// RUN: %clang_cc1 -fsyntax-only %s -verify
// C++'0x [namespace.memdef] p3:
// Every name first declared in a namespace is a member of that namespace. If
// a friend declaration in a non-local class first declares a class or
// function the friend class or function is a member of the innermost
// enclosing namespace.
namespace N {
struct S0 {
friend struct F0;
friend void f0(int);
struct F0 member_func();
};
struct F0 { };
F0 f0() { return S0().member_func(); }
}
N::F0 f0_var = N::f0();
// Ensure we can handle attaching friend declarations to an enclosing namespace
// with multiple contexts.
namespace N { struct S1 { struct IS1; }; }
namespace N {
struct S1::IS1 {
friend struct F1;
friend void f1(int);
struct F1 member_func();
};
struct F1 { };
F1 f1() { return S1::IS1().member_func(); }
}
N::F1 f1_var = N::f1();
// The name of the friend is not found by unqualified lookup (3.4.1) or by
// qualified lookup (3.4.3) until a matching declaration is provided in that
// namespace scope (either before or after the class definition granting
// friendship). If a friend function is called, its name may be found by the
// name lookup that considers functions from namespaces and classes
// associated with the types of the function arguments (3.4.2). If the name
// in a friend declaration is neither qualified nor a template-id and the
// declaration is a function or an elaborated-type-specifier, the lookup to
// determine whether the entity has been previously declared shall not
// consider any scopes outside the innermost enclosing namespace.
template<typename T> struct X0 { };
struct X1 { };
struct Y {
template<typename T> union X0;
template<typename T> friend union X0;
union X1;
friend union X1;
};
namespace N {
namespace M {
template<typename T> class X;
}
}
namespace N3 {
class Y {
template<typename T> friend class N::M::X;
};
}
// FIXME: Woefully inadequate for testing
// Friends declared as template-ids aren't subject to the restriction
// on innermost namespaces.
namespace test5 {
template <class T> void f(T);
namespace ns {
class A {
friend void f<int>(int);
static void foo(); // expected-note 2 {{declared private here}}
};
// Note that this happens without instantiation.
template <class T> void f(T) {
A::foo(); // expected-error {{'foo' is a private member of 'test5::ns::A'}}
}
}
template <class T> void f(T) {
ns::A::foo(); // expected-error {{'foo' is a private member of 'test5::ns::A'}}
}
template void f<int>(int);
template void f<long>(long); //expected-note {{instantiation}}
}
namespace test6 {
class A;
namespace ns {
class B {
static void foo(); // expected-note {{implicitly declared private here}}
friend union A;
};
union A {
void test() {
B::foo();
}
};
}
class A {
void test() {
ns::B::foo(); // expected-error {{'foo' is a private member of 'test6::ns::B'}}
}
};
}
// We seem to be following a correct interpretation with these, but
// the standard could probably be a bit clearer.
namespace test7a {
namespace ns {
class A;
}
using namespace ns;
class B {
static void foo();
friend class A;
};
class ns::A {
void test() {
B::foo();
}
};
}
namespace test7b {
namespace ns {
class A;
}
using ns::A;
class B {
static void foo();
friend class A;
};
class ns::A {
void test() {
B::foo();
}
};
}
namespace test7c {
namespace ns1 {
class A;
}
namespace ns2 {
// ns1::A appears as if declared in test7c according to [namespace.udir]p2.
// I think that means we aren't supposed to find it.
using namespace ns1;
class B {
static void foo(); // expected-note {{implicitly declared private here}}
friend class A;
};
}
class ns1::A {
void test() {
ns2::B::foo(); // expected-error {{'foo' is a private member of 'test7c::ns2::B'}}
}
};
}
namespace test7d {
namespace ns1 {
class A;
}
namespace ns2 {
// Honor the lexical context of a using-declaration, though.
using ns1::A;
class B {
static void foo();
friend class A;
};
}
class ns1::A {
void test() {
ns2::B::foo();
}
};
}