] | [b*c, b*d] ]
```
This operation also accepts a 1-D vector lhs and a scalar rhs. In this
case a simple AXPY operation is performed, which returns a 1-D vector.
```
[a, b] * c = [a*c, b*c]
```
An optional extra vector argument with the same shape as the output
vector may be specified in which case the operation returns the sum of
the outer-product and the extra vector. In this multiply-accumulate
scenario for floating-point arguments, the rounding mode is enforced
by guaranteeing that a fused-multiply add operation is emitted. When
lowered to the LLVMIR dialect, this form emits `llvm.intr.fma`, which
is guaranteed to lower to actual `fma` instructions on x86.
An optional kind attribute may be specified to be: `add`/`mul`/`minsi`
/`minui`/`maxsi`/`maxui`/`and`/`or`/`xor` for integers, and `add`/`mul`
/`minnumf`/`maxnumf`/`minimumf`/`maximumf` for floats. The default is
`add`.
Example:
```
%2 = vector.outerproduct %0, %1: vector<4xf32>, vector<8xf32>
return %2: vector<4x8xf32>
%3 = vector.outerproduct %0, %1, %2:
vector<4xf32>, vector<8xf32>, vector<4x8xf32>
return %3: vector<4x8xf32>
%4 = vector.outerproduct %0, %1, %2 {kind = #vector.kind<maxnumf>}:
vector<4xf32>, vector<8xf32>, vector<4x8xf32>
return %3: vector<4x8xf32>
%6 = vector.outerproduct %4, %5: vector<10xf32>, f32
return %6: vector<10xf32>
```
}];
let builders = [
// Build an op without mask, use the type of `acc` as the return type.
OpBuilder<(ins "Value":$lhs, "Value":$rhs, "Value":$acc)>
];
let extraClassDeclaration = [{
VectorType getOperandVectorTypeLHS() {
return ::llvm::cast<VectorType>(getLhs().getType());
}
Type getOperandTypeRHS() {
return getRhs().getType();
}
VectorType getOperandVectorTypeACC() {
return getAcc()
? ::llvm::cast<VectorType>(getAcc().getType())
: VectorType();
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
static CombiningKind getDefaultKind() {
return CombiningKind::ADD;
}
}];
let hasCustomAssemblyFormat = 1;
let hasVerifier = 1;
}
def Vector_ExtractStridedSliceOp :
Vector_Op<"extract_strided_slice", [Pure,
PredOpTrait<"operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]>,
Arguments<(ins AnyVector:$vector, I64ArrayAttr:$offsets,
I64ArrayAttr:$sizes, I64ArrayAttr:$strides)>,
Results<(outs AnyVector)> {
let summary = "extract_strided_slice operation";
let description = [{
Takes an n-D vector, k-D `offsets` integer array attribute, a k-sized
`sizes` integer array attribute, a k-sized `strides` integer array
attribute and extracts the n-D subvector at the proper offset.
At the moment strides must contain only 1s.
Returns an n-D vector where the first k-D dimensions match the `sizes`
attribute. The returned subvector contains the elements starting at offset
`offsets` and ending at `offsets + sizes`.
Example:
```mlir
%1 = vector.extract_strided_slice %0
{offsets = [0, 2], sizes = [2, 4], strides = [1, 1]}:
vector<4x8x16xf32> to vector<2x4x16xf32>
// TODO: Evolve to a range form syntax similar to:
%1 = vector.extract_strided_slice %0[0:2:1][2:4:1]
vector<4x8x16xf32> to vector<2x4x16xf32>
```
}];
let builders = [
OpBuilder<(ins "Value":$source, "ArrayRef<int64_t>":$offsets,
"ArrayRef<int64_t>":$sizes, "ArrayRef<int64_t>":$strides)>
];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
void getOffsets(SmallVectorImpl<int64_t> &results);
bool hasNonUnitStrides() {
return llvm::any_of(getStrides(), [](Attribute attr) {
return ::llvm::cast<IntegerAttr>(attr).getInt() != 1;
});
}
}];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
let assemblyFormat = "$vector attr-dict `:` type($vector) `to` type(results)";
}
// TODO: Tighten semantics so that masks and inbounds can't be used
// simultaneously within the same transfer op.
def Vector_TransferReadOp :
Vector_Op<"transfer_read", [
DeclareOpInterfaceMethods<VectorTransferOpInterface>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
AttrSizedOperandSegments,
DestinationStyleOpInterface
]>,
Arguments<(ins AnyShaped:$source,
Variadic<Index>:$indices,
AffineMapAttr:$permutation_map,
AnyType:$padding,
Optional<VectorOf<[I1]>>:$mask,
BoolArrayAttr:$in_bounds)>,
Results<(outs AnyVectorOfAnyRank:$vector)> {
let summary = "Reads a supervector from memory into an SSA vector value.";
let description = [{
The `vector.transfer_read` op performs a read from a slice within a
[MemRef](../LangRef.md#memref-type) or a Ranked
[Tensor](../LangRef.md#tensor-type) supplied as its first operand
into a [vector](../LangRef.md#vector-type) of the same base elemental type.
A memref/tensor operand with vector element type, must have its vector
element type match a suffix (shape and element type) of the vector (e.g.
memref<3x2x6x4x3xf32>, vector<1x1x4x3xf32>).
The slice is further defined by a full-rank index within the MemRef/Tensor,
supplied as the operands `[1 .. 1 + rank(memref/tensor))` that defines the
starting point of the transfer (e.g. `%A[%i0, %i1, %i2]`).
The permutation_map [attribute](../LangRef.md#attributes) is an
[affine-map](Affine.md#affine-maps) which specifies the transposition on the
slice to match the vector shape. The permutation map may be implicit and
omitted from parsing and printing if it is the canonical minor identity map
(i.e. if it does not permute or broadcast any dimension).
The size of the slice is specified by the size of the vector, given as the
return type.
An SSA value `padding` of the same elemental type as the MemRef/Tensor is
provided to specify a fallback value in the case of out-of-bounds accesses
and/or masking.
An optional SSA value `mask` may be specified to mask out elements read from
the MemRef/Tensor. The `mask` type is an `i1` vector with a shape that
matches how elements are read from the MemRef/Tensor, *before* any
permutation or broadcasting. Elements whose corresponding mask element is
`0` are masked out and replaced with `padding`.
For every vector dimension, the boolean array attribute `in_bounds`
specifies if the transfer is guaranteed to be within the source bounds. If
set to "false", accesses (including the starting point) may run
out-of-bounds along the respective vector dimension as the index increases.
Non-vector and broadcast dimensions *must* always be in-bounds. The
`in_bounds` array length has to be equal to the vector rank. This attribute
has a default value: `false` (i.e. "out-of-bounds"). When skipped in the
textual IR, the default value is assumed. Similarly, the OP printer will
omit this attribute when all dimensions are out-of-bounds (i.e. the default
value is used).
A `vector.transfer_read` can be lowered to a simple load if all dimensions
are specified to be within bounds and no `mask` was specified.
This operation is called 'read' by opposition to 'load' because the
super-vector granularity is generally not representable with a single
hardware register. A `vector.transfer_read` is thus a mid-level abstraction
that supports super-vectorization with non-effecting padding for full-tile
only operations.
More precisely, let's dive deeper into the permutation_map for the following
MLIR:
```mlir
vector.transfer_read %A[%expr1, %expr2, %expr3, %expr4]
{ permutation_map : (d0,d1,d2,d3) -> (d2,0,d0) } :
memref<?x?x?x?xf32>, vector<3x4x5xf32>
```
This operation always reads a slice starting at `%A[%expr1, %expr2, %expr3,
%expr4]`. The size of the slice can be inferred from the resulting vector
shape and walking back through the permutation map: 3 along d2 and 5 along
d0, so the slice is: `%A[%expr1 : %expr1 + 5, %expr2, %expr3:%expr3 + 3, %expr4]`
That slice needs to be read into a `vector<3x4x5xf32>`. Since the
permutation map is not full rank, there must be a broadcast along vector
dimension `1`.
A notional lowering of vector.transfer_read could generate code resembling:
```mlir
// %expr1, %expr2, %expr3, %expr4 defined before this point
// alloc a temporary buffer for performing the "gather" of the slice.
%tmp = memref.alloc() : memref<vector<3x4x5xf32>>
for %i = 0 to 3 {
affine.for %j = 0 to 4 {
affine.for %k = 0 to 5 {
// Note that this load does not involve %j.
%a = load %A[%expr1 + %k, %expr2, %expr3 + %i, %expr4] : memref<?x?x?x?xf32>
// Update the temporary gathered slice with the individual element
%slice = memref.load %tmp : memref<vector<3x4x5xf32>> -> vector<3x4x5xf32>
%updated = vector.insert %a, %slice[%i, %j, %k] : f32 into vector<3x4x5xf32>
memref.store %updated, %tmp : memref<vector<3x4x5xf32>>
}}}
// At this point we gathered the elements from the original
// memref into the desired vector layout, stored in the `%tmp` allocation.
