// RUN: mlir-opt --transform-interpreter --cse --split-input-file %s | FileCheck %s
#map = affine_map<(d0) -> (d0)>
module {
func.func @fuse_tileable_consumer_scf_for(%arg0: tensor<32xf32>, %arg1: tensor<32xf32>, %arg2: tensor<64xf32>) -> tensor<64xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1:2 = scf.for %arg3 = %c0 to %c64 step %c4 iter_args(%arg4 = %arg2, %arg5 = %arg2) -> (tensor<64xf32>, tensor<64xf32>) {
%extracted_slice = tensor.extract_slice %arg4[%arg3] [32] [1] : tensor<64xf32> to tensor<32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<32xf32>, tensor<32xf32>) outs(%extracted_slice : tensor<32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32xf32>
%4 = tensor.insert_slice %3 into %arg4[%arg3] [32] [1] : tensor<32xf32> into tensor<64xf32>
scf.yield %arg5, %4 : tensor<64xf32>, tensor<64xf32>
}
%in_operand_2 = tensor.empty() : tensor<64xf32>
%out_operand_3 = tensor.empty() : tensor<64xf32>
%2 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%1#1, %in_operand_2 : tensor<64xf32>, tensor<64xf32>) outs(%out_operand_3 : tensor<64xf32>) -> tensor<64xf32>
return %2 : tensor<64xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %yield
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_for(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64xf32>)
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %0 = tensor.empty() : tensor<64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:3 = scf.for %[[IV:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG:.*]] = %0)
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[MAT_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] : tensor<32xf32>)
// CHECK: %[[INSERT_MAT:.*]] = tensor.insert_slice %[[MAT_OUT]] into %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %0[%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OUT:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[ELEM_OUT:.*]] = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT]] :
// CHECK: %[[INSERT_ELEM:.*]] = tensor.insert_slice %[[ELEM_OUT]] into %[[ELEM_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: scf.yield %[[SECOND_OUT_ARG]], %[[INSERT_MAT]], %[[INSERT_ELEM]] :
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#2 :
// -----
module {
func.func @fuse_tileable_consumer_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x64xf32>) -> tensor<64x64xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1:2 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2, %arg6 = %arg2) -> (tensor<64x64xf32>, tensor<64x64xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
%extracted_slice_1 = tensor.extract_slice %arg6[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
%3 = linalg.matmul ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg6[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
tensor.parallel_insert_slice %extracted_slice_1 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
}
}
%in_operand_2 = tensor.empty() : tensor<64x64xf32>
%out_operand_3 = tensor.empty() : tensor<64x64xf32>
%2 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%1#1, %in_operand_2 : tensor<64x64xf32>, tensor<64x64xf32>) outs(%out_operand_3 : tensor<64x64xf32>) -> tensor<64x64xf32>
return %2 : tensor<64x64xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_ops = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%first_slice_op, %second_slice_op = transform.split_handle %slice_ops
: (!transform.any_op)
-> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %first_slice_op
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x64xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<64x64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:3 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SECOND_ARG_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[MAT_OUT:.*]] = linalg.matmul
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] :
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %[[OUT_INIT]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SLICE_OUT:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[ELEM_OUT:.*]] = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[MAT_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[SECOND_ARG_SLICE]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[ELEM_OUT]] into %[[ELEM_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#2 :
// -----
#map = affine_map<(d0) -> (d0)>
