// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries" -drop-equivalent-buffer-results -split-input-file | FileCheck %s
// Run fuzzer with different seeds.
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=23 bufferize-function-boundaries" -split-input-file -o /dev/null
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=59 bufferize-function-boundaries" -split-input-file -o /dev/null
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=91 bufferize-function-boundaries" -split-input-file -o /dev/null
// Test bufferization using memref types that have no layout map.
// RUN: mlir-opt %s -one-shot-bufferize="unknown-type-conversion=identity-layout-map bufferize-function-boundaries" -split-input-file -o /dev/null
// CHECK-LABEL: func @insert_slice_fun
// CHECK-SAME: %[[A0:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>,
// CHECK-SAME: %[[A1:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>,
// CHECK-SAME: %[[t0:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>,
// CHECK-SAME: %[[t1:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>
func.func @insert_slice_fun(
%A0 : tensor<?xf32> {bufferization.writable = false},
%A1 : tensor<?xf32> {bufferization.writable = true},
%t0 : tensor<4xf32> {bufferization.writable = false},
%t1 : tensor<4xf32> {bufferization.writable = true})
-> (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>)
{
// Alloc and copy the whole result tensor. Copy the tensor.extract_slice.
// CHECK: %[[REALLOC3:.*]] = memref.alloc
// CHECK: memref.copy %[[A0]], %[[REALLOC3]]
// CHECK: %[[SV_A0:.*]] = memref.subview %[[REALLOC3]]
// CHECK: memref.copy %[[t0]], %[[SV_A0]]
%r0 = tensor.insert_slice %t0 into %A0[0][4][1] : tensor<4xf32> into tensor<?xf32>
// Alloc and copy the whole result tensor. Copy the tensor.extract_slice.
// CHECK: %[[REALLOC2:.*]] = memref.alloc
// CHECK: memref.copy %[[A0]]
// CHECK: %[[SV_A0_2:.*]] = memref.subview %[[REALLOC2]]
// CHECK: memref.copy %[[t1]], %[[SV_A0_2]]
%r1 = tensor.insert_slice %t1 into %A0[0][4][1] : tensor<4xf32> into tensor<?xf32>
// Still alloc the large tensor because %A1 is read after. Copy the tensor.extract_slice.
// CHECK: %[[REALLOC1:.*]] = memref.alloc
// CHECK: memref.copy %[[A1]]
// CHECK: %[[SV_A1:.*]] = memref.subview %[[REALLOC1]]
// CHECK: memref.copy %[[t0]], %[[SV_A1]]
%r2 = tensor.insert_slice %t0 into %A1[0][4][1] : tensor<4xf32> into tensor<?xf32>
// Do not realloc the large tensor. Copy the tensor.extract_slice.
// CHECK-NOT: alloc
// CHECK: %[[SV_A1_2:.*]] = memref.subview %[[A1]]
// CHECK: memref.copy %[[t1]], %[[SV_A1_2]]
%r3 = tensor.insert_slice %t1 into %A1[0][4][1] : tensor<4xf32> into tensor<?xf32>
// CHECK: return %[[REALLOC3]], %[[REALLOC2]], %[[REALLOC1]] :
// CHECK-SAME: memref<?xf32>, memref<?xf32>, memref<?xf32>
return %r0, %r1, %r2, %r3: tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @insert_slice_fun
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
// CHECK-SAME: %[[t:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>
func.func @insert_slice_fun(
%A : tensor<?xf32> {bufferization.writable = true},
%t : tensor<4xf32> {bufferization.writable = false})
-> tensor<?xf32>
{
%f0 = arith.constant 0.0 : f32
// CHECK-NOT: alloc
// CHECK: %[[SV_A:.*]] = memref.subview %[[A]]
// CHECK: memref.copy %[[t]], %[[SV_A]]
%r0 = tensor.insert_slice %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
/// Overwrite A inplace.
