// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(canonicalize{region-simplify=aggressive}))' -split-input-file | FileCheck %s
// Check the simple case of single operation blocks with a return.
// CHECK-LABEL: func @return_blocks(
func.func @return_blocks() {
// CHECK: "foo.cond_br"()[^bb1, ^bb1]
// CHECK: ^bb1:
// CHECK-NEXT: return
// CHECK-NOT: ^bb2
"foo.cond_br"() [^bb1, ^bb2] : () -> ()
^bb1:
return
^bb2:
return
}
// Check the case of identical blocks with matching arguments.
// CHECK-LABEL: func @matching_arguments(
func.func @matching_arguments() -> i32 {
// CHECK: "foo.cond_br"()[^bb1, ^bb1]
// CHECK: ^bb1(%{{.*}}: i32):
// CHECK-NEXT: return
// CHECK-NOT: ^bb2
"foo.cond_br"() [^bb1, ^bb2] : () -> ()
^bb1(%arg0 : i32):
return %arg0 : i32
^bb2(%arg1 : i32):
return %arg1 : i32
}
// Check that no merging occurs if there is an operand mismatch and we can't
// update th predecessor.
// CHECK-LABEL: func @mismatch_unknown_terminator
func.func @mismatch_unknown_terminator(%arg0 : i32, %arg1 : i32) -> i32 {
// CHECK: "foo.cond_br"()[^bb1, ^bb2]
"foo.cond_br"() [^bb1, ^bb2] : () -> ()
^bb1:
return %arg0 : i32
^bb2:
return %arg1 : i32
}
// Check that merging does occurs if there is an operand mismatch and we can
// update th predecessor.
// CHECK-LABEL: func @mismatch_operands
// CHECK-SAME: %[[COND:.*]]: i1, %[[ARG0:.*]]: i32, %[[ARG1:.*]]: i32
func.func @mismatch_operands(%cond : i1, %arg0 : i32, %arg1 : i32) -> i32 {
// CHECK: %[[RES:.*]] = arith.select %[[COND]], %[[ARG0]], %[[ARG1]]
// CHECK: return %[[RES]]
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
return %arg0 : i32
^bb2:
return %arg1 : i32
}
// Check the same as above, but with pre-existing arguments.
// CHECK-LABEL: func @mismatch_operands_matching_arguments(
// CHECK-SAME: %[[COND:.*]]: i1, %[[ARG0:.*]]: i32, %[[ARG1:.*]]: i32
func.func @mismatch_operands_matching_arguments(%cond : i1, %arg0 : i32, %arg1 : i32) -> (i32, i32) {
// CHECK: %[[RES0:.*]] = arith.select %[[COND]], %[[ARG1]], %[[ARG0]]
// CHECK: %[[RES1:.*]] = arith.select %[[COND]], %[[ARG0]], %[[ARG1]]
// CHECK: return %[[RES1]], %[[RES0]]
cf.cond_br %cond, ^bb1(%arg1 : i32), ^bb2(%arg0 : i32)
^bb1(%arg2 : i32):
return %arg0, %arg2 : i32, i32
^bb2(%arg3 : i32):
return %arg1, %arg3 : i32, i32
}
// Check that merging does not occur if the uses of the arguments differ.
// CHECK-LABEL: func @mismatch_argument_uses(
func.func @mismatch_argument_uses(%cond : i1, %arg0 : i32, %arg1 : i32) -> (i32, i32) {
// CHECK: return {{.*}}, {{.*}}
cf.cond_br %cond, ^bb1(%arg1 : i32), ^bb2(%arg0 : i32)
^bb1(%arg2 : i32):
return %arg0, %arg2 : i32, i32
^bb2(%arg3 : i32):
return %arg3, %arg1 : i32, i32
}
// Check that merging does not occur if the types of the arguments differ.
// CHECK-LABEL: func @mismatch_argument_types(
func.func @mismatch_argument_types(%cond : i1, %arg0 : i32, %arg1 : i16) {
// CHECK: cf.cond_br %{{.*}}, ^bb1, ^bb2
cf.cond_br %cond, ^bb1(%arg0 : i32), ^bb2(%arg1 : i16)
^bb1(%arg2 : i32):
"foo.return"(%arg2) : (i32) -> ()
^bb2(%arg3 : i16):
"foo.return"(%arg3) : (i16) -> ()
}
// Check that merging does not occur if the number of the arguments differ.
// CHECK-LABEL: func @mismatch_argument_count(
func.func @mismatch_argument_count(%cond : i1, %arg0 : i32) {
// CHECK: cf.cond_br %{{.*}}, ^bb1, ^bb2
cf.cond_br %cond, ^bb1(%arg0 : i32), ^bb2
^bb1(%arg2 : i32):
"foo.return"(%arg2) : (i32) -> ()
^bb2:
"foo.return"() : () -> ()
}
// Check that merging does not occur if the operations differ.
// CHECK-LABEL: func @mismatch_operations(
func.func @mismatch_operations(%cond : i1) {
// CHECK: cf.cond_br %{{.*}}, ^bb1, ^bb2
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
"foo.return"() : () -> ()
^bb2:
return
}
// Check that merging does not occur if the number of operations differ.
// CHECK-LABEL: func @mismatch_operation_count(
func.func @mismatch_operation_count(%cond : i1) {
// CHECK: cf.cond_br %{{.*}}, ^bb1, ^bb2
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
"foo.op"() : () -> ()
return
^bb2:
return
}
// Check that merging does not occur if the blocks contain regions.
// CHECK-LABEL: func @contains_regions(
func.func @contains_regions(%cond : i1) {
// CHECK: cf.cond_br %{{.*}}, ^bb1, ^bb2
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
scf.if %cond {
"foo.op"() : () -> ()
}
return
^bb2:
scf.if %cond {
"foo.op"() : () -> ()
}
return
}
// Check that properly handles back edges.
