# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from typing import List
from mlir.ir import Type
__all__ = [
"QuantizedType",
"AnyQuantizedType",
"UniformQuantizedType",
"UniformQuantizedPerAxisType",
"CalibratedQuantizedType",
]
class QuantizedType(Type):
@staticmethod
def isinstance(type: Type) -> bool: ...
@staticmethod
def default_minimum_for_integer(is_signed: bool, integral_width: int) -> int:
...
@staticmethod
def default_maximum_for_integer(is_signed: bool, integral_width: int) -> int:
...
@property
def expressed_type(self) -> Type: ...
@property
def flags(self) -> int: ...
@property
def is_signed(self) -> bool: ...
@property
def storage_type(self) -> Type: ...
@property
def storage_type_min(self) -> int: ...
@property
def storage_type_max(self) -> int: ...
@property
def storage_type_integral_width(self) -> int: ...
def is_compatible_expressed_type(self, candidate: Type) -> bool: ...
@property
def quantized_element_type(self) -> Type: ...
def cast_from_storage_type(self, candidate: Type) -> Type: ...
@staticmethod
def cast_to_storage_type(type: Type) -> Type: ...
def cast_from_expressed_type(self, candidate: Type) -> Type: ...
@staticmethod
def cast_to_expressed_type(type: Type) -> Type: ...
def cast_expressed_to_storage_type(self, candidate: Type) -> Type: ...
class AnyQuantizedType(QuantizedType):
@classmethod
def get(cls, flags: int, storage_type: Type, expressed_type: Type,
storage_type_min: int, storage_type_max: int) -> Type:
...
class UniformQuantizedType(QuantizedType):
@classmethod
def get(cls, flags: int, storage_type: Type, expressed_type: Type,
scale: float, zero_point: int, storage_type_min: int,
storage_type_max: int) -> Type: ...
@property
def scale(self) -> float: ...
@property
def zero_point(self) -> int: ...
@property
def is_fixed_point(self) -> bool: ...
class UniformQuantizedPerAxisType(QuantizedType):
@classmethod
def get(cls, flags: int, storage_type: Type, expressed_type: Type,
scales: List[float], zero_points: List[int], quantized_dimension: int,
storage_type_min: int, storage_type_max: int):
...
@property
def scales(self) -> List[float]: ...
@property
def zero_points(self) -> List[float]: ...
@property
def quantized_dimension(self) -> int: ...
@property
def is_fixed_point(self) -> bool: ...
def CalibratedQuantizedType(QuantizedType):
@classmethod
def get(cls, expressed_type: Type, min: float, max: float): ...
@property
def min(self) -> float: ...
@property
def max(self) -> float: ...