// CHECK: linalg.fill ins({{.*}}{{.*}}outs(%[[A]]
%r1 = linalg.fill ins(%f0 : f32) outs(%r0 : tensor<?xf32>) -> tensor<?xf32>
// CHECK: return
// CHECK-NOT: tensor
return %r1: tensor<?xf32>
}
// -----
// CHECK-LABEL: func @insert_slice_fun
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
// CHECK-SAME: %[[t:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>
func.func @insert_slice_fun(
%A : tensor<?xf32> {bufferization.writable = true},
%t : tensor<4xf32> {bufferization.writable = false})
-> tensor<?xf32>
{
%f0 = arith.constant 0.0 : f32
// CHECK: linalg.fill ins({{.*}}{{.*}}outs(%[[A]]
%r0 = linalg.fill ins(%f0 : f32) outs(%A : tensor<?xf32>) -> tensor<?xf32>
// CHECK-NOT: alloc
// CHECK: %[[SV_A:.*]] = memref.subview %[[A]]
/// Overwrite A inplace by copying into the subview.
// CHECK: memref.copy %[[t]], %[[SV_A]]
%r1 = tensor.insert_slice %t into %r0[0][4][1] : tensor<4xf32> into tensor<?xf32>
// CHECK: return
// CHECK-NOT: tensor
return %r1: tensor<?xf32>
}
// -----
// CHECK-LABEL: func @insert_slice_fun_not_inplace
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
// CHECK-SAME: %[[t:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>
func.func @insert_slice_fun_not_inplace(
%A : tensor<?xf32> {bufferization.writable = false},
%t : tensor<4xf32> {bufferization.writable = false})
-> tensor<?xf32>
{
// CHECK: %[[ALLOC:.*]] = memref.alloc(%{{.*}}) {alignment = 64 : i64} : memref<?xf32>
// CHECK: memref.copy %[[A]], %[[ALLOC]] : memref<?xf32{{.*}} to memref<?xf32>
// CHECK: %[[SV:.*]] = memref.subview %[[ALLOC]][0] [4] [1] : memref<?xf32> to memref<4xf32, strided<[1]>>
// CHECK: memref.copy %[[t]], %[[SV]] : memref<4xf32, strided{{.*}}> to memref<4xf32, strided<[1]>>
%r0 = tensor.insert_slice %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
// CHECK: return %{{.*}} : memref<?xf32>
return %r0: tensor<?xf32>
}
// -----
// This test case could bufferize in-place with a better analysis. However, it
// is simpler to let the canonicalizer fold away the tensor.insert_slice.
// CHECK-LABEL: func @tensor_cast_not_in_place(
// CHECK-SAME: %[[A:.*]]: memref<?xf32{{.*}}>, %[[B:.*]]: memref<?xf32{{.*}}>
// CHECK: %[[casted:.*]] = memref.cast %[[A]] : memref<?xf32, strided<[?], offset: ?>> to memref<4xf32, strided<[?], offset: ?>>
// CHECK: %[[alloc:.*]] = memref.alloc
// CHECK: memref.copy %[[casted]], %[[alloc]]
// CHECK: %[[subview:.*]] = memref.subview %[[A]][{{.*}}] [4] [1] : {{.*}} to memref<4xf32
// CHECK: memref.copy %[[alloc]], %[[subview]]
func.func @tensor_cast_not_in_place(
%A : tensor<?xf32> {bufferization.writable = true},
%B : tensor<?xf32> {bufferization.writable = false}, %idx: index)
-> (tensor<?xf32>)
{
%r0 = tensor.cast %A : tensor<?xf32> to tensor<4xf32>
%r1 = tensor.insert_slice %r0 into %A[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
return %r1 : tensor<?xf32>
}
// -----
// CHECK-LABEL: func @insert_op
// CHECK-SAME: %[[t1:.*]]: memref<?xf32, {{.*}}>, %[[s:.*]]: f32, %[[i:.*]]: index
func.func @insert_op(%t1 : tensor<?xf32> {bufferization.writable = true},
%s : f32, %i : index) -> tensor<?xf32> {
// CHECK: memref.store %[[s]], %[[t1]][%[[i]]]
%0 = tensor.insert %s into %t1[%i] : tensor<?xf32>
// CHECK: return
return %0 : tensor<?xf32>
}
// -----
// A regression test to make sure that we handle rank-reducing extract_slice
// correctly.
