//===- PybindAdaptors.h - Adaptors for interop with MLIR APIs -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains adaptors for clients of the core MLIR Python APIs to
// interop via MLIR CAPI types. The facilities here do not depend on
// implementation details of the MLIR Python API and do not introduce C++-level
// dependencies with it (requiring only Python and CAPI-level dependencies).
//
// It is encouraged to be used both in-tree and out-of-tree. For in-tree use
// cases, it should be used for dialect implementations (versus relying on
// Pybind-based internals of the core libraries).
//===----------------------------------------------------------------------===//
#ifndef MLIR_BINDINGS_PYTHON_PYBINDADAPTORS_H
#define MLIR_BINDINGS_PYTHON_PYBINDADAPTORS_H
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <pybind11/stl.h>
#include "mlir-c/Bindings/Python/Interop.h"
#include "mlir-c/Diagnostics.h"
#include "mlir-c/IR.h"
#include "llvm/ADT/Twine.h"
namespace py = pybind11;
using namespace py::literals;
// Raw CAPI type casters need to be declared before use, so always include them
// first.
namespace pybind11 {
namespace detail {
/// Helper to convert a presumed MLIR API object to a capsule, accepting either
/// an explicit Capsule (which can happen when two C APIs are communicating
/// directly via Python) or indirectly by querying the MLIR_PYTHON_CAPI_PTR_ATTR
/// attribute (through which supported MLIR Python API objects export their
/// contained API pointer as a capsule). Throws a type error if the object is
/// neither. This is intended to be used from type casters, which are invoked
/// with a raw handle (unowned). The returned object's lifetime may not extend
/// beyond the apiObject handle without explicitly having its refcount increased
/// (i.e. on return).
static py::object mlirApiObjectToCapsule(py::handle apiObject) {
if (PyCapsule_CheckExact(apiObject.ptr()))
return py::reinterpret_borrow<py::object>(apiObject);
if (!py::hasattr(apiObject, MLIR_PYTHON_CAPI_PTR_ATTR)) {
auto repr = py::repr(apiObject).cast<std::string>();
throw py::type_error(
(llvm::Twine("Expected an MLIR object (got ") + repr + ").").str());
}
return apiObject.attr(MLIR_PYTHON_CAPI_PTR_ATTR);
}
// Note: Currently all of the following support cast from py::object to the
// Mlir* C-API type, but only a few light-weight, context-bound ones
// implicitly cast the other way because the use case has not yet emerged and
// ownership is unclear.
/// Casts object <-> MlirAffineMap.
template <>
struct type_caster<MlirAffineMap> {
PYBIND11_TYPE_CASTER(MlirAffineMap, _("MlirAffineMap"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToAffineMap(capsule.ptr());
if (mlirAffineMapIsNull(value)) {
return false;
}
return !mlirAffineMapIsNull(value);
}
static handle cast(MlirAffineMap v, return_value_policy, handle) {
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonAffineMapToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("AffineMap")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
}
};
/// Casts object <-> MlirAttribute.
template <>
struct type_caster<MlirAttribute> {
PYBIND11_TYPE_CASTER(MlirAttribute, _("MlirAttribute"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToAttribute(capsule.ptr());
return !mlirAttributeIsNull(value);
}
static handle cast(MlirAttribute v, return_value_policy, handle) {
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonAttributeToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Attribute")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.attr(MLIR_PYTHON_MAYBE_DOWNCAST_ATTR)()
.release();
}
};
/// Casts object -> MlirBlock.
template <>
struct type_caster<MlirBlock> {
PYBIND11_TYPE_CASTER(MlirBlock, _("MlirBlock"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToBlock(capsule.ptr());
return !mlirBlockIsNull(value);
}
};
/// Casts object -> MlirContext.
template <>
struct type_caster<MlirContext> {
PYBIND11_TYPE_CASTER(MlirContext, _("MlirContext"));
bool load(handle src, bool) {
if (src.is_none()) {
// Gets the current thread-bound context.
// TODO: This raises an error of "No current context" currently.
