//===-- OpenMP.cpp -- Open MP directive lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/OpenMP.h"
#include "ClauseProcessor.h"
#include "Clauses.h"
#include "DataSharingProcessor.h"
#include "Decomposer.h"
#include "DirectivesCommon.h"
#include "ReductionProcessor.h"
#include "Utils.h"
#include "flang/Common/idioms.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/openmp-directive-sets.h"
#include "flang/Semantics/tools.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
using namespace Fortran::lower::omp;
//===----------------------------------------------------------------------===//
// Code generation helper functions
//===----------------------------------------------------------------------===//
static void genOMPDispatch(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item);
static lower::pft::Evaluation *
getCollapsedLoopEval(lower::pft::Evaluation &eval, int collapseValue) {
// Return the Evaluation of the innermost collapsed loop, or the current one
// if there was no COLLAPSE.
if (collapseValue == 0)
return &eval;
lower::pft::Evaluation *curEval = &eval.getFirstNestedEvaluation();
for (int i = 1; i < collapseValue; i++) {
// The nested evaluations should be DoConstructs (i.e. they should form
// a loop nest). Each DoConstruct is a tuple <NonLabelDoStmt, Block,
// EndDoStmt>.
assert(curEval->isA<parser::DoConstruct>());
curEval = &*std::next(curEval->getNestedEvaluations().begin());
}
return curEval;
}
static void genNestedEvaluations(lower::AbstractConverter &converter,
lower::pft::Evaluation &eval,
int collapseValue = 0) {
lower::pft::Evaluation *curEval = getCollapsedLoopEval(eval, collapseValue);
for (lower::pft::Evaluation &e : curEval->getNestedEvaluations())
converter.genEval(e);
}
static fir::GlobalOp globalInitialization(lower::AbstractConverter &converter,
fir::FirOpBuilder &firOpBuilder,
const semantics::Symbol &sym,
const lower::pft::Variable &var,
mlir::Location currentLocation) {
mlir::Type ty = converter.genType(sym);
std::string globalName = converter.mangleName(sym);
mlir::StringAttr linkage = firOpBuilder.createInternalLinkage();
fir::GlobalOp global =
firOpBuilder.createGlobal(currentLocation, ty, globalName, linkage);
// Create default initialization for non-character scalar.
if (semantics::IsAllocatableOrObjectPointer(&sym)) {
mlir::Type baseAddrType = mlir::dyn_cast<fir::BoxType>(ty).getEleTy();
lower::createGlobalInitialization(
firOpBuilder, global, [&](fir::FirOpBuilder &b) {
mlir::Value nullAddr =
b.createNullConstant(currentLocation, baseAddrType);
mlir::Value box =
b.create<fir::EmboxOp>(currentLocation, ty, nullAddr);
b.create<fir::HasValueOp>(currentLocation, box);
});
} else {
lower::createGlobalInitialization(
firOpBuilder, global, [&](fir::FirOpBuilder &b) {
mlir::Value undef = b.create<fir::UndefOp>(currentLocation, ty);
b.create<fir::HasValueOp>(currentLocation, undef);
});
}
return global;
}
// Get the extended value for \p val by extracting additional variable
// information from \p base.
static fir::ExtendedValue getExtendedValue(fir::ExtendedValue base,
mlir::Value val) {
return base.match(
[&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
return fir::MutableBoxValue(val, box.nonDeferredLenParams(), {});
},
[&](const auto &) -> fir::ExtendedValue {
return fir::substBase(base, val);
});
}
#ifndef NDEBUG
static bool isThreadPrivate(lower::SymbolRef sym) {
if (const auto *details = sym->detailsIf<semantics::CommonBlockDetails>()) {
for (const auto &obj : details->objects())
if (!obj->test(semantics::Symbol::Flag::OmpThreadprivate))
return false;
return true;
}
return sym->test(semantics::Symbol::Flag::OmpThreadprivate);
}
#endif
static void threadPrivatizeVars(lower::AbstractConverter &converter,
lower::pft::Evaluation &eval) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Location currentLocation = converter.getCurrentLocation();
mlir::OpBuilder::InsertionGuard guard(firOpBuilder);
firOpBuilder.setInsertionPointToStart(firOpBuilder.getAllocaBlock());
// If the symbol corresponds to the original ThreadprivateOp, use the symbol
// value from that operation to create one ThreadprivateOp copy operation
// inside the parallel region.
// In some cases, however, the symbol will correspond to the original,
// non-threadprivate variable. This can happen, for instance, with a common
// block, declared in a separate module, used by a parent procedure and
// privatized in its child procedure.
auto genThreadprivateOp = [&](lower::SymbolRef sym) -> mlir::Value {
assert(isThreadPrivate(sym));
mlir::Value symValue = converter.getSymbolAddress(sym);
mlir::Operation *op = symValue.getDefiningOp();
if (auto declOp = mlir::dyn_cast<hlfir::DeclareOp>(op))
op = declOp.getMemref().getDefiningOp();
if (mlir::isa<mlir::omp::ThreadprivateOp>(op))
symValue = mlir::dyn_cast<mlir::omp::ThreadprivateOp>(op).getSymAddr();
return firOpBuilder.create<mlir::omp::ThreadprivateOp>(
currentLocation, symValue.getType(), symValue);
};
llvm::SetVector<const semantics::Symbol *> threadprivateSyms;
converter.collectSymbolSet(eval, threadprivateSyms,
semantics::Symbol::Flag::OmpThreadprivate,
/*collectSymbols=*/true,
/*collectHostAssociatedSymbols=*/true);
std::set<semantics::SourceName> threadprivateSymNames;
// For a COMMON block, the ThreadprivateOp is generated for itself instead of
// its members, so only bind the value of the new copied ThreadprivateOp
// inside the parallel region to the common block symbol only once for
// multiple members in one COMMON block.
llvm::SetVector<const semantics::Symbol *> commonSyms;
for (std::size_t i = 0; i < threadprivateSyms.size(); i++) {
const semantics::Symbol *sym = threadprivateSyms[i];
mlir::Value symThreadprivateValue;
// The variable may be used more than once, and each reference has one
// symbol with the same name. Only do once for references of one variable.
if (threadprivateSymNames.find(sym->name()) != threadprivateSymNames.end())
continue;
threadprivateSymNames.insert(sym->name());
if (const semantics::Symbol *common =
semantics::FindCommonBlockContaining(sym->GetUltimate())) {
mlir::Value commonThreadprivateValue;
if (commonSyms.contains(common)) {
commonThreadprivateValue = converter.getSymbolAddress(*common);
} else {
commonThreadprivateValue = genThreadprivateOp(*common);
converter.bindSymbol(*common, commonThreadprivateValue);
commonSyms.insert(common);
}
symThreadprivateValue = lower::genCommonBlockMember(
converter, currentLocation, *sym, commonThreadprivateValue);
} else {
symThreadprivateValue = genThreadprivateOp(*sym);
}
fir::ExtendedValue sexv = converter.getSymbolExtendedValue(*sym);
fir::ExtendedValue symThreadprivateExv =
getExtendedValue(sexv, symThreadprivateValue);
converter.bindSymbol(*sym, symThreadprivateExv);
}
}
static mlir::Operation *
createAndSetPrivatizedLoopVar(lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value indexVal,
const semantics::Symbol *sym) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::OpBuilder::InsertPoint insPt = firOpBuilder.saveInsertionPoint();
firOpBuilder.setInsertionPointToStart(firOpBuilder.getAllocaBlock());
mlir::Type tempTy = converter.genType(*sym);
assert(converter.isPresentShallowLookup(*sym) &&
"Expected symbol to be in symbol table.");
firOpBuilder.restoreInsertionPoint(insPt);
mlir::Value cvtVal = firOpBuilder.createConvert(loc, tempTy, indexVal);
mlir::Operation *storeOp = firOpBuilder.create<fir::StoreOp>(
loc, cvtVal, converter.getSymbolAddress(*sym));
return storeOp;
}
// This helper function implements the functionality of "promoting"
// non-CPTR arguments of use_device_ptr to use_device_addr
// arguments (automagic conversion of use_device_ptr ->
// use_device_addr in these cases). The way we do so currently is
// through the shuffling of operands from the devicePtrOperands to
// deviceAddrOperands where neccesary and re-organizing the types,
// locations and symbols to maintain the correct ordering of ptr/addr
// input -> BlockArg.