%vec = memref.load %tmp : memref<vector<3x4x5xf32>> -> vector<3x4x5xf32>
```
On a GPU one could then map `i`, `j`, `k` to blocks and threads. Notice that
the temporary storage footprint could conceptually be only `3 * 5` values but
`3 * 4 * 5` values are actually transferred between `%A` and `%tmp`.
Alternatively, if a notional vector broadcast operation were available, we
could avoid the loop on `%j` and the lowered code would resemble:
```mlir
// %expr1, %expr2, %expr3, %expr4 defined before this point
%tmp = memref.alloc() : memref<vector<3x4x5xf32>>
for %i = 0 to 3 {
affine.for %k = 0 to 5 {
%a = load %A[%expr1 + %k, %expr2, %expr3 + %i, %expr4] : memref<?x?x?x?xf32>
%slice = memref.load %tmp : memref<vector<3x4x5xf32>> -> vector<3x4x5xf32>
// Here we only store to the first element in dimension one
%updated = vector.insert %a, %slice[%i, 0, %k] : f32 into vector<3x4x5xf32>
memref.store %updated, %tmp : memref<vector<3x4x5xf32>>
}}
// At this point we gathered the elements from the original
// memref into the desired vector layout, stored in the `%tmp` allocation.
// However we haven't replicated them alongside the first dimension, we need
// to broadcast now.
%partialVec = load %tmp : memref<vector<3x4x5xf32>> -> vector<3x4x5xf32>
%vec = broadcast %tmpvec, 1 : vector<3x4x5xf32>
```
where `broadcast` broadcasts from element 0 to all others along the
specified dimension. This time, the number of loaded element is `3 * 5`
values.
An additional `1` broadcast is required. On a GPU this broadcast could be
implemented using a warp-shuffle if loop `j` were mapped to `threadIdx.x`.
Syntax
```
operation ::= ssa-id `=` `vector.transfer_read` ssa-use-list
`{` attribute-entry `} :` memref-type `,` vector-type
```
Example:
```mlir
// Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into vector<32x256xf32>
// and pad with %f0 to handle the boundary case:
%f0 = arith.constant 0.0f : f32
affine.for %i0 = 0 to %0 {
affine.for %i1 = 0 to %1 step 256 {
affine.for %i2 = 0 to %2 step 32 {
%v = vector.transfer_read %A[%i0, %i1, %i2], (%f0)
{permutation_map: (d0, d1, d2) -> (d2, d1)} :
memref<?x?x?xf32>, vector<32x256xf32>
}}}
// or equivalently (rewrite with vector.transpose)
%f0 = arith.constant 0.0f : f32
affine.for %i0 = 0 to %0 {
affine.for %i1 = 0 to %1 step 256 {
affine.for %i2 = 0 to %2 step 32 {
%v0 = vector.transfer_read %A[%i0, %i1, %i2], (%f0)
{permutation_map: (d0, d1, d2) -> (d1, d2)} :
memref<?x?x?xf32>, vector<256x32xf32>
%v = vector.transpose %v0, [1, 0] :
vector<256x32xf32> to vector<32x256f32>
}}}
// Read the slice `%A[%i0, %i1]` (i.e. the element `%A[%i0, %i1]`) into
// vector<128xf32>. The underlying implementation will require a 1-D vector
// broadcast:
affine.for %i0 = 0 to %0 {
affine.for %i1 = 0 to %1 {
%3 = vector.transfer_read %A[%i0, %i1]
{permutation_map: (d0, d1) -> (0)} :
memref<?x?xf32>, vector<128xf32>
}
}
// Read from a memref with vector element type.
%4 = vector.transfer_read %arg1[%c3, %c3], %vf0
{permutation_map = (d0, d1)->(d0, d1)}
: memref<?x?xvector<4x3xf32>>, vector<1x1x4x3xf32>
// Read from a tensor with vector element type.
%4 = vector.transfer_read %arg1[%c3, %c3], %vf0
{permutation_map = (d0, d1)->(d0, d1)}
: tensor<?x?xvector<4x3xf32>>, vector<1x1x4x3xf32>
// Special encoding for 0-d transfer with 0-d tensor/memref, vector shape
// {1} and permutation_map () -> (0).
%0 = vector.transfer_read %arg0[], %f0 {permutation_map = affine_map<()->(0)>} :
tensor<f32>, vector<1xf32>
```
}];
let builders = [
/// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
OpBuilder<(ins "VectorType":$vectorType,
"Value":$source,
"ValueRange":$indices,
"AffineMapAttr":$permutationMapAttr,
"ArrayAttr":$inBoundsAttr)>,
/// 2. Builder that sets padding to zero and an empty mask (variant without attrs).
OpBuilder<(ins "VectorType":$vectorType,
"Value":$source,
"ValueRange":$indices,
"AffineMap":$permutationMap,
CArg<"std::optional<ArrayRef<bool>>", "::std::nullopt">:$inBounds)>,
/// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
OpBuilder<(ins "VectorType":$vectorType,
"Value":$source,
"ValueRange":$indices,
"Value":$padding,
CArg<"std::optional<ArrayRef<bool>>", "::std::nullopt">:$inBounds)>,
/// 4. Builder that sets padding to zero and permutation map to
/// 'getMinorIdentityMap'.
OpBuilder<(ins "VectorType":$vectorType,
"Value":$source,
"ValueRange":$indices,
CArg<"std::optional<ArrayRef<bool>>", "::std::nullopt">:$inBounds)>,
];
let extraClassDeclaration = [{
// MaskableOpInterface methods.
bool supportsPassthru() { return true; }
MutableOperandRange getDpsInitsMutable() {
return MutableOperandRange(getOperation(), /*start=*/0, /*length=*/0);
}
}];
let hasCanonicalizer = 1;
let hasCustomAssemblyFormat = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
// TODO: Tighten semantics so that masks and inbounds can't be used
// simultaneously within the same transfer op.
def Vector_TransferWriteOp :
Vector_Op<"transfer_write", [
DeclareOpInterfaceMethods<VectorTransferOpInterface>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
AttrSizedOperandSegments,
DestinationStyleOpInterface
]>,
Arguments<(ins AnyVectorOfAnyRank:$vector,
AnyShaped:$source,
Variadic<Index>:$indices,
AffineMapAttr:$permutation_map,
Optional<VectorOf<[I1]>>:$mask,
BoolArrayAttr:$in_bounds)>,
Results<(outs Optional<AnyRankedTensor>:$result)> {
let summary = "The vector.transfer_write op writes a supervector to memory.";
let description = [{
The `vector.transfer_write` op performs a write from a
[vector](../LangRef.md#vector-type), supplied as its first operand, into a
slice within a [MemRef](../LangRef.md#memref-type) or a Ranked
[Tensor](../LangRef.md#tensor-type) of the same base elemental type,
supplied as its second operand.
A vector memref/tensor operand must have its vector element type match a
suffix (shape and element type) of the vector (e.g. memref<3x2x6x4x3xf32>,
vector<1x1x4x3xf32>). If the operand is a tensor, the operation returns a
new tensor of the same type.
The slice is further defined by a full-rank index within the MemRef/Tensor,
supplied as the operands `[2 .. 2 + rank(memref/tensor))` that defines the
starting point of the transfer (e.g. `%A[%i0, %i1, %i2, %i3]`).
The permutation_map [attribute](../LangRef.md#attributes) is an
[affine-map](Affine.md#affine-maps) which specifies the transposition on the
slice to match the vector shape. The permutation map may be implicit and
omitted from parsing and printing if it is the canonical minor identity map
(i.e. if it does not permute any dimension). In contrast to `transfer_read`,
write ops cannot have broadcast dimensions.
The size of the slice is specified by the size of the vector.
An optional SSA value `mask` may be specified to mask out elements written
to the MemRef/Tensor. The `mask` type is an `i1` vector with a shape that
matches how elements are written into the MemRef/Tensor, *after* applying
any permutation. Elements whose corresponding mask element is `0` are
masked out.
For every vector dimension, the boolean array attribute `in_bounds`
specifies if the transfer is guaranteed to be within the source bounds. If
set to "false", accesses (including the starting point) may run
out-of-bounds along the respective vector dimension as the index increases.
Non-vector and broadcast dimensions *must* always be in-bounds. The
`in_bounds` array length has to be equal to the vector rank. This attribute
has a default value: `false` (i.e. "out-of-bounds"). When skipped in the
textual IR, the default value is assumed. Similarly, the OP printer will
omit this attribute when all dimensions are out-of-bounds (i.e. the default
value is used).
A `vector.transfer_write` can be lowered to a simple store if all
dimensions are specified to be within bounds and no `mask` was specified.