// Update the implementation to pretty-print the helpful error that the
// core implementations print in this case.
src = py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Context")
.attr("current");
}
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToContext(capsule.ptr());
return !mlirContextIsNull(value);
}
};
/// Casts object <-> MlirDialectRegistry.
template <>
struct type_caster<MlirDialectRegistry> {
PYBIND11_TYPE_CASTER(MlirDialectRegistry, _("MlirDialectRegistry"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToDialectRegistry(capsule.ptr());
return !mlirDialectRegistryIsNull(value);
}
static handle cast(MlirDialectRegistry v, return_value_policy, handle) {
py::object capsule = py::reinterpret_steal<py::object>(
mlirPythonDialectRegistryToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("DialectRegistry")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
}
};
/// Casts object <-> MlirLocation.
template <>
struct type_caster<MlirLocation> {
PYBIND11_TYPE_CASTER(MlirLocation, _("MlirLocation"));
bool load(handle src, bool) {
if (src.is_none()) {
// Gets the current thread-bound context.
src = py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Location")
.attr("current");
}
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToLocation(capsule.ptr());
return !mlirLocationIsNull(value);
}
static handle cast(MlirLocation v, return_value_policy, handle) {
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonLocationToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Location")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
}
};
/// Casts object <-> MlirModule.
template <>
struct type_caster<MlirModule> {
PYBIND11_TYPE_CASTER(MlirModule, _("MlirModule"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToModule(capsule.ptr());
return !mlirModuleIsNull(value);
}
static handle cast(MlirModule v, return_value_policy, handle) {
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonModuleToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Module")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
};
};
/// Casts object <-> MlirFrozenRewritePatternSet.
template <>
struct type_caster<MlirFrozenRewritePatternSet> {
PYBIND11_TYPE_CASTER(MlirFrozenRewritePatternSet,
_("MlirFrozenRewritePatternSet"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToFrozenRewritePatternSet(capsule.ptr());
return value.ptr != nullptr;
}
static handle cast(MlirFrozenRewritePatternSet v, return_value_policy,
handle) {
py::object capsule = py::reinterpret_steal<py::object>(
mlirPythonFrozenRewritePatternSetToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("rewrite"))
.attr("FrozenRewritePatternSet")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
};
};
/// Casts object <-> MlirOperation.
template <>
struct type_caster<MlirOperation> {
PYBIND11_TYPE_CASTER(MlirOperation, _("MlirOperation"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToOperation(capsule.ptr());
return !mlirOperationIsNull(value);
}
static handle cast(MlirOperation v, return_value_policy, handle) {
if (v.ptr == nullptr)
return py::none();
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonOperationToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Operation")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
};
};
/// Casts object <-> MlirValue.
template <>
struct type_caster<MlirValue> {
PYBIND11_TYPE_CASTER(MlirValue, _("MlirValue"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToValue(capsule.ptr());
return !mlirValueIsNull(value);
}
static handle cast(MlirValue v, return_value_policy, handle) {
if (v.ptr == nullptr)
return py::none();
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonValueToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Value")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.attr(MLIR_PYTHON_MAYBE_DOWNCAST_ATTR)()
.release();
};
};
/// Casts object -> MlirPassManager.
template <>
struct type_caster<MlirPassManager> {
PYBIND11_TYPE_CASTER(MlirPassManager, _("MlirPassManager"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToPassManager(capsule.ptr());
return !mlirPassManagerIsNull(value);
}
};
/// Casts object <-> MlirTypeID.
template <>
struct type_caster<MlirTypeID> {
PYBIND11_TYPE_CASTER(MlirTypeID, _("MlirTypeID"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToTypeID(capsule.ptr());
return !mlirTypeIDIsNull(value);
}
static handle cast(MlirTypeID v, return_value_policy, handle) {
if (v.ptr == nullptr)
return py::none();
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonTypeIDToCapsule(v));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("TypeID")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.release();
};
};
/// Casts object <-> MlirType.
template <>
struct type_caster<MlirType> {
PYBIND11_TYPE_CASTER(MlirType, _("MlirType"));
bool load(handle src, bool) {
py::object capsule = mlirApiObjectToCapsule(src);
value = mlirPythonCapsuleToType(capsule.ptr());
return !mlirTypeIsNull(value);
}
static handle cast(MlirType t, return_value_policy, handle) {
py::object capsule =
py::reinterpret_steal<py::object>(mlirPythonTypeToCapsule(t));
return py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Type")
.attr(MLIR_PYTHON_CAPI_FACTORY_ATTR)(capsule)
.attr(MLIR_PYTHON_MAYBE_DOWNCAST_ATTR)()
.release();
}
};
} // namespace detail
} // namespace pybind11
namespace mlir {
namespace python {
namespace adaptors {
/// Provides a facility like py::class_ for defining a new class in a scope,
/// but this allows extension of an arbitrary Python class, defining methods
/// on it is a similar way. Classes defined in this way are very similar to
/// if defined in Python in the usual way but use Pybind11 machinery to do
/// it. These are not "real" Pybind11 classes but pure Python classes with no
/// relation to a concrete C++ class.
