//===-- lib/Semantics/tools.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Parser/tools.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/indirection.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
#include <variant>
namespace Fortran::semantics {
// Find this or containing scope that matches predicate
static const Scope *FindScopeContaining(
const Scope &start, std::function<bool(const Scope &)> predicate) {
for (const Scope *scope{&start};; scope = &scope->parent()) {
if (predicate(*scope)) {
return scope;
}
if (scope->IsTopLevel()) {
return nullptr;
}
}
}
const Scope &GetTopLevelUnitContaining(const Scope &start) {
CHECK(!start.IsTopLevel());
return DEREF(FindScopeContaining(
start, [](const Scope &scope) { return scope.parent().IsTopLevel(); }));
}
const Scope &GetTopLevelUnitContaining(const Symbol &symbol) {
return GetTopLevelUnitContaining(symbol.owner());
}
const Scope *FindModuleContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModule(); });
}
const Scope *FindModuleFileContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModuleFile(); });
}
const Scope &GetProgramUnitContaining(const Scope &start) {
CHECK(!start.IsTopLevel());
return DEREF(FindScopeContaining(start, [](const Scope &scope) {
switch (scope.kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
return true;
default:
return false;
}
}));
}
const Scope &GetProgramUnitContaining(const Symbol &symbol) {
return GetProgramUnitContaining(symbol.owner());
}
const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) {
CHECK(!start.IsTopLevel());
return DEREF(FindScopeContaining(start, [](const Scope &scope) {
switch (scope.kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
case Scope::Kind::BlockConstruct:
return true;
default:
return false;
}
}));
}
const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) {
return GetProgramUnitOrBlockConstructContaining(symbol.owner());
}
const Scope *FindPureProcedureContaining(const Scope &start) {
// N.B. We only need to examine the innermost containing program unit
// because an internal subprogram of a pure subprogram must also
// be pure (C1592).
if (start.IsTopLevel()) {
return nullptr;
} else {
const Scope &scope{GetProgramUnitContaining(start)};
return IsPureProcedure(scope) ? &scope : nullptr;
}
}
const Scope *FindOpenACCConstructContaining(const Scope *scope) {
return scope ? FindScopeContaining(*scope,
[](const Scope &s) {
return s.kind() == Scope::Kind::OpenACCConstruct;
})
: nullptr;
}
// 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its
// infrastructure to detect and handle comparisons on distinct (but "same")
// sequence/bind(C) derived types
static bool MightBeSameDerivedType(
const std::optional<evaluate::DynamicType> &lhsType,
const std::optional<evaluate::DynamicType> &rhsType) {
return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType);
}
Tristate IsDefinedAssignment(
const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
if (!lhsType || !rhsType) {
return Tristate::No; // error or rhs is untyped
}
if (lhsType->IsUnlimitedPolymorphic()) {
return Tristate::No;
}
if (rhsType->IsUnlimitedPolymorphic()) {
return Tristate::Maybe;
}
TypeCategory lhsCat{lhsType->category()};
TypeCategory rhsCat{rhsType->category()};
if (rhsRank > 0 && lhsRank != rhsRank) {
return Tristate::Yes;
} else if (lhsCat != TypeCategory::Derived) {
return ToTristate(lhsCat != rhsCat &&
(!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
} else if (MightBeSameDerivedType(lhsType, rhsType)) {
return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic
} else {
return Tristate::Yes;
}
}
bool IsIntrinsicRelational(common::RelationalOperator opr,
const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
if (!evaluate::AreConformable(rank0, rank1)) {
return false;
} else {
auto cat0{type0.category()};
auto cat1{type1.category()};
if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
// numeric types: EQ/NE always ok, others ok for non-complex
return opr == common::RelationalOperator::EQ ||
opr == common::RelationalOperator::NE ||
(cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
} else {
// not both numeric: only Character is ok
return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
}
}
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
return IsNumericTypeCategory(type0.category());
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
IsNumericTypeCategory(type0.category()) &&
IsNumericTypeCategory(type1.category());
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
return type0.category() == TypeCategory::Logical;
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Logical &&
type1.category() == TypeCategory::Logical;
}
bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Character &&
type1.category() == TypeCategory::Character &&
type0.kind() == type1.kind();
}
bool IsGenericDefinedOp(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
return generic->kind().IsDefinedOperator();
} else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
} else {
return false;
}
}
bool IsDefinedOperator(SourceName name) {
const char *begin{name.begin()};
const char *end{name.end()};
return begin != end && begin[0] == '.' && end[-1] == '.';
}
std::string MakeOpName(SourceName name) {
std::string result{name.ToString()};
return IsDefinedOperator(name) ? "OPERATOR(" + result + ")"