This operation is called 'write' by opposition to 'store' because the
super-vector granularity is generally not representable with a single
hardware register. A `vector.transfer_write` is thus a
mid-level abstraction that supports super-vectorization with non-effecting
padding for full-tile-only code. It is the responsibility of
`vector.transfer_write`'s implementation to ensure the memory writes are
valid. Different lowerings may be pertinent depending on the hardware
support.
Example:
```mlir
// write vector<16x32x64xf32> into the slice
// `%A[%i0, %i1:%i1+32, %i2:%i2+64, %i3:%i3+16]`:
for %i0 = 0 to %0 {
affine.for %i1 = 0 to %1 step 32 {
affine.for %i2 = 0 to %2 step 64 {
affine.for %i3 = 0 to %3 step 16 {
%val = `ssa-value` : vector<16x32x64xf32>
vector.transfer_write %val, %A[%i0, %i1, %i2, %i3]
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
vector<16x32x64xf32>, memref<?x?x?x?xf32>
}}}}
// or equivalently (rewrite with vector.transpose)
for %i0 = 0 to %0 {
affine.for %i1 = 0 to %1 step 32 {
affine.for %i2 = 0 to %2 step 64 {
affine.for %i3 = 0 to %3 step 16 {
%val = `ssa-value` : vector<16x32x64xf32>
%valt = vector.transpose %val, [1, 2, 0] :
vector<16x32x64xf32> -> vector<32x64x16xf32>
vector.transfer_write %valt, %A[%i0, %i1, %i2, %i3]
{permutation_map: (d0, d1, d2, d3) -> (d1, d2, d3)} :
vector<32x64x16xf32>, memref<?x?x?x?xf32>
}}}}
// write to a memref with vector element type.
vector.transfer_write %4, %arg1[%c3, %c3]
{permutation_map = (d0, d1)->(d0, d1)}
: vector<1x1x4x3xf32>, memref<?x?xvector<4x3xf32>>
// return a tensor where the vector is inserted into the source tensor.
%5 = vector.transfer_write %4, %arg1[%c3, %c3]
{permutation_map = (d0, d1)->(d0, d1)}
: vector<1x1x4x3xf32>, tensor<?x?xvector<4x3xf32>>
// Special encoding for 0-d transfer with 0-d tensor/memref, vector shape
// {1} and permutation_map () -> (0).
%1 = vector.transfer_write %0, %arg0[] {permutation_map = affine_map<()->(0)>} :
vector<1xf32>, tensor<f32>
```
}];
let builders = [
/// 1. Builder with type inference.
OpBuilder<(ins "Value":$vector,
"Value":$dest,
"ValueRange":$indices,
"AffineMapAttr":$permutationMapAttr,
"Value":$mask,
"ArrayAttr":$inBoundsAttr)>,
/// 2. Builder with type inference that sets an empty mask (variant with attrs).
OpBuilder<(ins "Value":$vector,
"Value":$dest,
"ValueRange":$indices,
"AffineMapAttr":$permutationMapAttr,
"ArrayAttr":$inBoundsAttr)>,
/// 3. Builder with type inference that sets an empty mask (variant without attrs).
OpBuilder<(ins "Value":$vector,
"Value":$dest,
"ValueRange":$indices,
"AffineMap":$permutationMap,
CArg<"std::optional<ArrayRef<bool>>", "::std::nullopt">:$inBounds)>,
/// 4. Builder with type inference that sets an empty mask and sets permutation
/// map to 'getMinorIdentityMap'.
OpBuilder<(ins "Value":$vector,
"Value":$dest,
"ValueRange":$indices,
CArg<"std::optional<ArrayRef<bool>>", "::std::nullopt">:$inBounds)>,
];
let extraClassDeclaration = [{
/// This method is added to maintain uniformity with load/store
/// ops of other dialects.
Value getValue() { return getVector(); }
MutableOperandRange getDpsInitsMutable() { return getSourceMutable(); }
}];
let hasFolder = 1;
let hasCanonicalizer = 1;
let hasCustomAssemblyFormat = 1;
let hasVerifier = 1;
}
def Vector_LoadOp : Vector_Op<"load"> {
let summary = "reads an n-D slice of memory into an n-D vector";
let description = [{
The 'vector.load' operation reads an n-D slice of memory into an n-D
vector. It takes a 'base' memref, an index for each memref dimension and a
result vector type as arguments. It returns a value of the result vector
type. The 'base' memref and indices determine the start memory address from
which to read. Each index provides an offset for each memref dimension
based on the element type of the memref. The shape of the result vector
type determines the shape of the slice read from the start memory address.
The elements along each dimension of the slice are strided by the memref
strides. Only unit strides are allowed along the most minor memref
dimension. These constraints guarantee that elements read along the first
dimension of the slice are contiguous in memory.
The memref element type can be a scalar or a vector type. If the memref
element type is a scalar, it should match the element type of the result
vector. If the memref element type is vector, it should match the result
vector type.
Example: 0-D vector load on a scalar memref.
```mlir
%result = vector.load %base[%i, %j] : memref<100x100xf32>, vector<f32>
```
Example: 1-D vector load on a scalar memref.
```mlir
%result = vector.load %base[%i, %j] : memref<100x100xf32>, vector<8xf32>
```
Example: 1-D vector load on a vector memref.
```mlir
%result = vector.load %memref[%i, %j] : memref<200x100xvector<8xf32>>, vector<8xf32>
```
Example: 2-D vector load on a scalar memref.
```mlir
%result = vector.load %memref[%i, %j] : memref<200x100xf32>, vector<4x8xf32>
```
Example: 2-D vector load on a vector memref.
```mlir
%result = vector.load %memref[%i, %j] : memref<200x100xvector<4x8xf32>>, vector<4x8xf32>
```
Representation-wise, the 'vector.load' operation permits out-of-bounds
reads. Support and implementation of out-of-bounds vector loads is
target-specific. No assumptions should be made on the value of elements
loaded out of bounds. Not all targets may support out-of-bounds vector
loads.
Example: Potential out-of-bound vector load.
```mlir
%result = vector.load %memref[%index] : memref<?xf32>, vector<8xf32>
```
Example: Explicit out-of-bound vector load.
```mlir
%result = vector.load %memref[%c0] : memref<7xf32>, vector<8xf32>
```
}];
let arguments = (ins Arg<AnyMemRef, "the reference to load from",
[MemRead]>:$base,
Variadic<Index>:$indices,
DefaultValuedOptionalAttr<BoolAttr, "false">:$nontemporal);
let results = (outs AnyVectorOfAnyRank:$result);
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getBase().getType());
}
VectorType getVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
let hasFolder = 1;
let hasVerifier = 1;
let assemblyFormat =
"$base `[` $indices `]` attr-dict `:` type($base) `,` type($result)";
}
def Vector_StoreOp : Vector_Op<"store"> {
let summary = "writes an n-D vector to an n-D slice of memory";
let description = [{
The 'vector.store' operation writes an n-D vector to an n-D slice of memory.
It takes the vector value to be stored, a 'base' memref and an index for
each memref dimension. The 'base' memref and indices determine the start
memory address from which to write. Each index provides an offset for each
memref dimension based on the element type of the memref. The shape of the
vector value to store determines the shape of the slice written from the
start memory address. The elements along each dimension of the slice are
strided by the memref strides. Only unit strides are allowed along the most
minor memref dimension. These constraints guarantee that elements written
along the first dimension of the slice are contiguous in memory.
The memref element type can be a scalar or a vector type. If the memref
element type is a scalar, it should match the element type of the value
to store. If the memref element type is vector, it should match the type
of the value to store.
Example: 0-D vector store on a scalar memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xf32>, vector<f32>
```
Example: 1-D vector store on a scalar memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xf32>, vector<8xf32>
```
Example: 1-D vector store on a vector memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xvector<8xf32>>, vector<8xf32>
```
Example: 2-D vector store on a scalar memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xf32>, vector<4x8xf32>
```
Example: 2-D vector store on a vector memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xvector<4x8xf32>>, vector<4x8xf32>
```
Representation-wise, the 'vector.store' operation permits out-of-bounds
writes. Support and implementation of out-of-bounds vector stores are
target-specific. No assumptions should be made on the memory written out of
bounds. Not all targets may support out-of-bounds vector stores.
Example: Potential out-of-bounds vector store.
```mlir
vector.store %valueToStore, %memref[%index] : memref<?xf32>, vector<8xf32>
```
Example: Explicit out-of-bounds vector store.