// CHECK-LABEL: func @rank_reducing
func.func @rank_reducing(
%i: index, %j: index,
%arg0: tensor<8x18x32xf32>)
-> tensor<?x1x6x8xf32> {
%c1 = arith.constant 1 : index
%c6 = arith.constant 6 : index
%c8 = arith.constant 8 : index
%c32 = arith.constant 32 : index
%c0 = arith.constant 0 : index
%0 = bufferization.alloc_tensor() : tensor<4x1x6x8xf32>
%1 = tensor.cast %0 : tensor<4x1x6x8xf32> to tensor<?x1x6x8xf32>
%2 = bufferization.alloc_tensor() : tensor<1x6x8xf32>
%5 = scf.for %arg7 = %c0 to %c32 step %c8 iter_args(%arg8 = %1) -> (tensor<?x1x6x8xf32>) {
%7 = affine.apply affine_map<(d0) -> (d0 ceildiv 8)>(%arg7)
%8 = tensor.extract_slice %arg0[%i, %j, %arg7] [1, 6, 8] [1, 1, 1] : tensor<8x18x32xf32> to tensor<1x6x8xf32>
%9 = scf.for %arg9 = %c0 to %c6 step %c1 iter_args(%arg10 = %2) -> (tensor<1x6x8xf32>) {
%11 = tensor.extract_slice %8[0, %arg9, 0] [1, 1, 8] [1, 1, 1] : tensor<1x6x8xf32> to tensor<1x1x8xf32>
%12 = tensor.insert_slice %11 into %arg10[0, %arg9, 0] [1, 1, 8] [1, 1, 1] : tensor<1x1x8xf32> into tensor<1x6x8xf32>
scf.yield %12 : tensor<1x6x8xf32>
}
%10 = tensor.insert_slice %9 into %arg8[%7, 0, 0, 0] [1, 1, 6, 8] [1, 1, 1, 1] : tensor<1x6x8xf32> into tensor<?x1x6x8xf32>
scf.yield %10 : tensor<?x1x6x8xf32>
}
return %5: tensor<?x1x6x8xf32>
}
// -----
// CHECK-LABEL: func.func @rank_reducing_parallel_insert_slice
func.func @rank_reducing_parallel_insert_slice(%in: tensor<100xf32>, %out: tensor<200x100xf32>) {
%c1 = arith.constant 1 : index
%num_threads = arith.constant 100 : index
// CHECK: scf.forall {{.*}} {
%result = scf.forall (%thread_idx) in (%num_threads) shared_outs (%o = %out) -> tensor<200x100xf32> {
%1 = tensor.extract_slice %in[%thread_idx][1][1] : tensor<100xf32> to tensor<1xf32>
scf.forall.in_parallel {
// CHECK: memref.subview %{{.*}}[%{{.*}}] [1] [1] : memref<100xf32, strided<[?], offset: ?>> to memref<1xf32, strided<[?], offset: ?>>
// CHECK: memref.subview %{{.*}}[1, %{{.*}}] [1, 1] [1, 1] : memref<200x100xf32, strided<[?, ?], offset: ?>> to memref<1xf32, strided<[?], offset: ?>>
tensor.parallel_insert_slice %1 into %o[1, %thread_idx][1, 1][1, 1] :
tensor<1xf32> into tensor<200x100xf32>
}
}
// CHECK: }
return
}
// -----
// This test case could bufferize in-place with a better analysis. However, it
// is simpler to let the canonicalizer fold away the tensor.insert_slice.