module {
func.func @fuse_tileable_consumer_scf_for_multi_yielding_consumer(%arg0: tensor<32xf32>, %arg1: tensor<32xf32>, %arg2: tensor<64xf32>) -> tensor<64xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1:2 = scf.for %arg3 = %c0 to %c64 step %c4 iter_args(%arg4 = %arg2, %arg5 = %arg2) -> (tensor<64xf32>, tensor<64xf32>) {
%extracted_slice = tensor.extract_slice %arg4[%arg3] [32] [1] : tensor<64xf32> to tensor<32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<32xf32>, tensor<32xf32>) outs(%extracted_slice : tensor<32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32xf32>
%4 = tensor.insert_slice %3 into %arg4[%arg3] [32] [1] : tensor<32xf32> into tensor<64xf32>
scf.yield %arg5, %4 : tensor<64xf32>, tensor<64xf32>
}
%in_operand_2 = tensor.empty() : tensor<64xf32>
%out_operand_3 = tensor.empty() : tensor<64xf32>
%out_operand_4 = tensor.empty() : tensor<64xf32>
%2:2 = linalg.generic {indexing_maps = [#map, #map, #map, #map], iterator_types = ["parallel"]} ins(%1#1, %in_operand_2 : tensor<64xf32>, tensor<64xf32>) outs(%out_operand_3, %out_operand_4 : tensor<64xf32>, tensor<64xf32>) {
^bb0(%in: f32, %in_16: f32, %out_0: f32, %out_1: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.subf %out_0, %13 : f32
%15 = arith.addf %out_1, %in : f32
linalg.yield %14, %15 : f32, f32
} -> (tensor<64xf32>, tensor<64xf32>)
return %2#1 : tensor<64xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %yield
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_for_multi_yielding_consumer(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64xf32>)
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %0 = tensor.empty() : tensor<64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:4 = scf.for %[[IV:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG_0:.*]] = %0, %[[ELEM_OUT_ARG_1:.*]] = %0)
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[MAT_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] : tensor<32xf32>)
// CHECK: %[[INSERT_MAT:.*]] = tensor.insert_slice %[[MAT_OUT]] into %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %0[%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OUT_0:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_0]][%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OUT_1:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_1]][%[[IV]]] [32] [1]
// CHECK: %[[ELEM_OUT:.*]]:2 = linalg.generic
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT_0]], %[[SLICE_OUT_1]] :
// CHECK: %[[INSERT_ELEM_0:.*]] = tensor.insert_slice %[[ELEM_OUT]]#0 into %[[ELEM_OUT_ARG_0]][%[[IV]]] [32] [1]
// CHECK: %[[INSERT_ELEM_1:.*]] = tensor.insert_slice %[[ELEM_OUT]]#1 into %[[ELEM_OUT_ARG_1]][%[[IV]]] [32] [1]
// CHECK: scf.yield %[[SECOND_OUT_ARG]], %[[INSERT_MAT]], %[[INSERT_ELEM_0]], %[[INSERT_ELEM_1]] :
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#3 :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_tileable_consumer_scf_forall_multi_yielding_consumer(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x64xf32>, %arg3: tensor<64x32xf32>) -> (tensor<64x64xf32>, tensor<2048xf32>) {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%0:2 = scf.forall (%arg4, %arg5) in (2, 2) shared_outs(%arg6 = %arg3, %arg7 = %arg2) -> (tensor<64x32xf32>, tensor<64x64xf32>) {
%extracted_slice = tensor.extract_slice %arg6[%arg4, %arg5] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%extracted_slice_0 = tensor.extract_slice %arg7[%arg4, %arg5] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
%6 = linalg.matmul ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %6 into %arg7[%arg4, %arg5] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
tensor.parallel_insert_slice %extracted_slice_0 into %arg6[%arg4, %arg5] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%1 = tensor.empty() : tensor<64x64xf32>
%2 = tensor.empty() : tensor<64x64xf32>
%3 = tensor.empty() : tensor<64x64xf32>
%4:2 = linalg.generic {indexing_maps = [#map, #map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%0#1, %1 : tensor<64x64xf32>, tensor<64x64xf32>) outs(%2, %3 : tensor<64x64xf32>, tensor<64x64xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32, %out_1: f32):
%6 = arith.mulf %in, %in_0 : f32
%7 = arith.subf %out, %6 : f32
%8 = arith.addf %out_1, %in : f32
linalg.yield %7, %8 : f32, f32
} -> (tensor<64x64xf32>, tensor<64x64xf32>)