//
// This effectively implements some deprecated OpenMP functionality
// that some legacy applications unfortunately depend on
// (deprecated in specification version 5.2):
//
// "If a list item in a use_device_ptr clause is not of type C_PTR,
// the behavior is as if the list item appeared in a use_device_addr
// clause. Support for such list items in a use_device_ptr clause
// is deprecated."
static void promoteNonCPtrUseDevicePtrArgsToUseDeviceAddr(
llvm::SmallVectorImpl<mlir::Value> &useDeviceAddrVars,
llvm::SmallVectorImpl<mlir::Value> &useDevicePtrVars,
llvm::SmallVectorImpl<mlir::Type> &useDeviceTypes,
llvm::SmallVectorImpl<mlir::Location> &useDeviceLocs,
llvm::SmallVectorImpl<const semantics::Symbol *> &useDeviceSymbols) {
auto moveElementToBack = [](size_t idx, auto &vector) {
auto *iter = std::next(vector.begin(), idx);
vector.push_back(*iter);
vector.erase(iter);
};
// Iterate over our use_device_ptr list and shift all non-cptr arguments into
// use_device_addr.
for (auto *it = useDevicePtrVars.begin(); it != useDevicePtrVars.end();) {
if (!fir::isa_builtin_cptr_type(fir::unwrapRefType(it->getType()))) {
useDeviceAddrVars.push_back(*it);
// We have to shuffle the symbols around as well, to maintain
// the correct Input -> BlockArg for use_device_ptr/use_device_addr.
// NOTE: However, as map's do not seem to be included currently
// this isn't as pertinent, but we must try to maintain for
// future alterations. I believe the reason they are not currently
// is that the BlockArg assign/lowering needs to be extended
// to a greater set of types.
auto idx = std::distance(useDevicePtrVars.begin(), it);
moveElementToBack(idx, useDeviceTypes);
moveElementToBack(idx, useDeviceLocs);
moveElementToBack(idx, useDeviceSymbols);
it = useDevicePtrVars.erase(it);
continue;
}
++it;
}
}
/// Extract the list of function and variable symbols affected by the given
/// 'declare target' directive and return the intended device type for them.
static void getDeclareTargetInfo(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPDeclareTargetConstruct &declareTargetConstruct,
mlir::omp::DeclareTargetOperands &clauseOps,
llvm::SmallVectorImpl<DeclareTargetCapturePair> &symbolAndClause) {
const auto &spec =
std::get<parser::OmpDeclareTargetSpecifier>(declareTargetConstruct.t);
if (const auto *objectList{parser::Unwrap<parser::OmpObjectList>(spec.u)}) {
ObjectList objects{makeObjects(*objectList, semaCtx)};
// Case: declare target(func, var1, var2)
gatherFuncAndVarSyms(objects, mlir::omp::DeclareTargetCaptureClause::to,
symbolAndClause);
} else if (const auto *clauseList{
parser::Unwrap<parser::OmpClauseList>(spec.u)}) {
List<Clause> clauses = makeClauses(*clauseList, semaCtx);
if (clauses.empty() &&
(!eval.getOwningProcedure()->isMainProgram() ||
eval.getOwningProcedure()->getMainProgramSymbol())) {
// Case: declare target, implicit capture of function
symbolAndClause.emplace_back(
mlir::omp::DeclareTargetCaptureClause::to,
eval.getOwningProcedure()->getSubprogramSymbol());
}
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processDeviceType(clauseOps);
cp.processEnter(symbolAndClause);
cp.processLink(symbolAndClause);
cp.processTo(symbolAndClause);
cp.processTODO<clause::Indirect>(converter.getCurrentLocation(),
llvm::omp::Directive::OMPD_declare_target);
}
}
static void collectDeferredDeclareTargets(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPDeclareTargetConstruct &declareTargetConstruct,
llvm::SmallVectorImpl<lower::OMPDeferredDeclareTargetInfo>
&deferredDeclareTarget) {
mlir::omp::DeclareTargetOperands clauseOps;
llvm::SmallVector<DeclareTargetCapturePair> symbolAndClause;
getDeclareTargetInfo(converter, semaCtx, eval, declareTargetConstruct,
clauseOps, symbolAndClause);
// Return the device type only if at least one of the targets for the
// directive is a function or subroutine
mlir::ModuleOp mod = converter.getFirOpBuilder().getModule();
for (const DeclareTargetCapturePair &symClause : symbolAndClause) {
mlir::Operation *op = mod.lookupSymbol(
converter.mangleName(std::get<const semantics::Symbol &>(symClause)));
if (!op) {
deferredDeclareTarget.push_back({std::get<0>(symClause),
clauseOps.deviceType,
std::get<1>(symClause)});
}
}
}
static std::optional<mlir::omp::DeclareTargetDeviceType>
getDeclareTargetFunctionDevice(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPDeclareTargetConstruct &declareTargetConstruct) {
mlir::omp::DeclareTargetOperands clauseOps;
llvm::SmallVector<DeclareTargetCapturePair> symbolAndClause;
getDeclareTargetInfo(converter, semaCtx, eval, declareTargetConstruct,
clauseOps, symbolAndClause);
// Return the device type only if at least one of the targets for the
// directive is a function or subroutine
mlir::ModuleOp mod = converter.getFirOpBuilder().getModule();
for (const DeclareTargetCapturePair &symClause : symbolAndClause) {
mlir::Operation *op = mod.lookupSymbol(
converter.mangleName(std::get<const semantics::Symbol &>(symClause)));
if (mlir::isa_and_nonnull<mlir::func::FuncOp>(op))
return clauseOps.deviceType;
}
return std::nullopt;
}
/// Set up the entry block of the given `omp.loop_nest` operation, adding a
/// block argument for each loop induction variable and allocating and
/// initializing a private value to hold each of them.
///
/// This function can also bind the symbols of any variables that should match
/// block arguments on parent loop wrapper operations attached to the same
/// loop. This allows the introduction of any necessary `hlfir.declare`
/// operations inside of the entry block of the `omp.loop_nest` operation and
/// not directly under any of the wrappers, which would invalidate them.
///
/// \param [in] op - the loop nest operation.
/// \param [in] converter - PFT to MLIR conversion interface.
/// \param [in] loc - location.
/// \param [in] args - symbols of induction variables.
/// \param [in] wrapperSyms - symbols of variables to be mapped to loop wrapper
/// entry block arguments.