```mlir
vector.store %valueToStore, %memref[%c0] : memref<7xf32>, vector<8xf32>
```
}];
let arguments = (ins
AnyVectorOfAnyRank:$valueToStore,
Arg<AnyMemRef, "the reference to store to",
[MemWrite]>:$base,
Variadic<Index>:$indices,
DefaultValuedOptionalAttr<BoolAttr, "false">:$nontemporal
);
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getBase().getType());
}
VectorType getVectorType() {
return ::llvm::cast<VectorType>(getValueToStore().getType());
}
}];
let hasFolder = 1;
let hasVerifier = 1;
let assemblyFormat = "$valueToStore `,` $base `[` $indices `]` attr-dict "
"`:` type($base) `,` type($valueToStore)";
}
def Vector_MaskedLoadOp :
Vector_Op<"maskedload">,
Arguments<(ins Arg<AnyMemRef, "", [MemRead]>:$base,
Variadic<Index>:$indices,
VectorOfRankAndType<[1], [I1]>:$mask,
VectorOfRank<[1]>:$pass_thru)>,
Results<(outs VectorOfRank<[1]>:$result)> {
let summary = "loads elements from memory into a vector as defined by a mask vector";
let description = [{
The masked load reads elements from memory into a 1-D vector as defined
by a base with indices and a 1-D mask vector. When the mask is set, the
element is read from memory. Otherwise, the corresponding element is taken
from a 1-D pass-through vector. Informally the semantics are:
```
result[0] := if mask[0] then base[i + 0] else pass_thru[0]
result[1] := if mask[1] then base[i + 1] else pass_thru[1]
etc.
```
If a mask bit is set and the corresponding index is out-of-bounds for the
given base, the behavior is undefined. If a mask bit is not set, the value
comes from the pass-through vector regardless of the index, and the index is
allowed to be out-of-bounds.
The masked load can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a masked load. The semantics of the operation
closely correspond to those of the `llvm.masked.load`
[intrinsic](https://llvm.org/docs/LangRef.html#llvm-masked-load-intrinsics).
Examples:
```mlir
%0 = vector.maskedload %base[%i], %mask, %pass_thru
: memref<?xf32>, vector<8xi1>, vector<8xf32> into vector<8xf32>
%1 = vector.maskedload %base[%i, %j], %mask, %pass_thru
: memref<?x?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
```
}];
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getBase().getType());
}
VectorType getMaskVectorType() {
return ::llvm::cast<VectorType>(getMask().getType());
}
VectorType getPassThruVectorType() {
return ::llvm::cast<VectorType>(getPassThru().getType());
}
VectorType getVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
let assemblyFormat = "$base `[` $indices `]` `,` $mask `,` $pass_thru attr-dict `:` "
"type($base) `,` type($mask) `,` type($pass_thru) `into` type($result)";
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
def Vector_MaskedStoreOp :
Vector_Op<"maskedstore">,
Arguments<(ins Arg<AnyMemRef, "", [MemWrite]>:$base,
Variadic<Index>:$indices,
VectorOfRankAndType<[1], [I1]>:$mask,
VectorOfRank<[1]>:$valueToStore)> {
let summary = "stores elements from a vector into memory as defined by a mask vector";
let description = [{
The masked store operation writes elements from a 1-D vector into memory
as defined by a base with indices and a 1-D mask vector. When the mask is
set, the corresponding element from the vector is written to memory. Otherwise,
no action is taken for the element. Informally the semantics are:
```
if (mask[0]) base[i+0] = value[0]
if (mask[1]) base[i+1] = value[1]
etc.
```
If a mask bit is set and the corresponding index is out-of-bounds for the
given base, the behavior is undefined. If a mask bit is not set, no value
is stored regardless of the index, and the index is allowed to be
out-of-bounds.
The masked store can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a masked store. The semantics of the operation
closely correspond to those of the `llvm.masked.store`
[intrinsic](https://llvm.org/docs/LangRef.html#llvm-masked-store-intrinsics).
Examples:
```mlir
vector.maskedstore %base[%i], %mask, %value
: memref<?xf32>, vector<8xi1>, vector<8xf32>
vector.maskedstore %base[%i, %j], %mask, %value
: memref<?x?xf32>, vector<16xi1>, vector<16xf32>
```
}];
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getBase().getType());
}
VectorType getMaskVectorType() {
return ::llvm::cast<VectorType>(getMask().getType());
}
VectorType getVectorType() {
return ::llvm::cast<VectorType>(getValueToStore().getType());
}
}];
let assemblyFormat =
"$base `[` $indices `]` `,` $mask `,` $valueToStore "
"attr-dict `:` type($base) `,` type($mask) `,` type($valueToStore)";
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
def Vector_GatherOp :
Vector_Op<"gather", [
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>
]>,
Arguments<(ins Arg<AnyShaped, "", [MemRead]>:$base,
Variadic<Index>:$indices,
VectorOf<[AnyInteger, Index]>:$index_vec,
VectorOf<[I1]>:$mask,
AnyVector:$pass_thru)>,
Results<(outs AnyVector:$result)> {
let summary = [{
gathers elements from memory or ranked tensor into a vector as defined by an
index vector and a mask vector
}];
let description = [{
The gather operation returns an n-D vector whose elements are either loaded
from memory or ranked tensor, or taken from a pass-through vector, depending
on the values of an n-D mask vector.
If a mask bit is set, the corresponding result element is defined by the base
with indices and the n-D index vector (each index is a 1-D offset on the base).
Otherwise, the corresponding element is taken from the n-D pass-through vector.
Informally the semantics are:
```
result[0] := if mask[0] then base[index[0]] else pass_thru[0]
result[1] := if mask[1] then base[index[1]] else pass_thru[1]
etc.
```
If a mask bit is set and the corresponding index is out-of-bounds for the
given base, the behavior is undefined. If a mask bit is not set, the value
comes from the pass-through vector regardless of the index, and the index is
allowed to be out-of-bounds.
The gather operation can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a gather.
Examples:
```mlir
%0 = vector.gather %base[%c0][%v], %mask, %pass_thru
: memref<?xf32>, vector<2x16xi32>, vector<2x16xi1>, vector<2x16xf32> into vector<2x16xf32>
%1 = vector.gather %base[%i, %j][%v], %mask, %pass_thru
: memref<16x16xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
```
}];
let extraClassDeclaration = [{
ShapedType getBaseType() { return getBase().getType(); }
VectorType getIndexVectorType() { return getIndexVec().getType(); }
VectorType getMaskVectorType() { return getMask().getType(); }
VectorType getPassThruVectorType() { return getPassThru().getType(); }
VectorType getVectorType() { return getResult().getType(); }
}];
let assemblyFormat =
"$base `[` $indices `]` `[` $index_vec `]` `,` "
"$mask `,` $pass_thru attr-dict `:` type($base) `,` "
"type($index_vec) `,` type($mask) `,` type($pass_thru) "
"`into` type($result)";
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_ScatterOp :
Vector_Op<"scatter">,
Arguments<(ins Arg<AnyMemRef, "", [MemWrite]>:$base,
Variadic<Index>:$indices,
VectorOfRankAndType<[1], [AnyInteger, Index]>:$index_vec,
VectorOfRankAndType<[1], [I1]>:$mask,
VectorOfRank<[1]>:$valueToStore)> {
let summary = [{
scatters elements from a vector into memory as defined by an index vector
and a mask vector
}];
let description = [{
The scatter operation stores elements from a 1-D vector into memory as
defined by a base with indices and an additional 1-D index vector, but
only if the corresponding bit in a 1-D mask vector is set. Otherwise, no
action is taken for that element. Informally the semantics are:
```
if (mask[0]) base[index[0]] = value[0]
if (mask[1]) base[index[1]] = value[1]
etc.
```
If a mask bit is set and the corresponding index is out-of-bounds for the
given base, the behavior is undefined. If a mask bit is not set, no value
is stored regardless of the index, and the index is allowed to be
out-of-bounds.
If the index vector contains two or more duplicate indices, the behavior is
undefined. Underlying implementation may enforce strict sequential
semantics.
TODO: always enforce strict sequential semantics?
The scatter operation can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a scatter. The semantics of the operation closely
correspond to those of the `llvm.masked.scatter`
[intrinsic](https://llvm.org/docs/LangRef.html#llvm-masked-scatter-intrinsics).
Examples:
```mlir
vector.scatter %base[%c0][%v], %mask, %value
: memref<?xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32>
vector.scatter %base[%i, %j][%v], %mask, %value
: memref<16x16xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32>
```
}];
let extraClassDeclaration = [{
MemRefType getMemRefType() { return getBase().getType(); }
VectorType getIndexVectorType() { return getIndexVec().getType(); }
VectorType getMaskVectorType() { return getMask().getType(); }
VectorType getVectorType() { return getValueToStore().getType(); }
}];
let assemblyFormat =
"$base `[` $indices `]` `[` $index_vec `]` `,` "
"$mask `,` $valueToStore attr-dict `:` type($base) `,` "
"type($index_vec) `,` type($mask) `,` type($valueToStore)";
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_ExpandLoadOp :
Vector_Op<"expandload">,
Arguments<(ins Arg<AnyMemRef, "", [MemRead]>:$base,
Variadic<Index>:$indices,
VectorOfRankAndType<[1], [I1]>:$mask,
VectorOfRank<[1]>:$pass_thru)>,
Results<(outs VectorOfRank<[1]>:$result)> {
let summary = "reads elements from memory and spreads them into a vector as defined by a mask";
let description = [{
The expand load reads elements from memory into a 1-D vector as defined
by a base with indices and a 1-D mask vector. When the mask is set, the
next element is read from memory. Otherwise, the corresponding element
is taken from a 1-D pass-through vector. Informally the semantics are:
```
index = i
result[0] := if mask[0] then base[index++] else pass_thru[0]
result[1] := if mask[1] then base[index++] else pass_thru[1]
etc.