%5 = tensor.empty() : tensor<2048xf32>
%unpack = tensor.unpack %0#0 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %5 : tensor<64x32xf32> -> tensor<2048xf32>
return %4#1, %unpack : tensor<64x64xf32>, tensor<2048xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_ops = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%first_slice_op, %second_slice_op = transform.split_handle %slice_ops
: (!transform.any_op)
-> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %first_slice_op
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_forall_multi_yielding_consumer(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x64xf32>
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<64x64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:4 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG3]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG_0:.*]] = %[[OUT_INIT]], %[[ELEM_OUT_ARG_1:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SECOND_ARG_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[MAT_OUT:.*]] = linalg.matmul
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] :
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %[[OUT_INIT]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SLICE_OUT_0:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_0]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SLICE_OUT_1:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_1]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[ELEM_OUT:.*]]:2 = linalg.generic
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT_0]], %[[SLICE_OUT_1]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[MAT_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[SECOND_ARG_SLICE]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[ELEM_OUT]]#0 into %[[ELEM_OUT_ARG_0]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[ELEM_OUT]]#1 into %[[ELEM_OUT_ARG_1]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: %[[UNPACK:.*]] = tensor.unpack %[[FINAL_RESULT]]#0 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %{{.*}} : tensor<64x32xf32> -> tensor<2048xf32>
// CHECK: return %[[FINAL_RESULT]]#3, %[[UNPACK]] :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_unpack_consumer_into_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x32xf32>) -> tensor<2048xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2) -> (tensor<64x32xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%output = tensor.empty() : tensor<2048xf32>
%unpack = tensor.unpack %1 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %output : tensor<64x32xf32> -> tensor<2048xf32>
return %unpack : tensor<2048xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: #[[UNPACK_RESULT_MAP:.*]] = affine_map<(d0) -> (d0 * 32)>
// CHECK: func.func @fuse_unpack_consumer_into_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<2048xf32>
// CHECK: %[[FINAL_RESULT:.*]]:2 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[UNPACK_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[GENERIC_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[GENERIC_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[GENERIC_OUT_SLICE]] :
// CHECK: %[[UNPACK_RESULT_OFFSET:.*]] = affine.apply #[[UNPACK_RESULT_MAP]](%[[IV1]])
// CHECK: %[[TILED_UNPACK_DEST:.*]] = tensor.extract_slice %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [1024] [1]
// CHECK: %[[TILED_UNPACK_OUT:.*]] = tensor.unpack %[[GENERIC_OUT]]
// CHECK-SAME: outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[TILED_UNPACK_DEST]]
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[TILED_UNPACK_OUT]] into %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [1024] [1]
// CHECK: }
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#1 :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_pack_consumer_into_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x32xf32>) -> tensor<4x32x16xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2) -> (tensor<64x32xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%output = tensor.empty() : tensor<4x32x16xf32>
%pack = tensor.pack %1 inner_dims_pos = [0] inner_tiles = [16] into %output : tensor<64x32xf32> -> tensor<4x32x16xf32>
return %pack : tensor<4x32x16xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: #[[PACK_RESULT_MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