/// \param [in] wrapperArgs - entry block arguments of parent loop wrappers.
static void
genLoopVars(mlir::Operation *op, lower::AbstractConverter &converter,
mlir::Location &loc, llvm::ArrayRef<const semantics::Symbol *> args,
llvm::ArrayRef<const semantics::Symbol *> wrapperSyms = {},
llvm::ArrayRef<mlir::BlockArgument> wrapperArgs = {}) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
auto ®ion = op->getRegion(0);
std::size_t loopVarTypeSize = 0;
for (const semantics::Symbol *arg : args)
loopVarTypeSize = std::max(loopVarTypeSize, arg->GetUltimate().size());
mlir::Type loopVarType = getLoopVarType(converter, loopVarTypeSize);
llvm::SmallVector<mlir::Type> tiv(args.size(), loopVarType);
llvm::SmallVector<mlir::Location> locs(args.size(), loc);
firOpBuilder.createBlock(®ion, {}, tiv, locs);
// Bind the entry block arguments of parent wrappers to the corresponding
// symbols.
for (auto [arg, prv] : llvm::zip_equal(wrapperSyms, wrapperArgs))
converter.bindSymbol(*arg, prv);
// The argument is not currently in memory, so make a temporary for the
// argument, and store it there, then bind that location to the argument.
mlir::Operation *storeOp = nullptr;
for (auto [argIndex, argSymbol] : llvm::enumerate(args)) {
mlir::Value indexVal = fir::getBase(region.front().getArgument(argIndex));
storeOp =
createAndSetPrivatizedLoopVar(converter, loc, indexVal, argSymbol);
}
firOpBuilder.setInsertionPointAfter(storeOp);
}
static void
genReductionVars(mlir::Operation *op, lower::AbstractConverter &converter,
mlir::Location &loc,
llvm::ArrayRef<const semantics::Symbol *> reductionArgs,
llvm::ArrayRef<mlir::Type> reductionTypes) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
llvm::SmallVector<mlir::Location> blockArgLocs(reductionArgs.size(), loc);
mlir::Block *entryBlock = firOpBuilder.createBlock(
&op->getRegion(0), {}, reductionTypes, blockArgLocs);
// Bind the reduction arguments to their block arguments.
for (auto [arg, prv] :
llvm::zip_equal(reductionArgs, entryBlock->getArguments())) {
converter.bindSymbol(*arg, prv);
}
}
static void
markDeclareTarget(mlir::Operation *op, lower::AbstractConverter &converter,
mlir::omp::DeclareTargetCaptureClause captureClause,
mlir::omp::DeclareTargetDeviceType deviceType) {
// TODO: Add support for program local variables with declare target applied
auto declareTargetOp = llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(op);
if (!declareTargetOp)
fir::emitFatalError(
converter.getCurrentLocation(),
"Attempt to apply declare target on unsupported operation");
// The function or global already has a declare target applied to it, very
// likely through implicit capture (usage in another declare target
// function/subroutine). It should be marked as any if it has been assigned
// both host and nohost, else we skip, as there is no change
if (declareTargetOp.isDeclareTarget()) {
if (declareTargetOp.getDeclareTargetDeviceType() != deviceType)
declareTargetOp.setDeclareTarget(mlir::omp::DeclareTargetDeviceType::any,
captureClause);
return;
}
declareTargetOp.setDeclareTarget(deviceType, captureClause);
}
/// For an operation that takes `omp.private` values as region args, this util
/// merges the private vars info into the region arguments list.
///
/// \tparam OMPOP - the OpenMP op that takes `omp.private` inputs.
/// \tparam InfoTy - the type of private info we want to merge; e.g. mlir::Type
/// or mlir::Location fields of the private var list.
///
/// \param [in] op - the op accepting `omp.private` inputs.
/// \param [in] currentList - the current list of region info that we
/// want to merge private info with. For example this could be the list of types
/// or locations of previous arguments to \op's region.
/// \param [in] infoAccessor - for a private variable, this returns the
/// data we want to merge: type or location.
/// \param [out] allRegionArgsInfo - the merged list of region info.
template <typename OMPOp, typename InfoTy>
static void
mergePrivateVarsInfo(OMPOp op, llvm::ArrayRef<InfoTy> currentList,
llvm::function_ref<InfoTy(mlir::Value)> infoAccessor,
llvm::SmallVectorImpl<InfoTy> &allRegionArgsInfo) {
mlir::OperandRange privateVars = op.getPrivateVars();
llvm::transform(currentList, std::back_inserter(allRegionArgsInfo),
[](InfoTy i) { return i; });
llvm::transform(privateVars, std::back_inserter(allRegionArgsInfo),
infoAccessor);
}
//===----------------------------------------------------------------------===//
// Op body generation helper structures and functions
//===----------------------------------------------------------------------===//
struct OpWithBodyGenInfo {
/// A type for a code-gen callback function. This takes as argument the op for
/// which the code is being generated and returns the arguments of the op's
/// region.
using GenOMPRegionEntryCBFn =
std::function<llvm::SmallVector<const semantics::Symbol *>(
mlir::Operation *)>;
OpWithBodyGenInfo(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
lower::pft::Evaluation &eval, llvm::omp::Directive dir)
: converter(converter), symTable(symTable), semaCtx(semaCtx), loc(loc),
eval(eval), dir(dir) {}
OpWithBodyGenInfo &setClauses(const List<Clause> *value) {
clauses = value;
return *this;
}
OpWithBodyGenInfo &setDataSharingProcessor(DataSharingProcessor *value) {
dsp = value;
return *this;
}
OpWithBodyGenInfo &setGenRegionEntryCb(GenOMPRegionEntryCBFn value) {
genRegionEntryCB = value;
return *this;
}
OpWithBodyGenInfo &setGenSkeletonOnly(bool value) {
genSkeletonOnly = value;
return *this;
}
/// [inout] converter to use for the clauses.
lower::AbstractConverter &converter;
/// [in] Symbol table
lower::SymMap &symTable;
/// [in] Semantics context
semantics::SemanticsContext &semaCtx;
/// [in] location in source code.
mlir::Location loc;
/// [in] current PFT node/evaluation.
lower::pft::Evaluation &eval;
/// [in] leaf directive for which to generate the op body.
llvm::omp::Directive dir;
/// [in] list of clauses to process.
const List<Clause> *clauses = nullptr;
/// [in] if provided, processes the construct's data-sharing attributes.
DataSharingProcessor *dsp = nullptr;
/// [in] if provided, emits the op's region entry. Otherwise, an emtpy block
/// is created in the region.
GenOMPRegionEntryCBFn genRegionEntryCB = nullptr;
/// [in] if set to `true`, skip generating nested evaluations and dispatching
/// any further leaf constructs.
bool genSkeletonOnly = false;
};
/// Create the body (block) for an OpenMP Operation.
///
/// \param [in] op - the operation the body belongs to.
/// \param [in] info - options controlling code-gen for the construction.
/// \param [in] queue - work queue with nested constructs.
/// \param [in] item - item in the queue to generate body for.
static void createBodyOfOp(mlir::Operation &op, const OpWithBodyGenInfo &info,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
fir::FirOpBuilder &firOpBuilder = info.converter.getFirOpBuilder();
auto insertMarker = [](fir::FirOpBuilder &builder) {
mlir::Value undef = builder.create<fir::UndefOp>(builder.getUnknownLoc(),
builder.getIndexType());
return undef.getDefiningOp();
};
// If an argument for the region is provided then create the block with that
// argument. Also update the symbol's address with the mlir argument value.
// e.g. For loops the argument is the induction variable. And all further
// uses of the induction variable should use this mlir value.
auto regionArgs = [&]() -> llvm::SmallVector<const semantics::Symbol *> {
if (info.genRegionEntryCB != nullptr) {
return info.genRegionEntryCB(&op);
}
firOpBuilder.createBlock(&op.getRegion(0));
return {};
}();
// Mark the earliest insertion point.
mlir::Operation *marker = insertMarker(firOpBuilder);
// If it is an unstructured region, create empty blocks for all evaluations.
if (info.eval.lowerAsUnstructured())
lower::createEmptyRegionBlocks<mlir::omp::TerminatorOp, mlir::omp::YieldOp>(
firOpBuilder, info.eval.getNestedEvaluations());
// Start with privatization, so that the lowering of the nested
// code will use the right symbols.
bool isLoop = llvm::omp::getDirectiveAssociation(info.dir) ==
llvm::omp::Association::Loop;
bool privatize = info.clauses;
firOpBuilder.setInsertionPoint(marker);
std::optional<DataSharingProcessor> tempDsp;
if (privatize && !info.dsp) {
tempDsp.emplace(info.converter, info.semaCtx, *info.clauses, info.eval,
Fortran::lower::omp::isLastItemInQueue(item, queue));
tempDsp->processStep1();
}
if (info.dir == llvm::omp::Directive::OMPD_parallel) {
threadPrivatizeVars(info.converter, info.eval);
if (info.clauses) {
firOpBuilder.setInsertionPoint(marker);
ClauseProcessor(info.converter, info.semaCtx, *info.clauses)
.processCopyin();
}
}
if (!info.genSkeletonOnly) {
if (ConstructQueue::const_iterator next = std::next(item);
next != queue.end()) {
genOMPDispatch(info.converter, info.symTable, info.semaCtx, info.eval,
info.loc, queue, next);
} else {
// genFIR(Evaluation&) tries to patch up unterminated blocks, causing
// a lot of complications for our approach if the terminator generation
// is delayed past this point. Insert a temporary terminator here, then
// delete it.