///
/// Derived from a discussion upstream:
/// https://github.com/pybind/pybind11/issues/1193
/// (plus a fair amount of extra curricular poking)
/// TODO: If this proves useful, see about including it in pybind11.
class pure_subclass {
public:
pure_subclass(py::handle scope, const char *derivedClassName,
const py::object &superClass) {
py::object pyType =
py::reinterpret_borrow<py::object>((PyObject *)&PyType_Type);
py::object metaclass = pyType(superClass);
py::dict attributes;
thisClass =
metaclass(derivedClassName, py::make_tuple(superClass), attributes);
scope.attr(derivedClassName) = thisClass;
}
template <typename Func, typename... Extra>
pure_subclass &def(const char *name, Func &&f, const Extra &...extra) {
py::cpp_function cf(
std::forward<Func>(f), py::name(name), py::is_method(thisClass),
py::sibling(py::getattr(thisClass, name, py::none())), extra...);
thisClass.attr(cf.name()) = cf;
return *this;
}
template <typename Func, typename... Extra>
pure_subclass &def_property_readonly(const char *name, Func &&f,
const Extra &...extra) {
py::cpp_function cf(
std::forward<Func>(f), py::name(name), py::is_method(thisClass),
py::sibling(py::getattr(thisClass, name, py::none())), extra...);
auto builtinProperty =
py::reinterpret_borrow<py::object>((PyObject *)&PyProperty_Type);
thisClass.attr(name) = builtinProperty(cf);
return *this;
}
template <typename Func, typename... Extra>
pure_subclass &def_staticmethod(const char *name, Func &&f,
const Extra &...extra) {
static_assert(!std::is_member_function_pointer<Func>::value,
"def_staticmethod(...) called with a non-static member "
"function pointer");
py::cpp_function cf(
std::forward<Func>(f), py::name(name), py::scope(thisClass),
py::sibling(py::getattr(thisClass, name, py::none())), extra...);
thisClass.attr(cf.name()) = py::staticmethod(cf);
return *this;
}
template <typename Func, typename... Extra>
pure_subclass &def_classmethod(const char *name, Func &&f,
const Extra &...extra) {
static_assert(!std::is_member_function_pointer<Func>::value,
"def_classmethod(...) called with a non-static member "
"function pointer");
py::cpp_function cf(
std::forward<Func>(f), py::name(name), py::scope(thisClass),
py::sibling(py::getattr(thisClass, name, py::none())), extra...);
thisClass.attr(cf.name()) =
py::reinterpret_borrow<py::object>(PyClassMethod_New(cf.ptr()));
return *this;
}
py::object get_class() const { return thisClass; }
protected:
py::object superClass;
py::object thisClass;
};
/// Creates a custom subclass of mlir.ir.Attribute, implementing a casting
/// constructor and type checking methods.
class mlir_attribute_subclass : public pure_subclass {
public:
using IsAFunctionTy = bool (*)(MlirAttribute);
using GetTypeIDFunctionTy = MlirTypeID (*)();
/// Subclasses by looking up the super-class dynamically.
mlir_attribute_subclass(py::handle scope, const char *attrClassName,
IsAFunctionTy isaFunction,
GetTypeIDFunctionTy getTypeIDFunction = nullptr)
: mlir_attribute_subclass(
scope, attrClassName, isaFunction,
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("Attribute"),
getTypeIDFunction) {}
/// Subclasses with a provided mlir.ir.Attribute super-class. This must
/// be used if the subclass is being defined in the same extension module
/// as the mlir.ir class (otherwise, it will trigger a recursive
/// initialization).
mlir_attribute_subclass(py::handle scope, const char *typeClassName,
IsAFunctionTy isaFunction, const py::object &superCls,
GetTypeIDFunctionTy getTypeIDFunction = nullptr)
: pure_subclass(scope, typeClassName, superCls) {
// Casting constructor. Note that it hard, if not impossible, to properly
// call chain to parent `__init__` in pybind11 due to its special handling
// for init functions that don't have a fully constructed self-reference,
// which makes it impossible to forward it to `__init__` of a superclass.