// CHECK-LABEL: func @mismatch_loop(
// CHECK-SAME: %[[ARG:.*]]: i1, %[[ARG2:.*]]: i1
func.func @mismatch_loop(%cond : i1, %cond2 : i1) {
// CHECK-NEXT: %[[LOOP_CARRY:.*]] = "foo.op"
// CHECK: cf.cond_br %{{.*}}, ^bb1(%[[ARG2]] : i1), ^bb2
%cond3 = "foo.op"() : () -> (i1)
cf.cond_br %cond, ^bb2, ^bb3
^bb1:
// CHECK: ^bb1(%[[ARG3:.*]]: i1):
// CHECK-NEXT: cf.cond_br %[[ARG3]], ^bb1(%[[LOOP_CARRY]] : i1), ^bb2
cf.cond_br %cond3, ^bb1, ^bb3
^bb2:
cf.cond_br %cond2, ^bb1, ^bb3
^bb3:
// CHECK: ^bb2:
// CHECK-NEXT: return
return
}
// Check that blocks are not merged if the types of the operands differ.
// CHECK-LABEL: func @mismatch_operand_types(
func.func @mismatch_operand_types(%arg0 : i1, %arg1 : memref<i32>, %arg2 : memref<i1>) {
%c0_i32 = arith.constant 0 : i32
%true = arith.constant true
cf.br ^bb1
^bb1:
cf.cond_br %arg0, ^bb2, ^bb3
^bb2:
// CHECK: memref.store %{{.*}}, %{{.*}} : memref<i32>
memref.store %c0_i32, %arg1[] : memref<i32>
cf.br ^bb1
^bb3:
// CHECK: memref.store %{{.*}}, %{{.*}} : memref<i1>
memref.store %true, %arg2[] : memref<i1>
cf.br ^bb1
}
// Check that it is illegal to merge blocks containing an operand
// with an external user. Incorrectly performing the optimization
// anyways will result in print(merged, merged) rather than
// distinct operands.
func.func private @print(%arg0: i32, %arg1: i32)
// CHECK-LABEL: @nomerge
func.func @nomerge(%arg0: i32, %i: i32) {
%c1_i32 = arith.constant 1 : i32
%icmp = arith.cmpi slt, %i, %arg0 : i32
cf.cond_br %icmp, ^bb2, ^bb3
^bb2: // pred: ^bb1
%ip1 = arith.addi %i, %c1_i32 : i32
cf.br ^bb4(%ip1 : i32)
^bb7: // pred: ^bb5
%jp1 = arith.addi %j, %c1_i32 : i32
cf.br ^bb4(%jp1 : i32)
^bb4(%j: i32): // 2 preds: ^bb2, ^bb7
%jcmp = arith.cmpi slt, %j, %arg0 : i32
// CHECK-NOT: call @print(%[[arg1:.+]], %[[arg1]])
call @print(%j, %ip1) : (i32, i32) -> ()
cf.cond_br %jcmp, ^bb7, ^bb3
^bb3: // pred: ^bb1
return
}
// CHECK-LABEL: func @mismatch_dominance(
func.func @mismatch_dominance() -> i32 {
// CHECK: %[[RES:.*]] = "test.producing_br"()
%0 = "test.producing_br"()[^bb1, ^bb2] {
operandSegmentSizes = array<i32: 0, 0>
} : () -> i32
^bb1:
// CHECK: "test.br"(%[[RES]])[^[[MERGE_BLOCK:.*]]]
"test.br"(%0)[^bb4] : (i32) -> ()
^bb2:
%1 = "foo.def"() : () -> i32
"test.br"()[^bb3] : () -> ()
^bb3:
// CHECK: "test.br"(%{{.*}})[^[[MERGE_BLOCK]]]
"test.br"(%1)[^bb4] : (i32) -> ()
^bb4(%3: i32):
return %3 : i32
}
// CHECK-LABEL: func @dead_dealloc_fold_multi_use
func.func @dead_dealloc_fold_multi_use(%cond : i1) {
// CHECK-NEXT: return
%a = memref.alloc() : memref<4xf32>
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
memref.dealloc %a: memref<4xf32>
return
^bb2:
memref.dealloc %a: memref<4xf32>
return
}
// CHECK-LABEL: func @nested_loop
func.func @nested_loop(%arg0: i32, %arg1: i32, %arg2: i32, %arg3: i32, %arg4: i32, %arg5: i1) {
// Irreducible control-flow: enter the middle of the loop in LoopBody_entry here.
"test.foo_br"(%arg0, %arg4)[^LoopBody_entry] : (i32, i32) -> ()
// Loop exit condition: jump to exit or LoobBody blocks
^Loop_header: // 2 preds: ^bb2, ^bb3
// Consumes the block arg from LoopBody_entry
// Because of this use here, we can't merge the two blocks below.
"test.foo_br2"(%0)[^EXIT, ^LoopBody_entry, ^LoopBody_other] : (i32) -> ()
// LoopBody_entry is jumped in from the entry block (bb0) and Loop_header
// It **dominates** the Loop_header.
^LoopBody_entry(%0: i32): // 2 preds: ^bb0, ^Loop_header
// CHECK: test.bar
%1 = "test.bar"(%0) : (i32) -> i32
cf.br ^Loop_header
// Other block inside the loop, not dominating the header
^LoopBody_other(%2: i32): // pred: ^Loop_header
// CHECK: test.bar
%3 = "test.bar"(%2) : (i32) -> i32
cf.br ^Loop_header
^EXIT: // pred: ^Loop_header
return
}