: result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result)
: result;
}
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
const auto &objects{block.get<CommonBlockDetails>().objects()};
return llvm::is_contained(objects, object);
}
bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())};
return owner.kind() == Scope::Kind::Module &&
owner != GetTopLevelUnitContaining(scope);
}
bool DoesScopeContain(
const Scope *maybeAncestor, const Scope &maybeDescendent) {
return maybeAncestor && !maybeDescendent.IsTopLevel() &&
FindScopeContaining(maybeDescendent.parent(),
[&](const Scope &scope) { return &scope == maybeAncestor; });
}
bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
return DoesScopeContain(maybeAncestor, symbol.owner());
}
static const Symbol &FollowHostAssoc(const Symbol &symbol) {
for (const Symbol *s{&symbol};;) {
const auto *details{s->detailsIf<HostAssocDetails>()};
if (!details) {
return *s;
}
s = &details->symbol();
}
}
bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
const Symbol &base{FollowHostAssoc(symbol)};
return base.owner().IsTopLevel() ||
DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base),
GetProgramUnitOrBlockConstructContaining(scope));
}
bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) {
const Symbol &base{FollowHostAssoc(symbol)};
return base.owner().IsTopLevel() ||
DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base),
GetProgramUnitContaining(scope));
}
bool IsInStmtFunction(const Symbol &symbol) {
if (const Symbol * function{symbol.owner().symbol()}) {
return IsStmtFunction(*function);
}
return false;
}
bool IsStmtFunctionDummy(const Symbol &symbol) {
return IsDummy(symbol) && IsInStmtFunction(symbol);
}
bool IsStmtFunctionResult(const Symbol &symbol) {
return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
}
bool IsPointerDummy(const Symbol &symbol) {
return IsPointer(symbol) && IsDummy(symbol);
}
bool IsBindCProcedure(const Symbol &original) {
const Symbol &symbol{original.GetUltimate()};
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
if (procDetails->procInterface()) {
// procedure component with a BIND(C) interface
return IsBindCProcedure(*procDetails->procInterface());
}
}
return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
}
bool IsBindCProcedure(const Scope &scope) {
if (const Symbol * symbol{scope.GetSymbol()}) {
return IsBindCProcedure(*symbol);
} else {
return false;
}
}
static const Symbol *FindPointerComponent(
const Scope &scope, std::set<const Scope *> &visited) {
if (!scope.IsDerivedType()) {
return nullptr;
}
if (!visited.insert(&scope).second) {
return nullptr;
}
// If there's a top-level pointer component, return it for clearer error
// messaging.
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (IsPointer(symbol)) {
return &symbol;
}
}
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * nested{derived->scope()}) {
if (const Symbol *
pointer{FindPointerComponent(*nested, visited)}) {
return pointer;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindPointerComponent(const Scope &scope) {
std::set<const Scope *> visited;
return FindPointerComponent(scope, visited);
}
const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
if (const Scope * scope{derived.scope()}) {
return FindPointerComponent(*scope);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
if (const DerivedTypeSpec * derived{type.AsDerived()}) {
return FindPointerComponent(*derived);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
return type ? FindPointerComponent(*type) : nullptr;
}
const Symbol *FindPointerComponent(const Symbol &symbol) {
return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
}
// C1594 specifies several ways by which an object might be globally visible.
const Symbol *FindExternallyVisibleObject(
const Symbol &object, const Scope &scope, bool isPointerDefinition) {
// TODO: Storage association with any object for which this predicate holds,
// once EQUIVALENCE is supported.
const Symbol &ultimate{GetAssociationRoot(object)};
if (IsDummy(ultimate)) {
if (IsIntentIn(ultimate)) {
return &ultimate;
}
if (!isPointerDefinition && IsPointer(ultimate) &&
IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) {
return &ultimate;
}
} else if (ultimate.owner().IsDerivedType()) {
return nullptr;
} else if (&GetProgramUnitContaining(ultimate) !=
&GetProgramUnitContaining(scope)) {
return &object;
} else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) {
return block;
}
return nullptr;
}
const Symbol &BypassGeneric(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
if (const Symbol * specific{generic->specific()}) {
return *specific;
}
}
return symbol;
}
const Symbol &GetCrayPointer(const Symbol &crayPointee) {
const Symbol *found{nullptr};
for (const auto &[pointee, pointer] :
crayPointee.GetUltimate().owner().crayPointers()) {
if (pointee == crayPointee.name()) {
found = &pointer.get();
break;
}
}
return DEREF(found);
}
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type) {
auto dynamicType{expr.GetType()};
return dynamicType && dynamicType->category() == type;
}
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context) {
auto dynamicType{expr.GetType()};
return dynamicType &&
dynamicType->category() != common::TypeCategory::Derived &&
dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
}
// If an analyzed expr or assignment is missing, dump the node and die.