// Instead, provide a custom `__new__` and call that of a superclass, which
// eventually calls `__init__` of the superclass. Since attribute subclasses
// have no additional members, we can just return the instance thus created
// without amending it.
std::string captureTypeName(
typeClassName); // As string in case if typeClassName is not static.
py::cpp_function newCf(
[superCls, isaFunction, captureTypeName](py::object cls,
py::object otherAttribute) {
MlirAttribute rawAttribute = py::cast<MlirAttribute>(otherAttribute);
if (!isaFunction(rawAttribute)) {
auto origRepr = py::repr(otherAttribute).cast<std::string>();
throw std::invalid_argument(
(llvm::Twine("Cannot cast attribute to ") + captureTypeName +
" (from " + origRepr + ")")
.str());
}
py::object self = superCls.attr("__new__")(cls, otherAttribute);
return self;
},
py::name("__new__"), py::arg("cls"), py::arg("cast_from_attr"));
thisClass.attr("__new__") = newCf;
// 'isinstance' method.
def_staticmethod(
"isinstance",
[isaFunction](MlirAttribute other) { return isaFunction(other); },
py::arg("other_attribute"));
def("__repr__", [superCls, captureTypeName](py::object self) {
return py::repr(superCls(self))
.attr("replace")(superCls.attr("__name__"), captureTypeName);
});
if (getTypeIDFunction) {
def_staticmethod("get_static_typeid",
[getTypeIDFunction]() { return getTypeIDFunction(); });
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr(MLIR_PYTHON_CAPI_TYPE_CASTER_REGISTER_ATTR)(
getTypeIDFunction())(pybind11::cpp_function(
[thisClass = thisClass](const py::object &mlirAttribute) {
return thisClass(mlirAttribute);
}));
}
}
};
/// Creates a custom subclass of mlir.ir.Type, implementing a casting
/// constructor and type checking methods.
class mlir_type_subclass : public pure_subclass {
public:
using IsAFunctionTy = bool (*)(MlirType);
using GetTypeIDFunctionTy = MlirTypeID (*)();
/// Subclasses by looking up the super-class dynamically.
mlir_type_subclass(py::handle scope, const char *typeClassName,
IsAFunctionTy isaFunction,
GetTypeIDFunctionTy getTypeIDFunction = nullptr)
: mlir_type_subclass(
scope, typeClassName, isaFunction,
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir")).attr("Type"),
getTypeIDFunction) {}
/// Subclasses with a provided mlir.ir.Type super-class. This must
/// be used if the subclass is being defined in the same extension module
/// as the mlir.ir class (otherwise, it will trigger a recursive
/// initialization).
mlir_type_subclass(py::handle scope, const char *typeClassName,
IsAFunctionTy isaFunction, const py::object &superCls,
GetTypeIDFunctionTy getTypeIDFunction = nullptr)
: pure_subclass(scope, typeClassName, superCls) {
// Casting constructor. Note that it hard, if not impossible, to properly
// call chain to parent `__init__` in pybind11 due to its special handling
// for init functions that don't have a fully constructed self-reference,
// which makes it impossible to forward it to `__init__` of a superclass.
// Instead, provide a custom `__new__` and call that of a superclass, which
// eventually calls `__init__` of the superclass. Since attribute subclasses
// have no additional members, we can just return the instance thus created
// without amending it.
std::string captureTypeName(
typeClassName); // As string in case if typeClassName is not static.
py::cpp_function newCf(
[superCls, isaFunction, captureTypeName](py::object cls,
py::object otherType) {
MlirType rawType = py::cast<MlirType>(otherType);
if (!isaFunction(rawType)) {
auto origRepr = py::repr(otherType).cast<std::string>();
throw std::invalid_argument((llvm::Twine("Cannot cast type to ") +
captureTypeName + " (from " +
origRepr + ")")
.str());
}
py::object self = superCls.attr("__new__")(cls, otherType);
return self;
},
py::name("__new__"), py::arg("cls"), py::arg("cast_from_type"));
thisClass.attr("__new__") = newCf;
// 'isinstance' method.
def_staticmethod(
"isinstance",
[isaFunction](MlirType other) { return isaFunction(other); },
py::arg("other_type"));
def("__repr__", [superCls, captureTypeName](py::object self) {
return py::repr(superCls(self))
.attr("replace")(superCls.attr("__name__"), captureTypeName);
});
if (getTypeIDFunction) {
// 'get_static_typeid' method.