firOpBuilder.setInsertionPointToEnd(&op.getRegion(0).back());
auto *temp = lower::genOpenMPTerminator(firOpBuilder, &op, info.loc);
firOpBuilder.setInsertionPointAfter(marker);
genNestedEvaluations(info.converter, info.eval);
temp->erase();
}
}
// Get or create a unique exiting block from the given region, or
// return nullptr if there is no exiting block.
auto getUniqueExit = [&](mlir::Region ®ion) -> mlir::Block * {
// Find the blocks where the OMP terminator should go. In simple cases
// it is the single block in the operation's region. When the region
// is more complicated, especially with unstructured control flow, there
// may be multiple blocks, and some of them may have non-OMP terminators
// resulting from lowering of the code contained within the operation.
// All the remaining blocks are potential exit points from the op's region.
//
// Explicit control flow cannot exit any OpenMP region (other than via
// STOP), and that is enforced by semantic checks prior to lowering. STOP
// statements are lowered to a function call.
// Collect unterminated blocks.
llvm::SmallVector<mlir::Block *> exits;
for (mlir::Block &b : region) {
if (b.empty() || !b.back().hasTrait<mlir::OpTrait::IsTerminator>())
exits.push_back(&b);
}
if (exits.empty())
return nullptr;
// If there already is a unique exiting block, do not create another one.
// Additionally, some ops (e.g. omp.sections) require only 1 block in
// its region.
if (exits.size() == 1)
return exits[0];
mlir::Block *exit = firOpBuilder.createBlock(®ion);
for (mlir::Block *b : exits) {
firOpBuilder.setInsertionPointToEnd(b);
firOpBuilder.create<mlir::cf::BranchOp>(info.loc, exit);
}
return exit;
};
if (auto *exitBlock = getUniqueExit(op.getRegion(0))) {
firOpBuilder.setInsertionPointToEnd(exitBlock);
auto *term = lower::genOpenMPTerminator(firOpBuilder, &op, info.loc);
// Only insert lastprivate code when there actually is an exit block.
// Such a block may not exist if the nested code produced an infinite
// loop (this may not make sense in production code, but a user could
// write that and we should handle it).
firOpBuilder.setInsertionPoint(term);
if (privatize) {
// DataSharingProcessor::processStep2() may create operations before/after
// the one passed as argument. We need to treat loop wrappers and their
// nested loop as a unit, so we need to pass the top level wrapper (if
// present). Otherwise, these operations will be inserted within a
// wrapper region.
mlir::Operation *privatizationTopLevelOp = &op;
if (auto loopNest = llvm::dyn_cast<mlir::omp::LoopNestOp>(op)) {
llvm::SmallVector<mlir::omp::LoopWrapperInterface> wrappers;
loopNest.gatherWrappers(wrappers);
if (!wrappers.empty())
privatizationTopLevelOp = &*wrappers.back();
}
if (!info.dsp) {
assert(tempDsp.has_value());
tempDsp->processStep2(privatizationTopLevelOp, isLoop);
} else {
if (isLoop && regionArgs.size() > 0) {
for (const auto ®ionArg : regionArgs) {
info.dsp->pushLoopIV(info.converter.getSymbolAddress(*regionArg));
}
}
info.dsp->processStep2(privatizationTopLevelOp, isLoop);
}
}
}
firOpBuilder.setInsertionPointAfter(marker);
marker->erase();
}
void mapBodySymbols(lower::AbstractConverter &converter, mlir::Region ®ion,
llvm::ArrayRef<const semantics::Symbol *> mapSyms) {
assert(region.hasOneBlock() && "target must have single region");
mlir::Block ®ionBlock = region.front();
// Clones the `bounds` placing them inside the target region and returns them.
auto cloneBound = [&](mlir::Value bound) {
if (mlir::isMemoryEffectFree(bound.getDefiningOp())) {
mlir::Operation *clonedOp = bound.getDefiningOp()->clone();
regionBlock.push_back(clonedOp);
return clonedOp->getResult(0);
}
TODO(converter.getCurrentLocation(),
"target map clause operand unsupported bound type");
};
auto cloneBounds = [cloneBound](llvm::ArrayRef<mlir::Value> bounds) {
llvm::SmallVector<mlir::Value> clonedBounds;
for (mlir::Value bound : bounds)
clonedBounds.emplace_back(cloneBound(bound));
return clonedBounds;
};
// Bind the symbols to their corresponding block arguments.
for (auto [argIndex, argSymbol] : llvm::enumerate(mapSyms)) {
const mlir::BlockArgument &arg = region.getArgument(argIndex);
// Avoid capture of a reference to a structured binding.
const semantics::Symbol *sym = argSymbol;
// Structure component symbols don't have bindings.
if (sym->owner().IsDerivedType())
continue;
fir::ExtendedValue extVal = converter.getSymbolExtendedValue(*sym);
auto refType = mlir::dyn_cast<fir::ReferenceType>(arg.getType());
if (refType && fir::isa_builtin_cptr_type(refType.getElementType())) {
converter.bindSymbol(*argSymbol, arg);
} else {
extVal.match(
[&](const fir::BoxValue &v) {
converter.bindSymbol(*sym,
fir::BoxValue(arg, cloneBounds(v.getLBounds()),
v.getExplicitParameters(),
v.getExplicitExtents()));
},
[&](const fir::MutableBoxValue &v) {
converter.bindSymbol(
*sym, fir::MutableBoxValue(arg, cloneBounds(v.getLBounds()),
v.getMutableProperties()));
},
[&](const fir::ArrayBoxValue &v) {
converter.bindSymbol(
*sym, fir::ArrayBoxValue(arg, cloneBounds(v.getExtents()),
cloneBounds(v.getLBounds()),
v.getSourceBox()));
},
[&](const fir::CharArrayBoxValue &v) {
converter.bindSymbol(
*sym, fir::CharArrayBoxValue(arg, cloneBound(v.getLen()),
cloneBounds(v.getExtents()),
cloneBounds(v.getLBounds())));
},
[&](const fir::CharBoxValue &v) {
converter.bindSymbol(
*sym, fir::CharBoxValue(arg, cloneBound(v.getLen())));
},
[&](const fir::UnboxedValue &v) { converter.bindSymbol(*sym, arg); },
[&](const auto &) {
TODO(converter.getCurrentLocation(),
"target map clause operand unsupported type");
});
}
}
}
static void genBodyOfTargetDataOp(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::omp::TargetDataOp &dataOp,
llvm::ArrayRef<const semantics::Symbol *> useDeviceSymbols,
llvm::ArrayRef<mlir::Location> useDeviceLocs,
llvm::ArrayRef<mlir::Type> useDeviceTypes,
const mlir::Location ¤tLocation, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
assert(useDeviceTypes.size() == useDeviceLocs.size());
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Region ®ion = dataOp.getRegion();
firOpBuilder.createBlock(®ion, {}, useDeviceTypes, useDeviceLocs);
mapBodySymbols(converter, region, useDeviceSymbols);
// Insert dummy instruction to remember the insertion position. The
// marker will be deleted by clean up passes since there are no uses.