template <typename T>
static void CheckMissingAnalysis(
bool crash, SemanticsContext *context, const T &x) {
if (crash && !(context && context->AnyFatalError())) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << "node has not been analyzed:\n";
parser::DumpTree(ss, x);
common::die(ss.str().c_str());
}
}
const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
: nullptr;
}
const evaluate::Assignment *GetAssignment(
const parser::PointerAssignmentStmt &x) {
return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
: nullptr;
}
const Symbol *FindInterface(const Symbol &symbol) {
return common::visit(
common::visitors{
[](const ProcEntityDetails &details) {
const Symbol *interface{details.procInterface()};
return interface ? FindInterface(*interface) : nullptr;
},
[](const ProcBindingDetails &details) {
return FindInterface(details.symbol());
},
[&](const SubprogramDetails &) { return &symbol; },
[](const UseDetails &details) {
return FindInterface(details.symbol());
},
[](const HostAssocDetails &details) {
return FindInterface(details.symbol());
},
[](const GenericDetails &details) {
return details.specific() ? FindInterface(*details.specific())
: nullptr;
},
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindSubprogram(const Symbol &symbol) {
return common::visit(
common::visitors{
[&](const ProcEntityDetails &details) -> const Symbol * {
if (details.procInterface()) {
return FindSubprogram(*details.procInterface());
} else {
return &symbol;
}
},
[](const ProcBindingDetails &details) {
return FindSubprogram(details.symbol());
},
[&](const SubprogramDetails &) { return &symbol; },
[](const UseDetails &details) {
return FindSubprogram(details.symbol());
},
[](const HostAssocDetails &details) {
return FindSubprogram(details.symbol());
},
[](const GenericDetails &details) {
return details.specific() ? FindSubprogram(*details.specific())
: nullptr;
},
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindOverriddenBinding(
const Symbol &symbol, bool &isInaccessibleDeferred) {
isInaccessibleDeferred = false;
if (symbol.has<ProcBindingDetails>()) {
if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
if (const Symbol *
overridden{parentScope->FindComponent(symbol.name())}) {
// 7.5.7.3 p1: only accessible bindings are overridden
if (!overridden->attrs().test(Attr::PRIVATE) ||
FindModuleContaining(overridden->owner()) ==
FindModuleContaining(symbol.owner())) {
return overridden;
} else if (overridden->attrs().test(Attr::DEFERRED)) {
isInaccessibleDeferred = true;
return overridden;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindGlobal(const Symbol &original) {
const Symbol &ultimate{original.GetUltimate()};
if (ultimate.owner().IsGlobal()) {
return &ultimate;
}
bool isLocal{false};
if (IsDummy(ultimate)) {
} else if (IsPointer(ultimate)) {
} else if (ultimate.has<ProcEntityDetails>()) {
isLocal = IsExternal(ultimate);
} else if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) {
isLocal = subp->isInterface();
}
if (isLocal) {
const std::string *bind{ultimate.GetBindName()};
if (!bind || ultimate.name() == *bind) {
const Scope &globalScope{ultimate.owner().context().globalScope()};
if (auto iter{globalScope.find(ultimate.name())};
iter != globalScope.end()) {
const Symbol &global{*iter->second};
const std::string *globalBind{global.GetBindName()};
if (!globalBind || global.name() == *globalBind) {
return &global;
}
}
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
return FindParentTypeSpec(derived.typeSymbol());
}
const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
return FindParentTypeSpec(*derived);
} else {
return nullptr;
}
}
const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
if (scope.kind() == Scope::Kind::DerivedType) {
if (const auto *symbol{scope.symbol()}) {
return FindParentTypeSpec(*symbol);
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
if (const Scope * scope{symbol.scope()}) {
if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
if (const Symbol * parent{details->GetParentComponent(*scope)}) {
return parent->GetType();
}
}
}
return nullptr;
}
const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) {
for (const EquivalenceObject &object : set) {
if (object.symbol == ultimate) {
return &set;
}
}
}
return nullptr;
}
bool IsOrContainsEventOrLockComponent(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return IsEventTypeOrLockType(derived) ||
FindEventOrLockPotentialComponent(*derived);
}
}
}
return false;
}
// Check this symbol suitable as a type-bound procedure - C769
bool CanBeTypeBoundProc(const Symbol &symbol) {
if (IsDummy(symbol) || IsProcedurePointer(symbol)) {
return false;
} else if (symbol.has<SubprogramNameDetails>()) {
return symbol.owner().kind() == Scope::Kind::Module;
} else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) {
if (details->isInterface()) {
return !symbol.attrs().test(Attr::ABSTRACT);
} else {
return symbol.owner().kind() == Scope::Kind::Module;
}
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
return !symbol.attrs().test(Attr::INTRINSIC) &&
proc->HasExplicitInterface();
} else {
return false;
}
}
bool HasDeclarationInitializer(const Symbol &symbol) {
if (IsNamedConstant(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
return object->init().has_value();
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
return proc->init().has_value();
} else {
return false;
}
}
bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements,
bool ignoreAllocatable, bool ignorePointer) {
if (!ignoreAllocatable && IsAllocatable(symbol)) {
return true;
} else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) {
return true;
} else if (HasDeclarationInitializer(symbol)) {
return true;
} else if (IsPointer(symbol)) {
return !ignorePointer;
} else if (IsNamedConstant(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && object->type()) {
if (const auto *derived{object->type()->AsDerived()}) {
return derived->HasDefaultInitialization(
ignoreAllocatable, ignorePointer);
}
}
}
return false;
}
bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) {
if (IsAllocatable(symbol) || IsAutomatic(symbol)) {
return true;
} else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
IsPointer(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && object->type()) {
if (const auto *derived{object->type()->AsDerived()}) {
return &derived->typeSymbol() != derivedTypeSymbol &&
derived->HasDestruction();
}
}
}
return false;
}
bool HasIntrinsicTypeName(const Symbol &symbol) {
std::string name{symbol.name().ToString()};
if (name == "doubleprecision") {
return true;
} else if (name == "derived") {
return false;
} else {
for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
return true;
}
}
return false;
}
}
bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
if (symbol && symbol->attrs().test(Attr::MODULE)) {
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return details->isInterface();
}
}
return false;
}
SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) {
SymbolVector result;
const Symbol &typeSymbol{spec.typeSymbol()};
if (const auto *derived{typeSymbol.detailsIf<DerivedTypeDetails>()}) {
for (const auto &pair : derived->finals()) {
const Symbol &subr{*pair.second};
// Errors in FINAL subroutines are caught in CheckFinal
// in check-declarations.cpp.