// This is modeled as a static method instead of a static property because
// `def_property_readonly_static` is not available in `pure_subclass` and
// we do not want to introduce the complexity that pybind uses to
// implement it.
def_staticmethod("get_static_typeid",
[getTypeIDFunction]() { return getTypeIDFunction(); });
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr(MLIR_PYTHON_CAPI_TYPE_CASTER_REGISTER_ATTR)(
getTypeIDFunction())(pybind11::cpp_function(
[thisClass = thisClass](const py::object &mlirType) {
return thisClass(mlirType);
}));
}
}
};
/// Creates a custom subclass of mlir.ir.Value, implementing a casting
/// constructor and type checking methods.
class mlir_value_subclass : public pure_subclass {
public:
using IsAFunctionTy = bool (*)(MlirValue);
/// Subclasses by looking up the super-class dynamically.
mlir_value_subclass(py::handle scope, const char *valueClassName,
IsAFunctionTy isaFunction)
: mlir_value_subclass(
scope, valueClassName, isaFunction,
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir")).attr("Value")) {
}
/// Subclasses with a provided mlir.ir.Value super-class. This must
/// be used if the subclass is being defined in the same extension module
/// as the mlir.ir class (otherwise, it will trigger a recursive
/// initialization).
mlir_value_subclass(py::handle scope, const char *valueClassName,
IsAFunctionTy isaFunction, const py::object &superCls)
: pure_subclass(scope, valueClassName, superCls) {
// Casting constructor. Note that it hard, if not impossible, to properly
// call chain to parent `__init__` in pybind11 due to its special handling
// for init functions that don't have a fully constructed self-reference,
// which makes it impossible to forward it to `__init__` of a superclass.
// Instead, provide a custom `__new__` and call that of a superclass, which
// eventually calls `__init__` of the superclass. Since attribute subclasses
// have no additional members, we can just return the instance thus created
// without amending it.
std::string captureValueName(
valueClassName); // As string in case if valueClassName is not static.
py::cpp_function newCf(
[superCls, isaFunction, captureValueName](py::object cls,
py::object otherValue) {
MlirValue rawValue = py::cast<MlirValue>(otherValue);
if (!isaFunction(rawValue)) {
auto origRepr = py::repr(otherValue).cast<std::string>();
throw std::invalid_argument((llvm::Twine("Cannot cast value to ") +
captureValueName + " (from " +
origRepr + ")")
.str());
}
py::object self = superCls.attr("__new__")(cls, otherValue);
return self;
},
py::name("__new__"), py::arg("cls"), py::arg("cast_from_value"));
thisClass.attr("__new__") = newCf;
// 'isinstance' method.
def_staticmethod(
"isinstance",
[isaFunction](MlirValue other) { return isaFunction(other); },
py::arg("other_value"));
}
};
} // namespace adaptors
/// RAII scope intercepting all diagnostics into a string. The message must be
/// checked before this goes out of scope.
class CollectDiagnosticsToStringScope {
public:
explicit CollectDiagnosticsToStringScope(MlirContext ctx) : context(ctx) {
handlerID = mlirContextAttachDiagnosticHandler(ctx, &handler, &errorMessage,
/*deleteUserData=*/nullptr);
}
~CollectDiagnosticsToStringScope() {
assert(errorMessage.empty() && "unchecked error message");
mlirContextDetachDiagnosticHandler(context, handlerID);
}
[[nodiscard]] std::string takeMessage() { return std::move(errorMessage); }
private:
static MlirLogicalResult handler(MlirDiagnostic diag, void *data) {
auto printer = +[](MlirStringRef message, void *data) {
*static_cast<std::string *>(data) +=
llvm::StringRef(message.data, message.length);
};
MlirLocation loc = mlirDiagnosticGetLocation(diag);
*static_cast<std::string *>(data) += "at ";
mlirLocationPrint(loc, printer, data);
*static_cast<std::string *>(data) += ": ";
mlirDiagnosticPrint(diag, printer, data);
return mlirLogicalResultSuccess();
}
MlirContext context;
MlirDiagnosticHandlerID handlerID;
std::string errorMessage = "";
};
} // namespace python
} // namespace mlir
#endif // MLIR_BINDINGS_PYTHON_PYBINDADAPTORS_H