// Remembering the position for further insertion is important since
// there are hlfir.declares inserted above while setting block arguments
// and new code from the body should be inserted after that.
mlir::Value undefMarker = firOpBuilder.create<fir::UndefOp>(
dataOp.getLoc(), firOpBuilder.getIndexType());
// Create blocks for unstructured regions. This has to be done since
// blocks are initially allocated with the function as the parent region.
if (eval.lowerAsUnstructured()) {
lower::createEmptyRegionBlocks<mlir::omp::TerminatorOp, mlir::omp::YieldOp>(
firOpBuilder, eval.getNestedEvaluations());
}
firOpBuilder.create<mlir::omp::TerminatorOp>(currentLocation);
// Set the insertion point after the marker.
firOpBuilder.setInsertionPointAfter(undefMarker.getDefiningOp());
if (ConstructQueue::const_iterator next = std::next(item);
next != queue.end()) {
genOMPDispatch(converter, symTable, semaCtx, eval, currentLocation, queue,
next);
} else {
genNestedEvaluations(converter, eval);
}
}
// This generates intermediate common block member accesses within a region
// and then rebinds the members symbol to the intermediate accessors we have
// generated so that subsequent code generation will utilise these instead.
//
// When the scope changes, the bindings to the intermediate accessors should
// be dropped in place of the original symbol bindings.
//
// This is for utilisation with TargetOp.
static void genIntermediateCommonBlockAccessors(
Fortran::lower::AbstractConverter &converter,
const mlir::Location ¤tLocation, mlir::Region ®ion,
llvm::ArrayRef<const Fortran::semantics::Symbol *> mapSyms) {
for (auto [argIndex, argSymbol] : llvm::enumerate(mapSyms)) {
if (auto *details =
argSymbol->detailsIf<Fortran::semantics::CommonBlockDetails>()) {
for (auto obj : details->objects()) {
auto targetCBMemberBind = Fortran::lower::genCommonBlockMember(
converter, currentLocation, *obj, region.getArgument(argIndex));
fir::ExtendedValue sexv = converter.getSymbolExtendedValue(*obj);
fir::ExtendedValue targetCBExv =
getExtendedValue(sexv, targetCBMemberBind);
converter.bindSymbol(*obj, targetCBExv);
}
}
}
}
// This functions creates a block for the body of the targetOp's region. It adds
// all the symbols present in mapSymbols as block arguments to this block.
static void genBodyOfTargetOp(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::omp::TargetOp &targetOp,
llvm::ArrayRef<const semantics::Symbol *> mapSyms,
llvm::ArrayRef<mlir::Location> mapSymLocs,
llvm::ArrayRef<mlir::Type> mapSymTypes,
const mlir::Location ¤tLocation, const ConstructQueue &queue,
ConstructQueue::const_iterator item, DataSharingProcessor &dsp) {
assert(mapSymTypes.size() == mapSymLocs.size());
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Region ®ion = targetOp.getRegion();
llvm::SmallVector<mlir::Type> allRegionArgTypes;
llvm::SmallVector<mlir::Location> allRegionArgLocs;
mergePrivateVarsInfo(targetOp, mapSymTypes,
llvm::function_ref<mlir::Type(mlir::Value)>{
[](mlir::Value v) { return v.getType(); }},
allRegionArgTypes);
mergePrivateVarsInfo(targetOp, mapSymLocs,
llvm::function_ref<mlir::Location(mlir::Value)>{
[](mlir::Value v) { return v.getLoc(); }},
allRegionArgLocs);
mlir::Block *regionBlock = firOpBuilder.createBlock(
®ion, {}, allRegionArgTypes, allRegionArgLocs);
mapBodySymbols(converter, region, mapSyms);
for (auto [argIndex, argSymbol] :
llvm::enumerate(dsp.getAllSymbolsToPrivatize())) {
argIndex = mapSyms.size() + argIndex;
const mlir::BlockArgument &arg = region.getArgument(argIndex);
converter.bindSymbol(*argSymbol,
hlfir::translateToExtendedValue(
currentLocation, firOpBuilder, hlfir::Entity{arg},
/*contiguousHint=*/
evaluate::IsSimplyContiguous(
*argSymbol, converter.getFoldingContext()))
.first);
}
// Check if cloning the bounds introduced any dependency on the outer region.
// If so, then either clone them as well if they are MemoryEffectFree, or else
// copy them to a new temporary and add them to the map and block_argument
// lists and replace their uses with the new temporary.
llvm::SetVector<mlir::Value> valuesDefinedAbove;
mlir::getUsedValuesDefinedAbove(region, valuesDefinedAbove);
while (!valuesDefinedAbove.empty()) {
for (mlir::Value val : valuesDefinedAbove) {
mlir::Operation *valOp = val.getDefiningOp();
if (mlir::isMemoryEffectFree(valOp)) {
mlir::Operation *clonedOp = valOp->clone();
regionBlock->push_front(clonedOp);
val.replaceUsesWithIf(
clonedOp->getResult(0), [regionBlock](mlir::OpOperand &use) {
return use.getOwner()->getBlock() == regionBlock;
});
} else {
auto savedIP = firOpBuilder.getInsertionPoint();
firOpBuilder.setInsertionPointAfter(valOp);
auto copyVal =
firOpBuilder.createTemporary(val.getLoc(), val.getType());
firOpBuilder.createStoreWithConvert(copyVal.getLoc(), val, copyVal);
llvm::SmallVector<mlir::Value> bounds;
std::stringstream name;
firOpBuilder.setInsertionPoint(targetOp);
mlir::Value mapOp = createMapInfoOp(
firOpBuilder, copyVal.getLoc(), copyVal,
/*varPtrPtr=*/mlir::Value{}, name.str(), bounds,
/*members=*/llvm::SmallVector<mlir::Value>{},
/*membersIndex=*/mlir::DenseIntElementsAttr{},
static_cast<
std::underlying_type_t<llvm::omp::OpenMPOffloadMappingFlags>>(
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT),
mlir::omp::VariableCaptureKind::ByCopy, copyVal.getType());
targetOp.getMapVarsMutable().append(mapOp);
mlir::Value clonedValArg =
region.addArgument(copyVal.getType(), copyVal.getLoc());
firOpBuilder.setInsertionPointToStart(regionBlock);
auto loadOp = firOpBuilder.create<fir::LoadOp>(clonedValArg.getLoc(),
clonedValArg);
val.replaceUsesWithIf(
loadOp->getResult(0), [regionBlock](mlir::OpOperand &use) {
return use.getOwner()->getBlock() == regionBlock;
});
firOpBuilder.setInsertionPoint(regionBlock, savedIP);
}
}
valuesDefinedAbove.clear();
mlir::getUsedValuesDefinedAbove(region, valuesDefinedAbove);
}
// Insert dummy instruction to remember the insertion position. The
// marker will be deleted since there are not uses.
// In the HLFIR flow there are hlfir.declares inserted above while
// setting block arguments.
mlir::Value undefMarker = firOpBuilder.create<fir::UndefOp>(
targetOp.getLoc(), firOpBuilder.getIndexType());
// Create blocks for unstructured regions. This has to be done since
// blocks are initially allocated with the function as the parent region.
if (eval.lowerAsUnstructured()) {
lower::createEmptyRegionBlocks<mlir::omp::TerminatorOp, mlir::omp::YieldOp>(
firOpBuilder, eval.getNestedEvaluations());
}
firOpBuilder.create<mlir::omp::TerminatorOp>(currentLocation);
// Create the insertion point after the marker.
firOpBuilder.setInsertionPointAfter(undefMarker.getDefiningOp());
// If we map a common block using it's symbol e.g. map(tofrom: /common_block/)
// and accessing it's members within the target region, there is a large
// chance we will end up with uses external to the region accessing the common
// resolve these, we do so by generating new common block member accesses
// within the region, binding them to the member symbol for the scope of the
// region so that subsequent code generation within the region will utilise
// our new member accesses we have created.