if (const auto *subprog{subr.detailsIf<SubprogramDetails>()};
subprog && subprog->dummyArgs().size() == 1) {
if (const Symbol * arg{subprog->dummyArgs()[0]}) {
if (const DeclTypeSpec * type{arg->GetType()}) {
if (type->category() == DeclTypeSpec::TypeDerived &&
evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) {
result.emplace_back(subr);
}
}
}
}
}
}
return result;
}
const Symbol *IsFinalizable(const Symbol &symbol,
std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer) {
if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) {
return nullptr;
}
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->isDummy() && !IsIntentOut(symbol)) {
return nullptr;
}
const DeclTypeSpec *type{object->type()};
if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) {
return IsFinalizable(
*typeSpec, inProgress, withImpureFinalizer, symbol.Rank());
}
}
return nullptr;
}
const Symbol *IsFinalizable(const DerivedTypeSpec &derived,
std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer,
std::optional<int> rank) {
const Symbol *elemental{nullptr};
for (auto ref : FinalsForDerivedTypeInstantiation(derived)) {
const Symbol *symbol{&ref->GetUltimate()};
if (const auto *binding{symbol->detailsIf<ProcBindingDetails>()}) {
symbol = &binding->symbol();
}
if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
symbol = proc->procInterface();
}
if (!symbol) {
} else if (IsElementalProcedure(*symbol)) {
elemental = symbol;
} else {
if (rank) {
if (const SubprogramDetails *
subp{symbol->detailsIf<SubprogramDetails>()}) {
if (const auto &args{subp->dummyArgs()}; !args.empty() &&
args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) &&
args.at(0)->Rank() != *rank) {
continue; // not a finalizer for this rank
}
}
}
if (!withImpureFinalizer || !IsPureProcedure(*symbol)) {
return symbol;
}
// Found non-elemental pure finalizer of matching rank, but still
// need to check components for an impure finalizer.
elemental = nullptr;
break;
}
}
if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) {
return elemental;
}
// Check components (including ancestors)
std::set<const DerivedTypeSpec *> basis;
if (inProgress) {
if (inProgress->find(&derived) != inProgress->end()) {
return nullptr; // don't loop on recursive type
}
} else {
inProgress = &basis;
}
auto iterator{inProgress->insert(&derived).first};
const Symbol *result{nullptr};
for (const Symbol &component : PotentialComponentIterator{derived}) {
result = IsFinalizable(component, inProgress, withImpureFinalizer);
if (result) {
break;
}
}
inProgress->erase(iterator);
return result;
}
static const Symbol *HasImpureFinal(
const DerivedTypeSpec &derived, std::optional<int> rank) {
return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank);
}
const Symbol *HasImpureFinal(const Symbol &original, std::optional<int> rank) {
const Symbol &symbol{ResolveAssociations(original)};
if (symbol.has<ObjectEntityDetails>()) {
if (const DeclTypeSpec * symType{symbol.GetType()}) {
if (const DerivedTypeSpec * derived{symType->AsDerived()}) {
if (evaluate::IsAssumedRank(symbol)) {
// finalizable assumed-rank not allowed (C839)
return nullptr;
} else {
int actualRank{rank.value_or(symbol.Rank())};
return HasImpureFinal(*derived, actualRank);
}
}
}
}
return nullptr;
}
bool MayRequireFinalization(const DerivedTypeSpec &derived) {
return IsFinalizable(derived) ||
FindPolymorphicAllocatablePotentialComponent(derived);
}
bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) {
DirectComponentIterator directs{derived};
return std::any_of(directs.begin(), directs.end(), IsAllocatable);
}
bool IsAssumedLengthCharacter(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->category() == DeclTypeSpec::Character &&
type->characterTypeSpec().length().isAssumed();
} else {
return false;
}
}
bool IsInBlankCommon(const Symbol &symbol) {
const Symbol *block{FindCommonBlockContaining(symbol)};
return block && block->name().empty();
}
// C722 and C723: For a function to be assumed length, it must be external and
// of CHARACTER type
bool IsExternal(const Symbol &symbol) {
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External;
}
// Most scopes have no EQUIVALENCE, and this function is a fast no-op for them.
std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) {
UnorderedSymbolSet distinct;
for (const EquivalenceSet &set : scope.equivalenceSets()) {
for (const EquivalenceObject &object : set) {
distinct.emplace(object.symbol);
}
}
// This set is ordered by ascending offsets, with ties broken by greatest
// size. A multiset is used here because multiple symbols may have the
// same offset and size; the symbols in the set, however, are distinct.