// CHECK-LABEL: func @insert_equivalent_tensor
func.func @insert_equivalent_tensor(%t: tensor<10xf32>) -> tensor<10xf32> {
// CHECK: memref.alloc
%cst = arith.constant 4.200000e+01 : f32
// CHECK: linalg.fill
%0 = linalg.fill ins(%cst : f32) outs(%t : tensor<10xf32>) -> tensor<10xf32>
// CHECK: memref.copy
%1 = tensor.insert_slice %0 into %t[0][10][1] : tensor<10xf32> into tensor<10xf32>
return %1 : tensor<10xf32>
}
// -----
// CHECK-LABEL: func @pad_memory_space(
// CHECK-SAME: %[[t:.*]]: memref<?xf32, strided<[?], offset: ?>>
func.func @pad_memory_space(%t: tensor<?xf32>, %h1: index, %f: f32, %pos: index) -> f32
{
// CHECK: %[[alloc_tensor:.*]] = memref.alloc{{.*}} : memref<?xf32, 3>
// CHECK: memref.copy %[[t]], %[[alloc_tensor]]
%0 = bufferization.alloc_tensor() copy(%t)
{memory_space = 3 : i64} : tensor<?xf32>
// CHECK: %[[padded_alloc:.*]] = memref.alloc() {{.*}} : memref<15xf32, 3>
// CHECK: linalg.map
// CHECK: outs(%[[padded_alloc]] : memref<15xf32, 3>)
// CHECK: linalg.yield %{{.*}}
// CHECK: }
// CHECK: %[[subview:.*]] = memref.subview {{.*}} : memref<15xf32, 3> to memref<?xf32, strided<[1], offset: 2>, 3>
// CHECK: memref.copy %[[alloc_tensor]], %[[subview]]
%1 = tensor.pad %0 low[2] high[%h1] {
^bb0(%arg0: index):
tensor.yield %f : f32
} : tensor<?xf32> to tensor<15xf32>
// CHECK: memref.load {{.*}} : memref<15xf32, 3>
%2 = tensor.extract %1[%pos] : tensor<15xf32>
return %2 : f32
}
// -----
// CHECK-LABEL: func @insert_slice_regression(
// CHECK-SAME: %[[t:.*]]: memref<10xf32,{{.*}}>, %[[b:.*]]: memref<5xf32
func.func @insert_slice_regression(%t: tensor<10xf32>, %b: tensor<5xf32>) -> tensor<10xf32> {
%cst = arith.constant 0.0 : f32
%c0 = arith.constant 0 : index
// CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<10xf32>
// CHECK: linalg.fill {{.*}} outs(%[[alloc]] : memref<10xf32>)
%1 = linalg.fill ins(%cst : f32) outs(%t : tensor<10xf32>) -> tensor<10xf32>
// Read %1 so that it does not DCE away.
%vec = vector.transfer_read %1[%c0], %cst : tensor<10xf32>, vector<10xf32>
vector.print %vec : vector<10xf32>
// Write back a different value (not %1).
// CHECK: %[[subview:.*]] = memref.subview %[[t]][0] [5] [1]
// CHECK: memref.copy %[[b]], %[[subview]]
%2 = tensor.insert_slice %b into %t[0][5][1] : tensor<5xf32> into tensor<10xf32>
return %2 : tensor<10xf32>
}
// -----
// CHECK-LABEL: func @insert_slice_full_overwrite(
// CHECK-SAME: %[[t:.*]]: memref<10xf32,{{.*}}>, %[[b:.*]]: memref<10xf32,{{.*}}>
func.func @insert_slice_full_overwrite(%t: tensor<10xf32>, %b: tensor<10xf32>) -> tensor<10xf32> {
%cst = arith.constant 0.0 : f32
%c0 = arith.constant 0 : index
// CHECK: linalg.fill {{.*}} outs(%[[t]] : memref<10xf32,{{.*}}>)
%1 = linalg.fill ins(%cst : f32) outs(%t : tensor<10xf32>) -> tensor<10xf32>
// Read %1 so that it does not DCE away.