```
Note that the index increment is done conditionally.
If a mask bit is set and the corresponding index is out-of-bounds for the
given base, the behavior is undefined. If a mask bit is not set, the value
comes from the pass-through vector regardless of the index, and the index is
allowed to be out-of-bounds.
The expand load can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for an expand. The semantics of the operation closely
correspond to those of the `llvm.masked.expandload`
[intrinsic](https://llvm.org/docs/LangRef.html#llvm-masked-expandload-intrinsics).
Examples:
```mlir
%0 = vector.expandload %base[%i], %mask, %pass_thru
: memref<?xf32>, vector<8xi1>, vector<8xf32> into vector<8xf32>
%1 = vector.expandload %base[%i, %j], %mask, %pass_thru
: memref<?x?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
```
}];
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getBase().getType());
}
VectorType getMaskVectorType() {
return ::llvm::cast<VectorType>(getMask().getType());
}
VectorType getPassThruVectorType() {
return ::llvm::cast<VectorType>(getPassThru().getType());
}
VectorType getVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
let assemblyFormat = "$base `[` $indices `]` `,` $mask `,` $pass_thru attr-dict `:` "
"type($base) `,` type($mask) `,` type($pass_thru) `into` type($result)";
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_CompressStoreOp :
Vector_Op<"compressstore">,
Arguments<(ins Arg<AnyMemRef, "", [MemWrite]>:$base,
Variadic<Index>:$indices,
VectorOfRankAndType<[1], [I1]>:$mask,
VectorOfRank<[1]>:$valueToStore)> {
let summary = "writes elements selectively from a vector as defined by a mask";
let description = [{
The compress store operation writes elements from a 1-D vector into memory
as defined by a base with indices and a 1-D mask vector. When the mask is
set, the corresponding element from the vector is written next to memory.
Otherwise, no action is taken for the element. Informally the semantics are:
```
index = i
if (mask[0]) base[index++] = value[0]
if (mask[1]) base[index++] = value[1]
etc.
```
Note that the index increment is done conditionally.
If a mask bit is set and the corresponding index is out-of-bounds for the
given base, the behavior is undefined. If a mask bit is not set, no value
is stored regardless of the index, and the index is allowed to be
out-of-bounds.
The compress store can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a compress. The semantics of the operation closely
correspond to those of the `llvm.masked.compressstore`
[intrinsic](https://llvm.org/docs/LangRef.html#llvm-masked-compressstore-intrinsics).
Examples:
```mlir
vector.compressstore %base[%i], %mask, %value
: memref<?xf32>, vector<8xi1>, vector<8xf32>
vector.compressstore %base[%i, %j], %mask, %value
: memref<?x?xf32>, vector<16xi1>, vector<16xf32>
```
}];
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getBase().getType());
}
VectorType getMaskVectorType() {
return ::llvm::cast<VectorType>(getMask().getType());
}
VectorType getVectorType() {
return ::llvm::cast<VectorType>(getValueToStore().getType());
}
}];
let assemblyFormat =
"$base `[` $indices `]` `,` $mask `,` $valueToStore attr-dict `:` "
"type($base) `,` type($mask) `,` type($valueToStore)";
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_ShapeCastOp :
Vector_Op<"shape_cast", [Pure]>,
Arguments<(ins AnyVectorOfAnyRank:$source)>,
Results<(outs AnyVectorOfAnyRank:$result)> {
let summary = "shape_cast casts between vector shapes";
let description = [{
The shape_cast operation casts between an n-D source vector shape and
a k-D result vector shape (the element type remains the same).
If reducing rank (n > k), result dimension sizes must be a product
of contiguous source dimension sizes.
If expanding rank (n < k), source dimensions must factor into a
contiguous sequence of destination dimension sizes.
Each source dim is expanded (or contiguous sequence of source dims combined)
in source dimension list order (i.e. 0 <= i < n), to produce a contiguous
sequence of result dims (or a single result dim), in result dimension list
order (i.e. 0 <= j < k). The product of all source dimension sizes and all
result dimension sizes must match.
It is currently assumed that this operation does not require moving data,
and that it will be folded away before lowering vector operations.
There is an exception to the folding expectation when targeting
llvm.intr.matrix operations. We need a type conversion back and forth from a
2-D MLIR vector to a 1-D flattened LLVM vector.shape_cast lowering to LLVM
is supported in that particular case, for now.
Example:
```mlir
// Example casting to a lower vector rank.
%1 = vector.shape_cast %0 : vector<5x1x4x3xf32> to vector<20x3xf32>
// Example casting to a higher vector rank.
%3 = vector.shape_cast %2 : vector<10x12x8xf32> to vector<5x2x3x4x8xf32>
```
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
let assemblyFormat = "$source attr-dict `:` type($source) `to` type($result)";
let hasFolder = 1;
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
def Vector_BitCastOp :
Vector_Op<"bitcast", [Pure, AllRanksMatch<["source", "result"]>]>,
Arguments<(ins AnyVectorOfAnyRank:$source)>,
Results<(outs AnyVectorOfAnyRank:$result)>{
let summary = "bitcast casts between vectors";
let description = [{
The bitcast operation casts between vectors of the same rank, the minor 1-D
vector size is casted to a vector with a different element type but same
bitwidth. In case of 0-D vectors, the bitwidth of element types must be
equal.
Example:
```mlir
// Example casting to a smaller element type.
%1 = vector.bitcast %0 : vector<5x1x4x3xf32> to vector<5x1x4x6xi16>
// Example casting to a bigger element type.
%3 = vector.bitcast %2 : vector<10x12x8xi8> to vector<10x12x2xi32>
// Example casting to an element type of the same size.
%5 = vector.bitcast %4 : vector<5x1x4x3xf32> to vector<5x1x4x3xi32>
// Example casting of 0-D vectors.
%7 = vector.bitcast %6 : vector<f32> to vector<i32>
```
}];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
let assemblyFormat = "$source attr-dict `:` type($source) `to` type($result)";
let hasFolder = 1;
let hasVerifier = 1;
}
def Vector_TypeCastOp :
Vector_Op<"type_cast", [Pure, ViewLikeOpInterface]>,
Arguments<(ins StaticShapeMemRefOf<[AnyType]>:$memref)>,
Results<(outs AnyMemRef:$result)> {
let summary = "type_cast op converts a scalar memref to a vector memref";
let description = [{
Performs a conversion from a memref with scalar element to a memref with a
*single* vector element, copying the shape of the memref to the vector. This
is the minimal viable operation that is required to makeke
super-vectorization operational. It can be seen as a special case of the
`view` operation but scoped in the super-vectorization context.
Example:
```mlir
%A = memref.alloc() : memref<5x4x3xf32>
%VA = vector.type_cast %A : memref<5x4x3xf32> to memref<vector<5x4x3xf32>>
```
}];
/// Build the canonical memRefType with a single vector.
/// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
let builders = [OpBuilder<(ins "Value":$source)>];
let extraClassDeclaration = [{
MemRefType getMemRefType() {
return ::llvm::cast<MemRefType>(getMemref().getType());
}
MemRefType getResultMemRefType() {
return ::llvm::cast<MemRefType>(getResult().getType());
}
// Implement ViewLikeOpInterface.
Value getViewSource() { return getMemref(); }
}];
let assemblyFormat = [{
$memref attr-dict `:` type($memref) `to` type($result)
}];
let hasVerifier = 1;
}
def Vector_ConstantMaskOp :
Vector_Op<"constant_mask", [Pure]>,
Arguments<(ins DenseI64ArrayAttr:$mask_dim_sizes)>,
Results<(outs VectorOfAnyRankOf<[I1]>)> {
let summary = "creates a constant vector mask";
let description = [{
Creates and returns a vector mask where elements of the result vector
are set to '0' or '1', based on whether the element indices are contained
within a hyper-rectangular region specified by the 'mask_dim_sizes'
array attribute argument. Each element of the 'mask_dim_sizes' array,
specifies an exclusive upper bound [0, mask-dim-size-element-value)
for a unique dimension in the vector result. The conjunction of the ranges
define a hyper-rectangular region within which elements values are set to 1
(otherwise element values are set to 0). Each value of 'mask_dim_sizes' must
be non-negative and not greater than the size of the corresponding vector
dimension (as opposed to vector.create_mask which allows this). Sizes that
correspond to scalable dimensions are implicitly multiplied by vscale,
though currently only zero (none set) or the size of the dim/vscale
(all set) are supported.
