// RUN: %clang_cc1 -std=c++23 -verify %s
// Ensure we substitute into instantiation-dependent but non-dependent
// constructs. The poster-child for this is...
template<class ...> using void_t = void;
namespace PR24076 {
template<class T> T declval();
struct s {};
template<class T,
class = void_t<decltype(declval<T>() + 1)>>
void foo(T) {} // expected-note {{invalid operands to binary expression}}
void f() {
foo(s{}); // expected-error {{no matching function}}
}
template<class T,
class = void_t<decltype(declval<T>() + 1)>> // expected-error {{invalid operands to binary expression}}
struct bar {};
bar<s> bar; // expected-note {{in instantiation of}}
}
namespace PR33655 {
struct One { using x = int; };
struct Two { using y = int; };
template<typename T, void_t<typename T::x> * = nullptr> int &func() {}
template<typename T, void_t<typename T::y> * = nullptr> float &func() {}
int &test1 = func<One>();
float &test2 = func<Two>();
template<class ...Args> struct indirect_void_t_imp { using type = void; };
template<class ...Args> using indirect_void_t = typename indirect_void_t_imp<Args...>::type;
template<class T> void foo() {
int check1[__is_void(indirect_void_t<T>) == 0 ? 1 : -1]; // "ok", dependent
int check2[__is_void(void_t<T>) == 0 ? 1 : -1]; // expected-error {{array with a negative size}}
}
}
namespace PR46791 { // also PR45782
template<typename T, typename = void>
struct trait {
static constexpr int specialization = 0;
};
// FIXME: Per a strict interpretation of the C++ rules, the two void_t<...>
// types below are equivalent -- we only (effectively) do token-by-token
// comparison for *expressions* appearing within types. But all other
// implementations accept this, using rules that are unclear.
template<typename T>
struct trait<T, void_t<typename T::value_type>> { // expected-note {{previous}} FIXME-note {{matches}}
static constexpr int specialization = 1;
};
template<typename T>
struct trait<T, void_t<typename T::element_type>> { // expected-error {{redefinition}} FIXME-note {{matches}}
static constexpr int specialization = 2;
};
struct A {};
struct B { typedef int value_type; };
struct C { typedef int element_type; };
struct D : B, C {};
static_assert(trait<A>::specialization == 0);
static_assert(trait<B>::specialization == 1); // FIXME expected-error {{failed}} \
// expected-note {{evaluates to '0 == 1'}}
static_assert(trait<C>::specialization == 2); // FIXME expected-error {{failed}} \
// expected-note {{evaluates to '0 == 2'}}
static_assert(trait<D>::specialization == 0); // FIXME-error {{ambiguous partial specialization}}
}
namespace TypeQualifier {
// Ensure that we substitute into an instantiation-dependent but
// non-dependent qualifier.
template<int> struct A { using type = int; };
template<typename T> A<sizeof(sizeof(T::error))>::type f() {} // expected-note {{'int' cannot be used prior to '::'}}
int k = f<int>(); // expected-error {{no matching}}
}
namespace MemberOfInstantiationDependentBase {
template<typename T> struct A { template<int> void f(int); };
template<typename T> struct B { using X = A<T>; };
template<typename T> struct C1 : B<int> {
using X = typename C1::X;
void f(X *p) {
p->f<0>(0);
p->template f<0>(0);
}
};
template<typename T> struct C2 : B<int> {
using X = typename C2<T>::X;
void f(X *p) {
p->f<0>(0);
p->template f<0>(0);
}
};
void q(C1<int> *c) { c->f(0); }
void q(C2<int> *c) { c->f(0); }
}