std::multiset<SymbolRef, SymbolOffsetCompare> associated;
for (SymbolRef ref : distinct) {
associated.emplace(*ref);
}
std::list<std::list<SymbolRef>> result;
std::size_t limit{0};
const Symbol *currentCommon{nullptr};
for (const Symbol &symbol : associated) {
const Symbol *thisCommon{FindCommonBlockContaining(symbol)};
if (result.empty() || symbol.offset() >= limit ||
thisCommon != currentCommon) {
// Start a new group
result.emplace_back(std::list<SymbolRef>{});
limit = 0;
currentCommon = thisCommon;
}
result.back().emplace_back(symbol);
limit = std::max(limit, symbol.offset() + symbol.size());
}
return result;
}
bool IsModuleProcedure(const Symbol &symbol) {
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module;
}
class ImageControlStmtHelper {
using ImageControlStmts =
std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct,
parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt,
parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt,
parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>;
public:
template <typename T> bool operator()(const T &) {
return common::HasMember<T, ImageControlStmts>;
}
template <typename T> bool operator()(const common::Indirection<T> &x) {
return (*this)(x.value());
}
template <typename A> bool operator()(const parser::Statement<A> &x) {
return (*this)(x.statement);
}
bool operator()(const parser::AllocateStmt &stmt) {
const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
for (const auto &allocation : allocationList) {
const auto &allocateObject{
std::get<parser::AllocateObject>(allocation.t)};
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::DeallocateStmt &stmt) {
const auto &allocateObjectList{
std::get<std::list<parser::AllocateObject>>(stmt.t)};
for (const auto &allocateObject : allocateObjectList) {
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::CallStmt &stmt) {
const auto &procedureDesignator{
std::get<parser::ProcedureDesignator>(stmt.call.t)};
if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
// TODO: also ensure that the procedure is, in fact, an intrinsic
if (name->source == "move_alloc") {
const auto &args{
std::get<std::list<parser::ActualArgSpec>>(stmt.call.t)};
if (!args.empty()) {
const parser::ActualArg &actualArg{
std::get<parser::ActualArg>(args.front().t)};
if (const auto *argExpr{
std::get_if<common::Indirection<parser::Expr>>(
&actualArg.u)}) {
return HasCoarray(argExpr->value());
}
}
}
}
return false;
}
bool operator()(const parser::StopStmt &stmt) {
// STOP is an image control statement; ERROR STOP is not
return std::get<parser::StopStmt::Kind>(stmt.t) ==
parser::StopStmt::Kind::Stop;
}
bool operator()(const parser::IfStmt &stmt) {
return (*this)(
std::get<parser::UnlabeledStatement<parser::ActionStmt>>(stmt.t)
.statement);
}
bool operator()(const parser::ActionStmt &stmt) {
return common::visit(*this, stmt.u);
}
private:
bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
const parser::Name &name{GetLastName(allocateObject)};
return name.symbol && evaluate::IsCoarray(*name.symbol);
}
};
bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
return common::visit(ImageControlStmtHelper{}, construct.u);
}
std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
const parser::ExecutableConstruct &construct) {
if (const auto *actionStmt{
std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
return common::visit(
common::visitors{
[](const common::Indirection<parser::AllocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "ALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::DeallocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "DEALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::CallStmt> &)
-> std::optional<parser::MessageFixedText> {
return "MOVE_ALLOC of a coarray is an image control"
" statement "_en_US;
},
[](const auto &) -> std::optional<parser::MessageFixedText> {
return std::nullopt;
},
},
actionStmt->statement.u);
}
return std::nullopt;
}
parser::CharBlock GetImageControlStmtLocation(
const parser::ExecutableConstruct &executableConstruct) {
return common::visit(
common::visitors{
[](const common::Indirection<parser::ChangeTeamConstruct>
&construct) {
return std::get<parser::Statement<parser::ChangeTeamStmt>>(
construct.value().t)
.source;
},
[](const common::Indirection<parser::CriticalConstruct> &construct) {
return std::get<parser::Statement<parser::CriticalStmt>>(
construct.value().t)
.source;
},
[](const parser::Statement<parser::ActionStmt> &actionStmt) {
return actionStmt.source;
},
[](const auto &) { return parser::CharBlock{}; },
},
executableConstruct.u);
}
bool HasCoarray(const parser::Expr &expression) {
if (const auto *expr{GetExpr(nullptr, expression)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
if (evaluate::IsCoarray(symbol)) {
return true;
}
}
}
return false;
}
bool IsAssumedType(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->IsAssumedType();
}
return false;
}
bool IsPolymorphic(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->IsPolymorphic();
}
return false;
}
bool IsUnlimitedPolymorphic(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->IsUnlimitedPolymorphic();
}
return false;
}
bool IsPolymorphicAllocatable(const Symbol &symbol) {
return IsAllocatable(symbol) && IsPolymorphic(symbol);
}
const Scope *FindCUDADeviceContext(const Scope *scope) {
return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) {
return IsCUDADeviceContext(&s);
});
}
std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *symbol) {
const auto *object{
symbol ? symbol->detailsIf<ObjectEntityDetails>() : nullptr};
return object ? object->cudaDataAttr() : std::nullopt;
}
std::optional<parser::MessageFormattedText> CheckAccessibleSymbol(
const Scope &scope, const Symbol &symbol) {
if (symbol.attrs().test(Attr::PRIVATE)) {
if (FindModuleFileContaining(scope)) {
// Don't enforce component accessibility checks in module files;
// there may be forward-substituted named constants of derived type
// whose structure constructors reference private components.