%vec = vector.transfer_read %1[%c0], %cst : tensor<10xf32>, vector<10xf32>
vector.print %vec : vector<10xf32>
// Write back a different value (not %1).
// CHECK: %[[subview:.*]] = memref.subview %[[t]][0] [10] [1]
// CHECK: memref.copy %[[b]], %[[subview]]
%2 = tensor.insert_slice %b into %t[0][10][1] : tensor<10xf32> into tensor<10xf32>
return %2 : tensor<10xf32>
}
// -----
// CHECK-LABEL: func @dim_not_reading(
// CHECK-SAME: %[[t:.*]]: memref<?xf32
func.func @dim_not_reading(%t: tensor<?xf32>, %f: f32, %pos: index)
-> (tensor<?xf32>, index)
{
%c0 = arith.constant 0 : index
// CHECK-NOT: memref.alloc
// CHECK-NOT: memref.copy
// CHECK: memref.store %{{.*}}, %[[t]]
%0 = tensor.insert %f into %t[%pos] : tensor<?xf32>
// CHECK: memref.dim %[[t]]
%1 = tensor.dim %t, %c0 : tensor<?xf32>
return %0, %1 : tensor<?xf32>, index
}
// -----
// CHECK: #[[$map:.*]] = affine_map<(d0) -> (d0 + 5)>
// CHECK-LABEL: func.func @cast_retains_buffer_layout(
// CHECK-SAME: %[[t:.*]]: memref<?xf32, #[[$map]]>, %[[sz:.*]]: index) -> memref<?xf32, strided<[1], offset: 7>> {
// CHECK: %[[casted:.*]] = memref.cast %[[t]] : memref<?xf32, #[[$map]]> to memref<10xf32, #[[$map]]>
// CHECK: %[[slice:.*]] = memref.subview %[[casted]][2] [%[[sz]]] [1] : memref<10xf32, #[[$map]]> to memref<?xf32, strided<[1], offset: 7>>
// CHECK: return %[[slice]]
func.func @cast_retains_buffer_layout(
%t: tensor<?xf32>
{bufferization.buffer_layout = affine_map<(d0) -> (d0 + 5)>},
%sz: index)
-> (tensor<10xf32>, tensor<?xf32>)
{
%casted = tensor.cast %t : tensor<?xf32> to tensor<10xf32>
%slice = tensor.extract_slice %casted[2][%sz][1] : tensor<10xf32> to tensor<?xf32>
// Note: The %casted return type is folded away because both buffers are
// equivalent. Therefore, we currently loose some static type information
// in the caller.
return %casted, %slice : tensor<10xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func.func @parallel_insert_slice_source_out_of_place
func.func @parallel_insert_slice_source_out_of_place(%in: tensor<1xf32>, %out: tensor<100xf32>, %f: f32) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%num_threads = arith.constant 50 : index
// CHECK: scf.forall {{.*}} {
%result = scf.forall (%thread_idx) in (%num_threads) shared_outs (%o = %out) -> tensor<100xf32> {
// The tensor.insert must bufferize out-of-place.