Example:
```mlir
// create a constant vector mask of size 4x3xi1 with elements in range
// 0 <= row <= 2 and 0 <= col <= 1 are set to 1 (others to 0).
%1 = vector.constant_mask [3, 2] : vector<4x3xi1>
print %1
columns
0 1 2
|------------
0 | 1 1 0
rows 1 | 1 1 0
2 | 1 1 0
3 | 0 0 0
```
}];
let builders = [
// Build with mixed static/dynamic operands.
OpBuilder<(ins "VectorType":$type, "ConstantMaskKind":$kind)>
];
let extraClassDeclaration = [{
/// Return the result type of this op.
VectorType getVectorType() {
return cast<VectorType>(getOperation()->getResultTypes()[0]);
}
/// Return whether the mask is a uniform vector of `1`s.
bool isAllOnesMask();
}];
let assemblyFormat = "$mask_dim_sizes attr-dict `:` type(results)";
let hasVerifier = 1;
}
def Vector_CreateMaskOp :
Vector_Op<"create_mask", [Pure]>,
Arguments<(ins Variadic<Index>:$operands)>,
Results<(outs VectorOfAnyRankOf<[I1]>)> {
let summary = "creates a vector mask";
let description = [{
Creates and returns a vector mask where elements of the result vector
are set to '0' or '1', based on whether the element indices are contained
within a hyper-rectangular region specified by the operands. Specifically,
each operand specifies a range [0, operand-value) for a unique dimension in
the vector result. The conjunction of the operand ranges define a
hyper-rectangular region within which elements values are set to 1
(otherwise element values are set to 0). If operand-value is negative, it is
treated as if it were zero, and if it is greater than the corresponding
dimension size, it is treated as if it were equal to the dimension size.
Example:
```mlir
// create a vector mask of size 4x3xi1 where elements in range
// 0 <= row <= 2 and 0 <= col <= 1 are set to 1 (others to 0).
%1 = vector.create_mask %c3, %c2 : vector<4x3xi1>
print %1
columns
0 1 2
|------------
0 | 1 1 0
rows 1 | 1 1 0
2 | 1 1 0
3 | 0 0 0
```
}];
let builders = [
// Build with mixed static/dynamic operands.
OpBuilder<(ins "VectorType":$type, "ArrayRef<OpFoldResult>":$mixedOperands)>
];
let extraClassDeclaration = [{
/// Return the result type of this op.
VectorType getVectorType() {
return cast<VectorType>(getOperation()->getResultTypes()[0]);
}
}];
let hasCanonicalizer = 1;
let hasVerifier = 1;
let assemblyFormat = "$operands attr-dict `:` type(results)";
}
def Vector_MaskOp : Vector_Op<"mask", [
SingleBlockImplicitTerminator<"vector::YieldOp">,
DeclareOpInterfaceMethods<MaskingOpInterface>,
RecursiveMemoryEffects, NoRegionArguments
]> {
let summary = "Predicates a maskable vector operation";
let description = [{
The `vector.mask` is a `MaskingOpInterface` operation that predicates the
execution of another operation. It takes an `i1` vector mask and an
optional passthru vector as arguments.
A implicitly `vector.yield`-terminated region encloses the operation to be
masked. Values used within the region are captured from above. Only one
*maskable* operation can be masked with a `vector.mask` operation at a time.
An operation is *maskable* if it implements the `MaskableOpInterface`. The
terminator yields all results of the maskable operation to the result of
this operation.
The vector mask argument holds a bit for each vector lane and determines
which vector lanes should execute the maskable operation and which ones
should not. The `vector.mask` operation returns the value produced by the
masked execution of the nested operation, if any. The masked-off lanes in
the result vector are taken from the corresponding lanes of the pass-thru
argument, if provided, or left unmodified, otherwise.
The `vector.mask` operation does not prescribe how a maskable operation
should be masked or how a masked operation should be lowered. Masking
constraints and some semantic details are provided by each maskable
operation through the `MaskableOpInterface`. Lowering of masked operations
is implementation defined. For instance, scalarizing the masked operation
or executing the operation for the masked-off lanes are valid lowerings as
long as the execution of masked-off lanes does not change the observable
behavior of the program.
Examples:
```
%0 = vector.mask %mask { vector.reduction <add>, %a : vector<8xi32> into i32 } : vector<8xi1> -> i32
```
```
%0 = vector.mask %mask, %passthru { arith.divsi %a, %b : vector<8xi32> } : vector<8xi1> -> vector<8xi32>
```
```
vector.mask %mask { vector.transfer_write %val, %t0[%idx] : vector<16xf32>, memref<?xf32> } : vector<16xi1>
```
```
vector.mask %mask { vector.transfer_write %val, %t0[%idx] : vector<16xf32>, tensor<?xf32> } : vector<16xi1> -> tensor<?xf32>
```
}];
// TODO: Support multiple passthru values.
let arguments = (ins VectorOf<[I1]>:$mask,
Optional<AnyType>:$passthru);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$maskRegion);
let skipDefaultBuilders = 1;
let builders = [
OpBuilder<(ins "Value":$mask, "Operation *":$maskableOp,
CArg<"function_ref<void(OpBuilder &, Operation *)>">:$maskRegion)>,
OpBuilder<(ins "TypeRange":$resultTypes, "Value":$mask, "Operation *":$maskableOp,
CArg<"function_ref<void(OpBuilder &, Operation *)>">:$maskRegion)>,
OpBuilder<(ins "TypeRange":$resultTypes, "Value":$mask, "Value":$passthru,
"Operation *":$maskableOp,
CArg<"function_ref<void(OpBuilder &, Operation *)>">:$maskRegion)>
];
let extraClassDeclaration = [{
Block *getMaskBlock() { return &getMaskRegion().front(); }
/// Returns true if mask op is not masking any operation.
bool isEmpty() {
Block *block = getMaskBlock();
if (block->getOperations().size() > 1)
return false;
return true;
}
static void ensureTerminator(Region ®ion, Builder &builder,
Location loc);
}];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasCustomAssemblyFormat = 1;
let hasVerifier = 1;
}
def Vector_TransposeOp :
Vector_Op<"transpose", [Pure,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
PredOpTrait<"operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]> {
let summary = "vector transpose operation";
let description = [{
Takes a n-D vector and returns the transposed n-D vector defined by
the permutation of ranks in the n-sized integer array attribute (in case
of 0-D vectors the array attribute must be empty).
In the operation
```mlir
%1 = vector.transpose %0, [i_1, .., i_n]
: vector<d_1 x .. x d_n x f32>
to vector<d_trans[0] x .. x d_trans[n-1] x f32>
```
the `permutation` array [i_1, .., i_n] must be a permutation of [0, .., n-1].
Example:
```mlir
%1 = vector.transpose %0, [1, 0] : vector<2x3xf32> to vector<3x2xf32>
[ [a, b, c], [ [a, d],
[d, e, f] ] -> [b, e],
[c, f] ]
```
}];
let arguments = (ins AnyVectorOfAnyRank:$vector,
DenseI64ArrayAttr:$permutation);
let results = (outs AnyVectorOfAnyRank:$result);
let builders = [
OpBuilder<(ins "Value":$vector, "ArrayRef<int64_t>":$permutation)>
];
let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getVector().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
let assemblyFormat = [{
$vector `,` $permutation attr-dict `:` type($vector) `to` type($result)
}];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
def Vector_PrintOp :
Vector_Op<"print", [
MemoryEffects<[MemWrite]>,
PredOpTrait<
"`source` or `punctuation` are not set when printing strings",
CPred<"!getStringLiteral() || (!getSource() && getPunctuation() == PrintPunctuation::NewLine)">
>,
]>,
Arguments<(ins Optional<Type<Or<[
AnyVectorOfAnyRank.predicate,
AnyInteger.predicate, Index.predicate, AnyFloat.predicate
]>>>:$source, DefaultValuedAttr<Vector_PrintPunctuation,
"::mlir::vector::PrintPunctuation::NewLine">:$punctuation,
OptionalAttr<Builtin_StringAttr>:$stringLiteral)
> {
let summary = "print operation (for testing and debugging)";
let description = [{
Prints the source vector (or scalar) to stdout in a human-readable format
(for testing and debugging). No return value.
Example:
```mlir
%v = arith.constant dense<0.0> : vector<4xf32>
vector.print %v : vector<4xf32>
```
When lowered to LLVM, the vector print is decomposed into elementary
printing method calls that at runtime will yield:
```
( 0.0, 0.0, 0.0, 0.0 )
```
This is printed to stdout via a small runtime support library, which only
needs to provide a few printing methods (single value for all data
types, opening/closing bracket, comma, newline).