// CHECK: func.func @fuse_pack_consumer_into_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<4x32x16xf32>
// CHECK: %[[FINAL_RESULT:.*]]:2 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[PACK_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[GENERIC_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[GENERIC_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[GENERIC_OUT_SLICE]] :
// CHECK: %[[PACK_RESULT_OFFSET:.*]] = affine.apply #[[PACK_RESULT_MAP]](%[[IV1]])
// CHECK: %[[TILED_PACK_DEST:.*]] = tensor.extract_slice %[[PACK_OUT_ARG]][%[[PACK_RESULT_OFFSET]], %[[IV2]], 0] [2, 32, 16] [1, 1, 1]
// CHECK: %[[TILED_PACK_OUT:.*]] = tensor.pack %[[GENERIC_OUT]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16]
// CHECK-SAME: into %[[TILED_PACK_DEST]]
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[TILED_PACK_OUT]] into %[[PACK_OUT_ARG]][%[[PACK_RESULT_OFFSET]], %[[IV2]], 0] [2, 32, 16] [1, 1, 1]
// -----
module {
func.func @fuse_add_consumer_into_nested_scf_for(%arg0: tensor<256x512xf32>, %arg1: tensor<512x256xf32>, %arg2: tensor<256x256xf32>) -> tensor<256x256xf32> {
%c0 = arith.constant 0 : index
%c64 = arith.constant 64 : index
%c256 = arith.constant 256 : index
%cst = arith.constant 0.000000e+00 : f32
%dest0 = tensor.empty() : tensor<256x256xf32>
%dest1 = linalg.fill ins(%cst : f32) outs(%dest0 : tensor<256x256xf32>) -> tensor<256x256xf32>
%1 = scf.for %arg3 = %c0 to %c256 step %c64 iter_args(%arg4 = %dest1) -> (tensor<256x256xf32>) {
%2 = scf.for %arg5 = %c0 to %c256 step %c64 iter_args(%arg6 = %arg4) -> (tensor<256x256xf32>) {
%extracted_slice_1 = tensor.extract_slice %arg6[%arg3, %arg5] [64, 64] [1, 1] : tensor<256x256xf32> to tensor<64x64xf32>
%extracted_slice_2 = tensor.extract_slice %arg0[%arg3, 0] [64, 512] [1, 1] : tensor<256x512xf32> to tensor<64x512xf32>
%extracted_slice_3 = tensor.extract_slice %arg1[0, %arg5] [512, 64] [1, 1] : tensor<512x256xf32> to tensor<512x64xf32>
%3 = linalg.matmul ins(%extracted_slice_2, %extracted_slice_3 : tensor<64x512xf32>, tensor<512x64xf32>) outs(%extracted_slice_1 : tensor<64x64xf32>) -> tensor<64x64xf32>
%insert_slice = tensor.insert_slice %3 into %arg6[%arg3, %arg5] [64, 64] [1, 1] : tensor<64x64xf32> into tensor<256x256xf32>
scf.yield %insert_slice : tensor<256x256xf32>
}
scf.yield %2 : tensor<256x256xf32>
}
%4 = linalg.add ins(%1, %arg2 : tensor<256x256xf32>, tensor<256x256xf32>) outs(%dest0 : tensor<256x256xf32>) -> tensor<256x256xf32>
return %4 : tensor<256x256xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_add_consumer_into_nested_scf_for(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<256x512xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<512x256xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<256x256xf32>
// CHECK: %[[dest0:.*]] = tensor.empty() : tensor<256x256xf32>
// CHECK: %[[dest1:.*]] = linalg.fill
// CHECK-SAME: outs(%[[dest0]] :
// CHECK: %[[LOOP_RESULT1:.*]]:2 = scf.for %[[IV1:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG1:.*]] = %[[dest1]], %[[SECOND_OUT_ARG1:.*]] = %[[dest0]])
// CHECK-SAME: {
// CHECK: %[[LOOP_RESULT2:.*]]:2 = scf.for %[[IV2:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG2:.*]] = %[[FIRST_OUT_ARG1]], %[[SECOND_OUT_ARG2:.*]] = %[[SECOND_OUT_ARG1]])
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
// CHECK: %[[INPUT_SLICE:.*]] = tensor.extract_slice %[[ARG0]][%[[IV1]], 0] [64, 512] [1, 1]
// CHECK: %[[WEIGHT_SLICE:.*]] = tensor.extract_slice %[[ARG1]][0, %[[IV2]]] [512, 64] [1, 1]
// CHECK: %[[TILED_MAT_OUT:.*]] = linalg.matmul
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] :
// CHECK: %[[INSERT_MAT:.*]] = tensor.insert_slice %[[TILED_MAT_OUT]] into %[[FIRST_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
// CHECK: %[[ADD_OPERAND2_SLICE:.*]] = tensor.extract_slice %[[ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
// CHECK: %[[ADD_OUT_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
// CHECK: %[[TILED_ADD_OUT:.*]] = linalg.add
// CHECK-SAME: ins(%[[TILED_MAT_OUT]], %[[ADD_OPERAND2_SLICE]] :
// CHECK-SAME: outs(%[[ADD_OUT_SLICE]] :
// CHECK: %[[INSERT_ADD:.*]] = tensor.insert_slice %[[TILED_ADD_OUT]] into %[[SECOND_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
// CHECK: scf.yield %[[INSERT_MAT]], %[[INSERT_ADD]] :
// CHECK: }
// CHECK: scf.yield %[[LOOP_RESULT2]]#0, %[[LOOP_RESULT2]]#1 :
// CHECK: }
// CHECK: return %[[LOOP_RESULT1]]#1 :