genIntermediateCommonBlockAccessors(converter, currentLocation, region,
mapSyms);
if (ConstructQueue::const_iterator next = std::next(item);
next != queue.end()) {
genOMPDispatch(converter, symTable, semaCtx, eval, currentLocation, queue,
next);
} else {
genNestedEvaluations(converter, eval);
}
dsp.processStep2(targetOp, /*isLoop=*/false);
}
template <typename OpTy, typename... Args>
static OpTy genOpWithBody(const OpWithBodyGenInfo &info,
const ConstructQueue &queue,
ConstructQueue::const_iterator item, Args &&...args) {
auto op = info.converter.getFirOpBuilder().create<OpTy>(
info.loc, std::forward<Args>(args)...);
createBodyOfOp(*op, info, queue, item);
return op;
}
template <typename OpTy, typename ClauseOpsTy>
static OpTy genWrapperOp(lower::AbstractConverter &converter,
mlir::Location loc, const ClauseOpsTy &clauseOps,
llvm::ArrayRef<mlir::Type> blockArgTypes) {
static_assert(
OpTy::template hasTrait<mlir::omp::LoopWrapperInterface::Trait>(),
"expected a loop wrapper");
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
// Create wrapper.
auto op = firOpBuilder.create<OpTy>(loc, clauseOps);
// Create entry block with arguments.
llvm::SmallVector<mlir::Location> locs(blockArgTypes.size(), loc);
firOpBuilder.createBlock(&op.getRegion(), /*insertPt=*/{}, blockArgTypes,
locs);
firOpBuilder.setInsertionPoint(
lower::genOpenMPTerminator(firOpBuilder, op, loc));
return op;
}
//===----------------------------------------------------------------------===//
// Code generation functions for clauses
//===----------------------------------------------------------------------===//
static void genCriticalDeclareClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::CriticalDeclareOperands &clauseOps, llvm::StringRef name) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processHint(clauseOps);
clauseOps.symName =
mlir::StringAttr::get(converter.getFirOpBuilder().getContext(), name);
}
static void genDistributeClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx,
const List<Clause> &clauses,
mlir::Location loc,
mlir::omp::DistributeOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processDistSchedule(stmtCtx, clauseOps);
cp.processOrder(clauseOps);
}
static void genFlushClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
const ObjectList &objects,
const List<Clause> &clauses, mlir::Location loc,
llvm::SmallVectorImpl<mlir::Value> &operandRange) {
if (!objects.empty())
genObjectList(objects, converter, operandRange);
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processTODO<clause::AcqRel, clause::Acquire, clause::Release,
clause::SeqCst>(loc, llvm::omp::OMPD_flush);
}
static void
genLoopNestClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, const List<Clause> &clauses,
mlir::Location loc, mlir::omp::LoopNestOperands &clauseOps,
llvm::SmallVectorImpl<const semantics::Symbol *> &iv) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processCollapse(loc, eval, clauseOps, iv);
clauseOps.loopInclusive = converter.getFirOpBuilder().getUnitAttr();
}
static void genMaskedClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::MaskedOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processFilter(stmtCtx, clauseOps);
}
static void
genOrderedRegionClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::OrderedRegionOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processTODO<clause::Simd>(loc, llvm::omp::Directive::OMPD_ordered);
}
static void genParallelClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx, const List<Clause> &clauses,
mlir::Location loc, mlir::omp::ParallelOperands &clauseOps,
llvm::SmallVectorImpl<mlir::Type> &reductionTypes,
llvm::SmallVectorImpl<const semantics::Symbol *> &reductionSyms) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processIf(llvm::omp::Directive::OMPD_parallel, clauseOps);
cp.processNumThreads(stmtCtx, clauseOps);
cp.processProcBind(clauseOps);
cp.processReduction(loc, clauseOps, &reductionTypes, &reductionSyms);
}
static void genSectionsClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::SectionsOperands &clauseOps,
llvm::SmallVectorImpl<mlir::Type> &reductionTypes,
llvm::SmallVectorImpl<const semantics::Symbol *> &reductionSyms) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processNowait(clauseOps);
cp.processReduction(loc, clauseOps, &reductionTypes, &reductionSyms);
// TODO Support delayed privatization.
}
static void genSimdClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::SimdOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAligned(clauseOps);
cp.processIf(llvm::omp::Directive::OMPD_simd, clauseOps);
cp.processNontemporal(clauseOps);
cp.processOrder(clauseOps);
cp.processReduction(loc, clauseOps);
cp.processSafelen(clauseOps);
cp.processSimdlen(clauseOps);
cp.processTODO<clause::Linear>(loc, llvm::omp::Directive::OMPD_simd);
}
static void genSingleClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::SingleOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processCopyprivate(loc, clauseOps);
cp.processNowait(clauseOps);
// TODO Support delayed privatization.
}
static void genTargetClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx, const List<Clause> &clauses,
mlir::Location loc, bool processHostOnlyClauses,
mlir::omp::TargetOperands &clauseOps,
llvm::SmallVectorImpl<const semantics::Symbol *> &mapSyms,
llvm::SmallVectorImpl<mlir::Location> &mapLocs,
llvm::SmallVectorImpl<mlir::Type> &mapTypes,
llvm::SmallVectorImpl<const semantics::Symbol *> &deviceAddrSyms,
llvm::SmallVectorImpl<mlir::Location> &deviceAddrLocs,
llvm::SmallVectorImpl<mlir::Type> &deviceAddrTypes,
llvm::SmallVectorImpl<const semantics::Symbol *> &devicePtrSyms,
llvm::SmallVectorImpl<mlir::Location> &devicePtrLocs,
llvm::SmallVectorImpl<mlir::Type> &devicePtrTypes) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processDepend(clauseOps);
cp.processDevice(stmtCtx, clauseOps);
cp.processHasDeviceAddr(clauseOps, deviceAddrTypes, deviceAddrLocs,
deviceAddrSyms);
cp.processIf(llvm::omp::Directive::OMPD_target, clauseOps);
cp.processIsDevicePtr(clauseOps, devicePtrTypes, devicePtrLocs,
devicePtrSyms);
cp.processMap(loc, stmtCtx, clauseOps, &mapSyms, &mapLocs, &mapTypes);
if (processHostOnlyClauses)
cp.processNowait(clauseOps);
cp.processThreadLimit(stmtCtx, clauseOps);
cp.processTODO<clause::Allocate, clause::Defaultmap, clause::Firstprivate,
clause::InReduction, clause::UsesAllocators>(
loc, llvm::omp::Directive::OMPD_target);
// `target private(..)` is only supported in delayed privatization mode.
if (!enableDelayedPrivatizationStaging)
cp.processTODO<clause::Private>(loc, llvm::omp::Directive::OMPD_target);
}
static void genTargetDataClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx, const List<Clause> &clauses,
mlir::Location loc, mlir::omp::TargetDataOperands &clauseOps,
llvm::SmallVectorImpl<mlir::Type> &useDeviceTypes,
llvm::SmallVectorImpl<mlir::Location> &useDeviceLocs,
llvm::SmallVectorImpl<const semantics::Symbol *> &useDeviceSyms) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processDevice(stmtCtx, clauseOps);
cp.processIf(llvm::omp::Directive::OMPD_target_data, clauseOps);
cp.processMap(loc, stmtCtx, clauseOps);
cp.processUseDeviceAddr(stmtCtx, clauseOps, useDeviceTypes, useDeviceLocs,
useDeviceSyms);
cp.processUseDevicePtr(stmtCtx, clauseOps, useDeviceTypes, useDeviceLocs,
useDeviceSyms);
// This function implements the deprecated functionality of use_device_ptr
// that allows users to provide non-CPTR arguments to it with the caveat
// that the compiler will treat them as use_device_addr. A lot of legacy
// code may still depend on this functionality, so we should support it
// in some manner. We do so currently by simply shifting non-cptr operands
// from the use_device_ptr list into the front of the use_device_addr list
// whilst maintaining the ordering of useDeviceLocs, useDeviceSyms and
// useDeviceTypes to use_device_ptr/use_device_addr input for BlockArg
// ordering.