} else if (const Scope *
moduleScope{FindModuleContaining(symbol.owner())}) {
if (!moduleScope->Contains(scope)) {
return parser::MessageFormattedText{
"PRIVATE name '%s' is only accessible within module '%s'"_err_en_US,
symbol.name(), moduleScope->GetName().value()};
}
}
}
return std::nullopt;
}
SymbolVector OrderParameterNames(const Symbol &typeSymbol) {
SymbolVector result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterNames(spec->typeSymbol());
}
const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNameOrder()};
result.insert(result.end(), paramNames.begin(), paramNames.end());
return result;
}
SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
SymbolVector result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterDeclarations(spec->typeSymbol());
}
const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDeclOrder()};
result.insert(result.end(), paramDecls.begin(), paramDecls.end());
return result;
}
const DeclTypeSpec &FindOrInstantiateDerivedType(
Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) {
spec.EvaluateParameters(scope.context());
if (const DeclTypeSpec *
type{scope.FindInstantiatedDerivedType(spec, category)}) {
return *type;
}
// Create a new instantiation of this parameterized derived type
// for this particular distinct set of actual parameter values.
DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
type.derivedTypeSpec().Instantiate(scope);
return type;
}
const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
if (proc) {
if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) {
if (const Symbol * iface{subprogram->moduleInterface()}) {
return iface;
}
}
}
return nullptr;
}
ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2
const Symbol &ultimate{symbol.GetUltimate()};
if (!IsProcedure(ultimate)) {
return ProcedureDefinitionClass::None;
} else if (ultimate.attrs().test(Attr::INTRINSIC)) {
return ProcedureDefinitionClass::Intrinsic;
} else if (IsDummy(ultimate)) {
return ProcedureDefinitionClass::Dummy;
} else if (IsProcedurePointer(symbol)) {
return ProcedureDefinitionClass::Pointer;
} else if (ultimate.attrs().test(Attr::EXTERNAL)) {
return ProcedureDefinitionClass::External;
} else if (const auto *nameDetails{
ultimate.detailsIf<SubprogramNameDetails>()}) {
switch (nameDetails->kind()) {
case SubprogramKind::Module:
return ProcedureDefinitionClass::Module;
case SubprogramKind::Internal:
return ProcedureDefinitionClass::Internal;
}
} else if (const Symbol * subp{FindSubprogram(symbol)}) {
if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) {
if (subpDetails->stmtFunction()) {
return ProcedureDefinitionClass::StatementFunction;
}
}
switch (ultimate.owner().kind()) {
case Scope::Kind::Global:
case Scope::Kind::IntrinsicModules:
return ProcedureDefinitionClass::External;
case Scope::Kind::Module:
return ProcedureDefinitionClass::Module;
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
return ProcedureDefinitionClass::Internal;
default:
break;
}
}
return ProcedureDefinitionClass::None;
}
// ComponentIterator implementation
template <ComponentKind componentKind>
typename ComponentIterator<componentKind>::const_iterator
ComponentIterator<componentKind>::const_iterator::Create(
const DerivedTypeSpec &derived) {
const_iterator it{};
it.componentPath_.emplace_back(derived);
it.Increment(); // cue up first relevant component, if any
return it;
}
template <ComponentKind componentKind>
const DerivedTypeSpec *
ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
const Symbol &component) const {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const auto *derived{type->AsDerived()}) {
bool traverse{false};
if constexpr (componentKind == ComponentKind::Ordered) {
// Order Component (only visit parents)
traverse = component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
traverse = !IsAllocatableOrObjectPointer(&component);
} else if constexpr (componentKind == ComponentKind::Ultimate) {
traverse = !IsAllocatableOrObjectPointer(&component);
} else if constexpr (componentKind == ComponentKind::Potential) {
traverse = !IsPointer(component);
} else if constexpr (componentKind == ComponentKind::Scope) {
traverse = !IsAllocatableOrObjectPointer(&component);
} else if constexpr (componentKind ==
ComponentKind::PotentialAndPointer) {
traverse = !IsPointer(component);
}
if (traverse) {
const Symbol &newTypeSymbol{derived->typeSymbol()};
// Avoid infinite loop if the type is already part of the types
// being visited. It is possible to have "loops in type" because
// C744 does not forbid to use not yet declared type for
// ALLOCATABLE or POINTER components.
for (const auto &node : componentPath_) {
if (&newTypeSymbol == &node.GetTypeSymbol()) {
return nullptr;
}
}
return derived;
}
}
} // intrinsic & unlimited polymorphic not traversable
}
return nullptr;
}
template <ComponentKind componentKind>
static bool StopAtComponentPre(const Symbol &component) {
if constexpr (componentKind == ComponentKind::Ordered) {
// Parent components need to be iterated upon after their
// sub-components in structure constructor analysis.