By default `vector.print` adds a newline after the vector, but this can be
controlled by the `punctuation` attribute. For example, to print a comma
after instead do:
```mlir
vector.print %v : vector<4xf32> punctuation <comma>
```
Note that it is possible to use the punctuation attribute alone. The
following will print a single newline:
```mlir
vector.print punctuation <newline>
```
Additionally, to aid with debugging and testing `vector.print` can also
print constant strings:
```mlir
vector.print str "Hello, World!"
```
}];
let extraClassDeclaration = [{
Type getPrintType() {
return getSource().getType();
}
}];
let builders = [
OpBuilder<(ins "PrintPunctuation":$punctuation), [{
build($_builder, $_state, {}, punctuation, {});
}]>,
OpBuilder<(ins "::mlir::Value":$source), [{
build($_builder, $_state, source, PrintPunctuation::NewLine);
}]>,
OpBuilder<(ins "::mlir::Value":$source, "PrintPunctuation":$punctuation), [{
build($_builder, $_state, source, punctuation, {});
}]>,
OpBuilder<(ins "::llvm::StringRef":$string), [{
build($_builder, $_state, {}, PrintPunctuation::NewLine, $_builder.getStringAttr(string));
}]>,
];
let assemblyFormat = [{
($source^ `:` type($source))?
oilist(
`str` $stringLiteral
| `punctuation` $punctuation)
attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Ops used for supporting progressive lowering and conversion type changes.
// The Ops are typically not used directly by higher level dialects, but are
// used by intra-dialect rewriting rules to bring vector operations closer
// to the hardware ISA.
//===----------------------------------------------------------------------===//
/// Vector dialect matrix multiplication op that operates on flattened 1-D
/// MLIR vectors. This is the counterpart of llvm.matrix.multiply in MLIR.
/// This may seem redundant with vector.contract but it serves the purposes of
/// more progressive lowering and localized type conversion on the path:
/// `vector<...x...xf32> -> vector<...xf32> -> !llvm<... x float>`.
def Vector_MatmulOp : Vector_Op<"matrix_multiply", [Pure,
PredOpTrait<"lhs operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>,
PredOpTrait<"rhs operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 1>>]>,
Arguments<(
// TODO: tighten vector element types that make sense.
ins FixedVectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, Index, AnyFloat]>:$lhs,
FixedVectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, Index, AnyFloat]>:$rhs,
I32Attr:$lhs_rows, I32Attr:$lhs_columns, I32Attr:$rhs_columns)>,
Results<(
outs FixedVectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, Index, AnyFloat]>:$res)>
{
let summary = "Vector matrix multiplication op that operates on flattened 1-D"
" MLIR vectors";
let description = [{
This is the counterpart of llvm.matrix.multiply in MLIR. It serves the
purposes of more progressive lowering and localized type conversion.
Higher levels typically lower matrix multiplications into 'vector.contract'
operations. Subsequent rewriting rule progressively lower these operations
into 'vector.matrix_multiply' operations to bring the operations closer
to the hardware ISA.
The ‘vector.matrix_multiply’ op treats `lhs` as matrix with <lhs_rows> rows
and <lhs_columns> columns, `rhs` as matrix with <lhs_columns> rows and
<rhs_columns> and multiplies them. The result matrix is returned embedded in
the result vector.
Note, the corresponding LLVM intrinsic, `@llvm.matrix.multiply.*`, does not
support scalable vectors. Hence, this Op is only available for fixed-width
vectors. Also see:
http://llvm.org/docs/LangRef.html#llvm-matrix-multiply-intrinsic
Example:
```mlir
%C = vector.matrix_multiply %A, %B
{ lhs_rows = 4: i32, lhs_columns = 16: i32 , rhs_columns = 3: i32 } :
(vector<64xf64>, vector<48xf64>) -> vector<12xf64>
```
}];
let builders = [
OpBuilder<(ins "Value":$lhs, "Value":$rhs, "unsigned":$lhsRows,
"unsigned":$lhsColumns, "unsigned":$rhsColumns),
[{
$_state.addOperands({lhs, rhs});
$_state.addAttribute("lhs_rows",$_builder.getI32IntegerAttr(lhsRows));
$_state.addAttribute("lhs_columns",$_builder.getI32IntegerAttr(lhsColumns));
$_state.addAttribute("rhs_columns",$_builder.getI32IntegerAttr(rhsColumns));
$_state.addTypes(VectorType::get(lhsRows * rhsColumns,
::llvm::cast<VectorType>(lhs.getType()).getElementType()));
}]>,
];
let assemblyFormat = "$lhs `,` $rhs attr-dict "
"`:` `(` type($lhs) `,` type($rhs) `)` `->` type($res)";
}
/// Vector dialect matrix tranposition op that operates on flattened 1-D
/// MLIR vectors. This is the counterpart of llvm.matrix.transpose in MLIR.
/// This may seem redundant with vector.transpose but it serves the purposes of
/// more progressive lowering and localized type conversion on the path:
/// `vector<...x...xf32> -> vector<...xf32> -> !llvm<... x float>`.
def Vector_FlatTransposeOp : Vector_Op<"flat_transpose", [Pure,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]>,
Arguments<(
// TODO: tighten vector element types that make sense.
ins VectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, Index, AnyFloat]>:$matrix,
I32Attr:$rows, I32Attr:$columns)>,
Results<(
outs VectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, Index, AnyFloat]>:$res)> {
let summary = "Vector matrix transposition on flattened 1-D MLIR vectors";
let description = [{
This is the counterpart of llvm.matrix.transpose in MLIR. It serves
the purposes of more progressive lowering and localized type conversion.
Higher levels typically lower matrix tranpositions into 'vector.transpose'
operations. Subsequent rewriting rule progressively lower these operations
into 'vector.flat_transpose' operations to bring the operations closer
to the hardware ISA.
The `vector.flat_transpose` op treats the 1-D input `matrix` as
a 2-D matrix with <rows> rows and <columns> columns, and returns the
transposed matrix in flattened form in 'res'.
Also see:
http://llvm.org/docs/LangRef.html#llvm-matrix-transpose-intrinsic
Example:
```mlir
%1 = vector.flat_transpose %0 {columns = 4 : i32, rows = 4 : i32}
: vector<16xf32> -> vector<16xf32>
```
}];
let assemblyFormat = "$matrix attr-dict `:` type($matrix) `->` type($res)";
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
def Vector_SplatOp : Vector_Op<"splat", [
Pure,
TypesMatchWith<"operand type matches element type of result",
"aggregate", "input",
"::llvm::cast<VectorType>($_self).getElementType()">
]> {
let summary = "vector splat or broadcast operation";
let description = [{
Broadcast the operand to all elements of the result vector. The operand is
required to be of integer/index/float type.
Example:
```mlir
%s = arith.constant 10.1 : f32
%t = vector.splat %s : vector<8x16xi32>
```
}];
let arguments = (ins AnyTypeOf<[AnySignlessInteger, Index, AnyFloat],
"integer/index/float type">:$input);
let results = (outs AnyVectorOfAnyRank:$aggregate);
let builders = [
OpBuilder<(ins "Value":$element, "Type":$aggregateType),
[{ build($_builder, $_state, aggregateType, element); }]>];
let assemblyFormat = "$input attr-dict `:` type($aggregate)";
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// VectorScaleOp
//===----------------------------------------------------------------------===//
// TODO: In the future, we might want to have scalable vectors with different
// scales for different dimensions. E.g.: vector<[16]x[16]xf32>, in
// which case we might need to add an index to 'vscale' to select one
// of them. In order to support GPUs, we might also want to differentiate
// between a 'global' scale, a scale that's fixed throughout the
// execution, and a 'local' scale that is fixed but might vary with each
// call to the function. For that, it might be useful to have a
// 'vector.scale.global' and a 'vector.scale.local' operation.
def VectorScaleOp : Vector_Op<"vscale",
[Pure, DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>]
> {
let summary = "Load vector scale size";
let description = [{
The `vscale` op returns the scale of the scalable vectors, a positive
integer value that is constant at runtime but unknown at compile-time.
The scale of the vector indicates the multiplicity of the vectors and
vector operations. For example, a `vector<[4]xi32>` is equivalent to
`vscale` consecutive `vector<4xi32>`; and an operation on a
`vector<[4]xi32>` is equivalent to performing that operation `vscale`
times, once on each `<4xi32>` segment of the scalable vector. The `vscale`
op can be used to calculate the step in vector-length agnostic (VLA) loops.
Right now we only support one contiguous set of scalable dimensions, all of
them grouped and scaled with the value returned by 'vscale'.