// TODO: Perhaps create a user provideable compiler option that will
// re-introduce a hard-error rather than a warning in these cases.
promoteNonCPtrUseDevicePtrArgsToUseDeviceAddr(
clauseOps.useDeviceAddrVars, clauseOps.useDevicePtrVars, useDeviceTypes,
useDeviceLocs, useDeviceSyms);
}
static void genTargetEnterExitUpdateDataClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx, const List<Clause> &clauses,
mlir::Location loc, llvm::omp::Directive directive,
mlir::omp::TargetEnterExitUpdateDataOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processDepend(clauseOps);
cp.processDevice(stmtCtx, clauseOps);
cp.processIf(directive, clauseOps);
if (directive == llvm::omp::Directive::OMPD_target_update)
cp.processMotionClauses(stmtCtx, clauseOps);
else
cp.processMap(loc, stmtCtx, clauseOps);
cp.processNowait(clauseOps);
}
static void genTaskClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::TaskOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processDepend(clauseOps);
cp.processFinal(stmtCtx, clauseOps);
cp.processIf(llvm::omp::Directive::OMPD_task, clauseOps);
cp.processMergeable(clauseOps);
cp.processPriority(stmtCtx, clauseOps);
cp.processUntied(clauseOps);
// TODO Support delayed privatization.
cp.processTODO<clause::Affinity, clause::Detach, clause::InReduction>(
loc, llvm::omp::Directive::OMPD_task);
}
static void genTaskgroupClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::TaskgroupOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processTODO<clause::TaskReduction>(loc,
llvm::omp::Directive::OMPD_taskgroup);
}
static void genTaskwaitClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::TaskwaitOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processTODO<clause::Depend, clause::Nowait>(
loc, llvm::omp::Directive::OMPD_taskwait);
}
static void genTeamsClauses(lower::AbstractConverter &converter,
semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx,
const List<Clause> &clauses, mlir::Location loc,
mlir::omp::TeamsOperands &clauseOps) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processAllocate(clauseOps);
cp.processIf(llvm::omp::Directive::OMPD_teams, clauseOps);
cp.processNumTeams(stmtCtx, clauseOps);
cp.processThreadLimit(stmtCtx, clauseOps);
// TODO Support delayed privatization.
cp.processTODO<clause::Reduction>(loc, llvm::omp::Directive::OMPD_teams);
}
static void genWsloopClauses(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::StatementContext &stmtCtx, const List<Clause> &clauses,
mlir::Location loc, mlir::omp::WsloopOperands &clauseOps,
llvm::SmallVectorImpl<mlir::Type> &reductionTypes,
llvm::SmallVectorImpl<const semantics::Symbol *> &reductionSyms) {
ClauseProcessor cp(converter, semaCtx, clauses);
cp.processNowait(clauseOps);
cp.processOrder(clauseOps);
cp.processOrdered(clauseOps);
cp.processReduction(loc, clauseOps, &reductionTypes, &reductionSyms);
cp.processSchedule(stmtCtx, clauseOps);
cp.processTODO<clause::Allocate, clause::Linear>(
loc, llvm::omp::Directive::OMPD_do);
}
//===----------------------------------------------------------------------===//
// Code generation functions for leaf constructs
//===----------------------------------------------------------------------===//
static mlir::omp::BarrierOp
genBarrierOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
return converter.getFirOpBuilder().create<mlir::omp::BarrierOp>(loc);
}
static mlir::omp::CriticalOp
genCriticalOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue, ConstructQueue::const_iterator item,
const std::optional<parser::Name> &name) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::FlatSymbolRefAttr nameAttr;
if (name) {
std::string nameStr = name->ToString();
mlir::ModuleOp mod = firOpBuilder.getModule();
auto global = mod.lookupSymbol<mlir::omp::CriticalDeclareOp>(nameStr);
if (!global) {
mlir::omp::CriticalDeclareOperands clauseOps;
genCriticalDeclareClauses(converter, semaCtx, item->clauses, loc,
clauseOps, nameStr);
mlir::OpBuilder modBuilder(mod.getBodyRegion());
global = modBuilder.create<mlir::omp::CriticalDeclareOp>(loc, clauseOps);
}
nameAttr = mlir::FlatSymbolRefAttr::get(firOpBuilder.getContext(),
global.getSymName());
}
return genOpWithBody<mlir::omp::CriticalOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_critical),
queue, item, nameAttr);
}
static mlir::omp::FlushOp
genFlushOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ObjectList &objects,
const ConstructQueue &queue, ConstructQueue::const_iterator item) {
llvm::SmallVector<mlir::Value> operandRange;
genFlushClauses(converter, semaCtx, objects, item->clauses, loc,
operandRange);
return converter.getFirOpBuilder().create<mlir::omp::FlushOp>(
converter.getCurrentLocation(), operandRange);
}
static mlir::omp::LoopNestOp
genLoopNestOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue, ConstructQueue::const_iterator item,
mlir::omp::LoopNestOperands &clauseOps,
llvm::ArrayRef<const semantics::Symbol *> iv,
llvm::ArrayRef<const semantics::Symbol *> wrapperSyms,
llvm::ArrayRef<mlir::BlockArgument> wrapperArgs,
llvm::omp::Directive directive, DataSharingProcessor &dsp) {
assert(wrapperSyms.size() == wrapperArgs.size() &&
"Number of symbols and wrapper block arguments must match");
auto ivCallback = [&](mlir::Operation *op) {
genLoopVars(op, converter, loc, iv, wrapperSyms, wrapperArgs);
return llvm::SmallVector<const semantics::Symbol *>(iv);
};
auto *nestedEval =
getCollapsedLoopEval(eval, getCollapseValue(item->clauses));
return genOpWithBody<mlir::omp::LoopNestOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, *nestedEval,
directive)
.setClauses(&item->clauses)
.setDataSharingProcessor(&dsp)
.setGenRegionEntryCb(ivCallback),
queue, item, clauseOps);
}
static mlir::omp::MaskedOp
genMaskedOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::MaskedOperands clauseOps;
genMaskedClauses(converter, semaCtx, stmtCtx, item->clauses, loc, clauseOps);
return genOpWithBody<mlir::omp::MaskedOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_masked),
queue, item, clauseOps);
}
static mlir::omp::MasterOp
genMasterOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
return genOpWithBody<mlir::omp::MasterOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_master),
queue, item);
}
static mlir::omp::OrderedOp
genOrderedOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
TODO(loc, "OMPD_ordered");
return nullptr;
}
static mlir::omp::OrderedRegionOp
genOrderedRegionOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
mlir::omp::OrderedRegionOperands clauseOps;
genOrderedRegionClauses(converter, semaCtx, item->clauses, loc, clauseOps);
return genOpWithBody<mlir::omp::OrderedRegionOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_ordered),
queue, item, clauseOps);
}
static mlir::omp::ParallelOp
genParallelOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue, ConstructQueue::const_iterator item,
mlir::omp::ParallelOperands &clauseOps,
llvm::ArrayRef<const semantics::Symbol *> reductionSyms,
llvm::ArrayRef<mlir::Type> reductionTypes,
DataSharingProcessor *dsp, bool isComposite = false) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
auto reductionCallback = [&](mlir::Operation *op) {
genReductionVars(op, converter, loc, reductionSyms, reductionTypes);
return llvm::SmallVector<const semantics::Symbol *>(reductionSyms);
};
OpWithBodyGenInfo genInfo =
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_parallel)
.setClauses(&item->clauses)
.setGenRegionEntryCb(reductionCallback)
.setGenSkeletonOnly(isComposite);
if (!enableDelayedPrivatization) {
auto parallelOp =
genOpWithBody<mlir::omp::ParallelOp>(genInfo, queue, item, clauseOps);
parallelOp.setComposite(isComposite);
return parallelOp;
}
assert(dsp && "expected valid DataSharingProcessor");
auto genRegionEntryCB = [&](mlir::Operation *op) {
auto parallelOp = llvm::cast<mlir::omp::ParallelOp>(op);
llvm::SmallVector<mlir::Location> reductionLocs(
clauseOps.reductionVars.size(), loc);
llvm::SmallVector<mlir::Type> allRegionArgTypes;
mergePrivateVarsInfo(parallelOp, reductionTypes,
llvm::function_ref<mlir::Type(mlir::Value)>{
[](mlir::Value v) { return v.getType(); }},
allRegionArgTypes);
llvm::SmallVector<mlir::Location> allRegionArgLocs;
mergePrivateVarsInfo(parallelOp, llvm::ArrayRef(reductionLocs),
llvm::function_ref<mlir::Location(mlir::Value)>{
[](mlir::Value v) { return v.getLoc(); }},
allRegionArgLocs);
mlir::Region ®ion = parallelOp.getRegion();
firOpBuilder.createBlock(®ion, /*insertPt=*/{}, allRegionArgTypes,
allRegionArgLocs);
llvm::SmallVector<const semantics::Symbol *> allSymbols(reductionSyms);
allSymbols.append(dsp->getDelayedPrivSymbols().begin(),
dsp->getDelayedPrivSymbols().end());
unsigned argIdx = 0;
for (const semantics::Symbol *arg : allSymbols) {
auto bind = [&](const semantics::Symbol *sym) {
mlir::BlockArgument blockArg = region.getArgument(argIdx);
++argIdx;
converter.bindSymbol(*sym,
hlfir::translateToExtendedValue(
loc, firOpBuilder, hlfir::Entity{blockArg},
/*contiguousHint=*/
evaluate::IsSimplyContiguous(
*sym, converter.getFoldingContext()))
.first);
};
if (const auto *commonDet =
arg->detailsIf<semantics::CommonBlockDetails>()) {
for (const auto &mem : commonDet->objects())
bind(&*mem);
} else
bind(arg);
}
return allSymbols;
};
genInfo.setGenRegionEntryCb(genRegionEntryCB).setDataSharingProcessor(dsp);
auto parallelOp =
genOpWithBody<mlir::omp::ParallelOp>(genInfo, queue, item, clauseOps);
parallelOp.setComposite(isComposite);
return parallelOp;
}
/// This breaks the normal prototype of the gen*Op functions: adding the
/// sectionBlocks argument so that the enclosed section constructs can be
/// lowered here with correct reduction symbol remapping.