// CHECK: memref.alloc
// CHECK: memref.store
%insert = tensor.insert %f into %in[%c0] : tensor<1xf32>
%r = tensor.extract %in[%c0] : tensor<1xf32>
vector.print %r : f32
// CHECK: memref.copy
scf.forall.in_parallel {
tensor.parallel_insert_slice %insert into %o[%thread_idx][1][1] :
tensor<1xf32> into tensor<100xf32>
}
}
// CHECK: }
return
}
// -----
// CHECK-LABEL: func @tensor.reshape(
func.func @tensor.reshape() -> tensor<2x2x5xf32> {
// CHECK-DAG: %[[M1:.*]] = memref.cast %{{.*}} : memref<2x10xf32> to memref<?x10xf32>
%t1_static = arith.constant dense<0.> : tensor<2x10xf32>
%t1 = tensor.cast %t1_static : tensor<2x10xf32> to tensor<?x10xf32>
// CHECK: %[[SHAPE:.*]] = memref.get_global @{{.*}} : memref<3xi64>
%shape = arith.constant dense<[2, 2, 5]> : tensor<3xi64>
// CHECK: %[[RESHAPED:.*]] = memref.reshape %[[M1]](%[[SHAPE]]) : (memref<?x10xf32>, memref<3xi64>) -> memref<2x2x5xf32>
%reshaped = tensor.reshape %t1(%shape) : (tensor<?x10xf32>, tensor<3xi64>) -> tensor<2x2x5xf32>
// CHECK: return %[[RESHAPED]]
return %reshaped : tensor<2x2x5xf32>
}
// -----
// CHECK-LABEL: @reshape_with_non_identity_layout(
// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]*]]: memref<2x2xf32, strided<[?, ?], offset: ?>, 3>,
// CHECK-SAME: %[[LAYOUT:[a-zA-Z0-9]*]]: memref<2xi32, strided<[?], offset: ?>>,
func.func @reshape_with_non_identity_layout(%arg0: memref<2x2xf32, strided<[?, ?], offset: ?>, 3>, %arg1: tensor<2xi32>, %idx: index) -> f32 {
%t = bufferization.to_tensor %arg0 restrict : memref<2x2xf32, strided<[?, ?], offset: ?>, 3>
// CHECK: %[[SUBVIEW:.+]] = memref.subview %[[INPUT]][1, 0] [1, 2] [1, 1] : memref<2x2xf32, strided<[?, ?], offset: ?>, 3> to memref<2xf32, strided<[?], offset: ?>, 3>
%extracted_slice = tensor.extract_slice %t[1, 0] [1, 2] [1, 1] : tensor<2x2xf32> to tensor<2xf32>
// To satisify the constraints of memref.reshape, the subview must be
// reallocated a buffer with an identity layout.
// CHECK: %[[ALLOC:.+]] = memref.alloc() {{.*}} : memref<2xf32, 3>
// CHECK: memref.copy %[[SUBVIEW]], %[[ALLOC]]
// CHECK: %[[RESHAPED:.+]] = memref.reshape %[[ALLOC]](%[[LAYOUT]]) : (memref<2xf32, 3>, memref<2xi32, strided<[?], offset: ?>>) -> memref<1x2xf32, 3>
%reshape = tensor.reshape %extracted_slice(%arg1) : (tensor<2xf32>, tensor<2xi32>) -> tensor<1x2xf32>
%r = tensor.extract %reshape[%idx, %idx] : tensor<1x2xf32>
return %r : f32
}
// -----
// CHECK-LABEL: func @collapse_shape_regression(
// CHECK-SAME: %[[t:.*]]: memref<10x20xf32,
func.func @collapse_shape_regression(
%t: tensor<10x20xf32>, %f: f32, %idx: index) {
// CHECK: %[[subview:.*]] = memref.subview %[[t]]
%0 = tensor.extract_slice %t [2, 3] [5, 6] [1, 1]
: tensor<10x20xf32> to tensor<5x6xf32>
// Insert a copy because the original %0 is read later.
// CHECK: %[[alloc1:.*]] = memref.alloc() {{.*}} : memref<5x6xf32>
// CHECK: memref.copy %[[subview]], %[[alloc1]]
// CHECK: memref.store {{.*}}, %[[alloc1]]
tensor.insert %f into %0[%idx, %idx] : tensor<5x6xf32>
// Insert a copy because the shape cannot be collapsed.
// CHECK: %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5x6xf32>
// CHECK: memref.copy %[[subview]], %[[alloc2]]
// CHECK: memref.collapse_shape %[[alloc2]]
tensor.collapse_shape %0[[0, 1]] : tensor<5x6xf32> into tensor<30xf32>
return
}