return !component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
return true;
} else if constexpr (componentKind == ComponentKind::Ultimate) {
return component.has<ProcEntityDetails>() ||
IsAllocatableOrObjectPointer(&component) ||
(component.has<ObjectEntityDetails>() &&
component.get<ObjectEntityDetails>().type() &&
component.get<ObjectEntityDetails>().type()->AsIntrinsic());
} else if constexpr (componentKind == ComponentKind::Potential) {
return !IsPointer(component);
} else if constexpr (componentKind == ComponentKind::PotentialAndPointer) {
return true;
} else {
DIE("unexpected ComponentKind");
}
}
template <ComponentKind componentKind>
static bool StopAtComponentPost(const Symbol &component) {
return componentKind == ComponentKind::Ordered &&
component.test(Symbol::Flag::ParentComp);
}
template <ComponentKind componentKind>
void ComponentIterator<componentKind>::const_iterator::Increment() {
while (!componentPath_.empty()) {
ComponentPathNode &deepest{componentPath_.back()};
if (deepest.component()) {
if (!deepest.descended()) {
deepest.set_descended(true);
if (const DerivedTypeSpec *
derived{PlanComponentTraversal(*deepest.component())}) {
componentPath_.emplace_back(*derived);
continue;
}
} else if (!deepest.visited()) {
deepest.set_visited(true);
return; // this is the next component to visit, after descending
}
}
auto &nameIterator{deepest.nameIterator()};
if (nameIterator == deepest.nameEnd()) {
componentPath_.pop_back();
} else if constexpr (componentKind == ComponentKind::Scope) {
deepest.set_component(*nameIterator++->second);
deepest.set_descended(false);
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
const Scope &scope{deepest.GetScope()};
auto scopeIter{scope.find(*nameIterator++)};
if (scopeIter != scope.cend()) {
const Symbol &component{*scopeIter->second};
deepest.set_component(component);
deepest.set_descended(false);
if (StopAtComponentPre<componentKind>(component)) {
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
deepest.set_visited(!StopAtComponentPost<componentKind>(component));
}
}
}
}
}
template <ComponentKind componentKind>
std::string
ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
const {
std::string designator;
for (const auto &node : componentPath_) {
designator += "%"s + DEREF(node.component()).name().ToString();
}
return designator;
}
template class ComponentIterator<ComponentKind::Ordered>;
template class ComponentIterator<ComponentKind::Direct>;
template class ComponentIterator<ComponentKind::Ultimate>;
template class ComponentIterator<ComponentKind::Potential>;
template class ComponentIterator<ComponentKind::Scope>;
template class ComponentIterator<ComponentKind::PotentialAndPointer>;
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(),
[](const Symbol &symbol) { return evaluate::IsCoarray(symbol); });
}
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
}
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && IsEventTypeOrLockType(type->AsDerived());
}
return false;
});
}
UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
}
DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent(
const DerivedTypeSpec &derived) {
DirectComponentIterator directs{derived};
return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer);
}
PotentialComponentIterator::const_iterator
FindPolymorphicAllocatablePotentialComponent(const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), IsPolymorphicAllocatable);
}
const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
const std::function<bool(const Symbol &)> &predicate) {
UltimateComponentIterator ultimates{derived};
if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
[&predicate](const Symbol &component) -> bool {
return predicate(component);
})}) {
return &*it;
}
return nullptr;
}
const Symbol *FindUltimateComponent(const Symbol &symbol,
const std::function<bool(const Symbol &)> &predicate) {
if (predicate(symbol)) {
return &symbol;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindUltimateComponent(*derived, predicate);
}
}
}
return nullptr;
}
const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
const std::function<bool(const Symbol &)> &predicate) {
if (const Scope * scope{type.scope()}) {
const Symbol *parent{nullptr};
for (const auto &pair : *scope) {
const Symbol *symbol{&*pair.second};
if (predicate(*symbol)) {
return symbol;
}
if (symbol->test(Symbol::Flag::ParentComp)) {
parent = symbol;
}
}
if (parent) {
if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindImmediateComponent(*derived, predicate);
}
}
}
}
}
return nullptr;
}
const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
if (IsFunctionResult(symbol)) {
if (const Symbol * function{symbol.owner().symbol()}) {
if (symbol.name() == function->name()) {
return function;
}
}
// Check ENTRY result symbols too
const Scope &outer{symbol.owner().parent()};
auto iter{outer.find(symbol.name())};
if (iter != outer.end()) {
const Symbol &outerSym{*iter->second};
if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) {
if (subp->entryScope() == &symbol.owner() &&
symbol.name() == outerSym.name()) {
return &outerSym;
}
}
}
}
return nullptr;
}
void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
CheckLabelUse(gotoStmt.v);
}
void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
CheckLabelUse(i);
}
}
void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
CheckLabelUse(std::get<1>(arithmeticIfStmt.t));
CheckLabelUse(std::get<2>(arithmeticIfStmt.t));
CheckLabelUse(std::get<3>(arithmeticIfStmt.t));
}
void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
CheckLabelUse(std::get<parser::Label>(assignStmt.t));
}
void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
CheckLabelUse(i);
}
}
void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
CheckLabelUse(altReturnSpec.v);
}
void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
CheckLabelUse(errLabel.v);
}
void LabelEnforce::Post(const parser::EndLabel &endLabel) {