}];
let results = (outs Index:$res);
let assemblyFormat = "attr-dict";
let extraClassDefinition = [{
void $cppClass::getAsmResultNames(
::llvm::function_ref<void(mlir::Value, mlir::StringRef)> setNameFn) {
setNameFn(getResult(), "vscale");
}
}];
}
//===----------------------------------------------------------------------===//
// VectorScanOp
//===----------------------------------------------------------------------===//
def Vector_ScanOp :
Vector_Op<"scan", [Pure,
AllTypesMatch<["source", "dest"]>,
AllTypesMatch<["initial_value", "accumulated_value"]> ]>,
Arguments<(ins Vector_CombiningKindAttr:$kind,
AnyVector:$source,
AnyVectorOfAnyRank:$initial_value,
I64Attr:$reduction_dim,
BoolAttr:$inclusive)>,
Results<(outs AnyVector:$dest,
AnyVectorOfAnyRank:$accumulated_value)> {
let summary = "Scan operation";
let description = [{
Performs an inclusive/exclusive scan on an n-D vector along a single
dimension returning an n-D result vector using the given
operation (`add`/`mul`/`minsi`/`minui`/`maxsi`/`maxui`/`and`/`or`/`xor` for
integers, and `add`/`mul`/`minnumf`/`maxnumf`/`minimumf`/`maximumf` for
floats), and a specified value for the initial value. The operator returns
the result of scan as well as the result of the last reduction in the scan.
Example:
```mlir
%1:2 = vector.scan <add>, %0, %acc {inclusive = false, reduction_dim = 1 : i64} :
vector<4x8x16x32xf32>, vector<4x16x32xf32>
```
}];
let builders = [
OpBuilder<(ins "Value":$source, "Value":$initial_value,
"CombiningKind":$kind,
CArg<"int64_t", "0">:$reduction_dim,
CArg<"bool", "true">:$inclusive)>
];
let extraClassDeclaration = [{
VectorType getSourceType() {
return ::llvm::cast<VectorType>(getSource().getType());
}
VectorType getDestType() {
return ::llvm::cast<VectorType>(getDest().getType());
}
VectorType getAccumulatorType() {
return ::llvm::cast<VectorType>(getAccumulatedValue().getType());
}
VectorType getInitialValueType() {
return ::llvm::cast<VectorType>(getInitialValue().getType());
}
}];
let assemblyFormat =
"$kind `,` $source `,` $initial_value attr-dict `:` "
"type($source) `,` type($initial_value) ";
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// VectorStepOp
//===----------------------------------------------------------------------===//
def Vector_StepOp : Vector_Op<"step", [Pure]> {
let summary = "A linear sequence of values from 0 to N";
let description = [{
A `step` operation produces an index vector, i.e. a 1-D vector of values of
index type that represents a linear sequence from 0 to N-1, where N is the
number of elements in the `result` vector.
Supports fixed-width and scalable vectors.
Examples:
```mlir
%0 = vector.step : vector<4xindex> ; [0, 1, 2, 3]
%1 = vector.step : vector<[4]xindex> ; [0, 1, .., <vscale * 4 - 1>]
```
}];
let hasFolder = 1;
let results = (outs VectorOfRankAndType<[1], [Index]>:$result);
let assemblyFormat = "attr-dict `:` type($result)";
}
def Vector_YieldOp : Vector_Op<"yield", [
Pure, ReturnLike, Terminator]> {
let summary = "Terminates and yields values from vector regions.";
let description = [{
"vector.yield" yields an SSA value from the Vector dialect op region and
terminates the regions. The semantics of how the values are yielded is
defined by the parent operation.
If "vector.yield" has any operands, the operands must correspond to the
parent operation's results.
If the parent operation defines no value the vector.yield may be omitted
when printing the region.
}];
let arguments = (ins Variadic<AnyType>:$operands);
let builders = [
OpBuilder<(ins), [{ /* nothing to do */ }]>,
];
let assemblyFormat = "attr-dict ($operands^ `:` type($operands))?";
}
def Vector_WarpExecuteOnLane0Op : Vector_Op<"warp_execute_on_lane_0",
[DeclareOpInterfaceMethods<RegionBranchOpInterface, ["areTypesCompatible"]>,
SingleBlockImplicitTerminator<"vector::YieldOp">,
RecursiveMemoryEffects]> {
let summary = "Executes operations in the associated region on thread #0 of a"
"SPMD program";
let description = [{
`warp_execute_on_lane_0` is an operation used to bridge the gap between
vector programming and SPMD programming model like GPU SIMT. It allows to
trivially convert a region of vector code meant to run on a multiple threads
into a valid SPMD region and then allows incremental transformation to
distribute vector operations on the threads.
Any code present in the region would only be executed on first thread/lane
based on the `laneid` operand. The `laneid` operand is an integer ID between
[0, `warp_size`). The `warp_size` attribute indicates the number of lanes in
a warp.
Operands are vector values distributed on all lanes that may be used by
the single lane execution. The matching region argument is a vector of all
the values of those lanes available to the single active lane. The
distributed dimension is implicit based on the shape of the operand and
argument. the properties of the distribution may be described by extra
attributes (e.g. affine map).
Return values are distributed on all lanes using laneId as index. The
vector is distributed based on the shape ratio between the vector type of
the yield and the result type.
If the shapes are the same this means the value is broadcasted to all lanes.
In the future the distribution can be made more explicit using affine_maps
and will support having multiple Ids.
Therefore the `warp_execute_on_lane_0` operations allow to implicitly copy
between lane0 and the lanes of the warp. When distributing a vector
from lane0 to all the lanes, the data are distributed in a block cyclic way.
For exemple `vector<64xf32>` gets distributed on 32 threads and map to
`vector<2xf32>` where thread 0 contains vector[0] and vector[1].
During lowering values passed as operands and return value need to be
visible to different lanes within the warp. This would usually be done by
going through memory.
The region is *not* isolated from above. For values coming from the parent
region not going through operands only the lane 0 value will be accesible so
it generally only make sense for uniform values.
Example:
```
// Execute in parallel on all threads/lanes.
vector.warp_execute_on_lane_0 (%laneid)[32] {
// Serial code running only on thread/lane 0.
...
}
// Execute in parallel on all threads/lanes.
```
This may be lowered to an scf.if region as below:
```
// Execute in parallel on all threads/lanes.
%cnd = arith.cmpi eq, %laneid, %c0 : index
scf.if %cnd {
// Serial code running only on thread/lane 0.
...
}
// Execute in parallel on all threads/lanes.
```
When the region has operands and/or return values:
```
// Execute in parallel on all threads/lanes.
%0 = vector.warp_execute_on_lane_0(%laneid)[32]
args(%v0 : vector<4xi32>) -> (vector<1xf32>) {
^bb0(%arg0 : vector<128xi32>) :
// Serial code running only on thread/lane 0.
...
vector.yield %1 : vector<32xf32>
}
// Execute in parallel on all threads/lanes.
```
values at the region boundary would go through memory:
```
// Execute in parallel on all threads/lanes.
...
// Store the data from each thread into memory and Synchronization.
%tmp0 = memreg.alloc() : memref<128xf32>
%tmp1 = memreg.alloc() : memref<32xf32>
%cnd = arith.cmpi eq, %laneid, %c0 : index
vector.store %v0, %tmp0[%laneid] : memref<128xf32>, vector<4xf32>
some_synchronization_primitive
scf.if %cnd {
// Serialized code running only on thread 0.
// Load the data from all the threads into a register from thread 0. This
// allow threads 0 to access data from all the threads.
%arg0 = vector.load %tmp0[%c0] : memref<128xf32>, vector<128xf32>
...
// Store the data from thread 0 into memory.
vector.store %1, %tmp1[%c0] : memref<32xf32>, vector<32xf32>
}
// Synchronization and load the data in a block cyclic way so that the
// vector is distributed on all threads.
some_synchronization_primitive
%0 = vector.load %tmp1[%laneid] : memref<32xf32>, vector<32xf32>
// Execute in parallel on all threads/lanes.
```
}];
let hasVerifier = 1;
let hasCustomAssemblyFormat = 1;
let arguments = (ins Index:$laneid, I64Attr:$warp_size,
Variadic<AnyType>:$args);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$warpRegion);
let skipDefaultBuilders = 1;
let builders = [
OpBuilder<(ins "Value":$laneid, "int64_t":$warpSize)>,
OpBuilder<(ins "TypeRange":$resultTypes, "Value":$laneid,
"int64_t":$warpSize)>,
// `blockArgTypes` are different than `args` types as they are they
// represent all the `args` instances visibile to lane 0. Therefore we need
// to explicit pass the type.
OpBuilder<(ins "TypeRange":$resultTypes, "Value":$laneid,
"int64_t":$warpSize, "ValueRange":$args,
"TypeRange":$blockArgTypes)>
];
let extraClassDeclaration = [{
bool isDefinedOutsideOfRegion(Value value) {
return !getRegion().isAncestor(value.getParentRegion());
}
}];
}
#endif // MLIR_DIALECT_VECTOR_IR_VECTOR_OPS