CheckLabelUse(endLabel.v);
}
void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
CheckLabelUse(eorLabel.v);
}
void LabelEnforce::CheckLabelUse(const parser::Label &labelUsed) {
if (labels_.find(labelUsed) == labels_.end()) {
SayWithConstruct(context_, currentStatementSourcePosition_,
parser::MessageFormattedText{
"Control flow escapes from %s"_err_en_US, construct_},
constructSourcePosition_);
}
}
parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
return {"Enclosing %s statement"_en_US, construct_};
}
void LabelEnforce::SayWithConstruct(SemanticsContext &context,
parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
parser::CharBlock constructLocation) {
context.Say(stmtLocation, message)
.Attach(constructLocation, GetEnclosingConstructMsg());
}
bool HasAlternateReturns(const Symbol &subprogram) {
for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) {
if (!dummyArg) {
return true;
}
}
return false;
}
bool IsAutomaticallyDestroyed(const Symbol &symbol) {
return symbol.has<ObjectEntityDetails>() &&
(symbol.owner().kind() == Scope::Kind::Subprogram ||
symbol.owner().kind() == Scope::Kind::BlockConstruct) &&
!IsNamedConstant(symbol) && (!IsDummy(symbol) || IsIntentOut(symbol)) &&
!IsPointer(symbol) && !IsSaved(symbol) &&
!FindCommonBlockContaining(symbol);
}
const std::optional<parser::Name> &MaybeGetNodeName(
const ConstructNode &construct) {
return common::visit(
common::visitors{
[&](const parser::BlockConstruct *blockConstruct)
-> const std::optional<parser::Name> & {
return std::get<0>(blockConstruct->t).statement.v;
},
[&](const auto *a) -> const std::optional<parser::Name> & {
return std::get<0>(std::get<0>(a->t).statement.t);
},
},
construct);
}
std::optional<ArraySpec> ToArraySpec(
evaluate::FoldingContext &context, const evaluate::Shape &shape) {
if (auto extents{evaluate::AsConstantExtents(context, shape)}) {
ArraySpec result;
for (const auto &extent : *extents) {
result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent}));
}
return {std::move(result)};
} else {
return std::nullopt;
}
}
std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context,
const std::optional<evaluate::Shape> &shape) {
return shape ? ToArraySpec(context, *shape) : std::nullopt;
}
static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) {
if (const auto *subp{proc.detailsIf<SubprogramDetails>()};
subp && !subp->dummyArgs().empty()) {
if (const auto *arg{subp->dummyArgs()[0]}) {
return arg->GetType();
}
}
return nullptr;
}
const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) {
if (const auto *type{GetDtvArgTypeSpec(proc)}) {
return type->AsDerived();
} else {
return nullptr;
}
}
bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived,
const Scope *scope) {
if (const Scope * dtScope{derived.scope()}) {
for (const auto &pair : *dtScope) {
const Symbol &symbol{*pair.second};
if (const auto *generic{symbol.detailsIf<GenericDetails>()}) {
GenericKind kind{generic->kind()};
if (const auto *io{std::get_if<common::DefinedIo>(&kind.u)}) {
if (*io == which) {
return true; // type-bound GENERIC exists
}
}
}
}
}
if (scope) {
SourceName name{GenericKind::AsFortran(which)};
evaluate::DynamicType dyDerived{derived};
for (; scope && !scope->IsGlobal(); scope = &scope->parent()) {
auto iter{scope->find(name)};
if (iter != scope->end()) {
const auto &generic{iter->second->GetUltimate().get<GenericDetails>()};
for (auto ref : generic.specificProcs()) {
const Symbol &procSym{ref->GetUltimate()};
if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) {
if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) {
if (dyDummy->IsTkCompatibleWith(dyDerived)) {
return true; // GENERIC or INTERFACE not in type
}
}
}
}
}
}
}
return false;
}
void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context,
const SomeExpr *expr, parser::CharBlock at, const char *what) {
if (context.languageFeatures().ShouldWarn(
common::UsageWarning::F202XAllocatableBreakingChange)) {
if (const Symbol *
symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) {
const Symbol &ultimate{ResolveAssociations(*symbol)};
if (const DeclTypeSpec * type{ultimate.GetType()}; type &&
type->category() == DeclTypeSpec::Category::Character &&
type->characterTypeSpec().length().isDeferred() &&
IsAllocatable(ultimate) && ultimate.Rank() == 0) {
context.Say(at,
"The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US,
symbol->name(), what);
}
}
}
}
bool CouldBeDataPointerValuedFunction(const Symbol *original) {
if (original) {
const Symbol &ultimate{original->GetUltimate()};
if (const Symbol * result{FindFunctionResult(ultimate)}) {
return IsPointer(*result) && !IsProcedure(*result);
}
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
for (const SymbolRef &ref : generic->specificProcs()) {
if (CouldBeDataPointerValuedFunction(&*ref)) {
return true;
}
}
}
}
return false;
}
std::string GetModuleOrSubmoduleName(const Symbol &symbol) {
const auto &details{symbol.get<ModuleDetails>()};
std::string result{symbol.name().ToString()};
if (details.ancestor() && details.ancestor()->symbol()) {
result = details.ancestor()->symbol()->name().ToString() + ':' + result;
}
return result;
}
std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) {
if (const std::string * bind{common.GetBindName()}) {
return *bind;
}
if (common.name().empty()) {
return Fortran::common::blankCommonObjectName;
}
return underscoring ? common.name().ToString() + "_"s
: common.name().ToString();
}
bool HadUseError(
SemanticsContext &context, SourceName at, const Symbol *symbol) {
if (const auto *details{
symbol ? symbol->detailsIf<UseErrorDetails>() : nullptr}) {
auto &msg{context.Say(
at, "Reference to '%s' is ambiguous"_err_en_US, symbol->name())};
for (const auto &[location, module] : details->occurrences()) {
msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, at,
module->GetName().value());
}
context.SetError(*symbol);
return true;
} else {
return false;
}
}
} // namespace Fortran::semantics