static mlir::omp::SectionsOp
genSectionsOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue, ConstructQueue::const_iterator item,
const parser::OmpSectionBlocks §ionBlocks) {
llvm::SmallVector<mlir::Type> reductionTypes;
llvm::SmallVector<const semantics::Symbol *> reductionSyms;
mlir::omp::SectionsOperands clauseOps;
genSectionsClauses(converter, semaCtx, item->clauses, loc, clauseOps,
reductionTypes, reductionSyms);
auto &builder = converter.getFirOpBuilder();
// Insert privatizations before SECTIONS
lower::SymMapScope scope(symTable);
DataSharingProcessor dsp(converter, semaCtx, item->clauses, eval,
lower::omp::isLastItemInQueue(item, queue));
dsp.processStep1();
List<Clause> nonDsaClauses;
List<const clause::Lastprivate *> lastprivates;
for (const Clause &clause : item->clauses) {
if (clause.id == llvm::omp::Clause::OMPC_lastprivate) {
lastprivates.push_back(&std::get<clause::Lastprivate>(clause.u));
} else {
switch (clause.id) {
case llvm::omp::Clause::OMPC_firstprivate:
case llvm::omp::Clause::OMPC_private:
case llvm::omp::Clause::OMPC_shared:
break;
default:
nonDsaClauses.push_back(clause);
}
}
}
// SECTIONS construct.
auto sectionsOp = builder.create<mlir::omp::SectionsOp>(loc, clauseOps);
// create entry block with reduction variables as arguments
llvm::SmallVector<mlir::Location> blockArgLocs(reductionSyms.size(), loc);
builder.createBlock(§ionsOp->getRegion(0), {}, reductionTypes,
blockArgLocs);
mlir::Operation *terminator =
lower::genOpenMPTerminator(builder, sectionsOp, loc);
auto reductionCallback = [&](mlir::Operation *op) {
genReductionVars(op, converter, loc, reductionSyms, reductionTypes);
return reductionSyms;
};
// Generate nested SECTION constructs.
// This is done here rather than in genOMP([...], OpenMPSectionConstruct )
// because we need to run genReductionVars on each omp.section so that the
// reduction variable gets mapped to the private version
for (auto [construct, nestedEval] :
llvm::zip(sectionBlocks.v, eval.getNestedEvaluations())) {
const auto *sectionConstruct =
std::get_if<parser::OpenMPSectionConstruct>(&construct.u);
if (!sectionConstruct) {
assert(false &&
"unexpected construct nested inside of SECTIONS construct");
continue;
}
ConstructQueue sectionQueue{buildConstructQueue(
converter.getFirOpBuilder().getModule(), semaCtx, nestedEval,
sectionConstruct->source, llvm::omp::Directive::OMPD_section, {})};
builder.setInsertionPoint(terminator);
genOpWithBody<mlir::omp::SectionOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, nestedEval,
llvm::omp::Directive::OMPD_section)
.setClauses(§ionQueue.begin()->clauses)
.setGenRegionEntryCb(reductionCallback),
sectionQueue, sectionQueue.begin());
}
if (!lastprivates.empty()) {
mlir::Region §ionsBody = sectionsOp.getRegion();
assert(sectionsBody.hasOneBlock());
mlir::Block &body = sectionsBody.front();
auto lastSectionOp = llvm::find_if(
llvm::reverse(body.getOperations()), [](const mlir::Operation &op) {
return llvm::isa<mlir::omp::SectionOp>(op);
});
assert(lastSectionOp != body.rend());
for (const clause::Lastprivate *lastp : lastprivates) {
builder.setInsertionPoint(
lastSectionOp->getRegion(0).back().getTerminator());
mlir::OpBuilder::InsertPoint insp = builder.saveInsertionPoint();
const auto &objList = std::get<ObjectList>(lastp->t);
for (const Object &object : objList) {
semantics::Symbol *sym = object.sym();
converter.copyHostAssociateVar(*sym, &insp);
}
}
}
// Perform DataSharingProcessor's step2 out of SECTIONS
builder.setInsertionPointAfter(sectionsOp.getOperation());
dsp.processStep2(sectionsOp, false);
// Emit implicit barrier to synchronize threads and avoid data
// races on post-update of lastprivate variables when `nowait`
// clause is present.
if (clauseOps.nowait && !lastprivates.empty())
builder.create<mlir::omp::BarrierOp>(loc);
return sectionsOp;
}
static mlir::omp::SingleOp
genSingleOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
mlir::omp::SingleOperands clauseOps;
genSingleClauses(converter, semaCtx, item->clauses, loc, clauseOps);
return genOpWithBody<mlir::omp::SingleOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_single)
.setClauses(&item->clauses),
queue, item, clauseOps);
}
static mlir::omp::TargetOp
genTargetOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
lower::StatementContext stmtCtx;
bool processHostOnlyClauses =
!llvm::cast<mlir::omp::OffloadModuleInterface>(*converter.getModuleOp())
.getIsTargetDevice();
mlir::omp::TargetOperands clauseOps;
llvm::SmallVector<const semantics::Symbol *> mapSyms, devicePtrSyms,
deviceAddrSyms;
llvm::SmallVector<mlir::Location> mapLocs, devicePtrLocs, deviceAddrLocs;
llvm::SmallVector<mlir::Type> mapTypes, devicePtrTypes, deviceAddrTypes;
genTargetClauses(converter, semaCtx, stmtCtx, item->clauses, loc,
processHostOnlyClauses, clauseOps, mapSyms, mapLocs,
mapTypes, deviceAddrSyms, deviceAddrLocs, deviceAddrTypes,
devicePtrSyms, devicePtrLocs, devicePtrTypes);
llvm::SmallVector<const semantics::Symbol *> privateSyms;
DataSharingProcessor dsp(converter, semaCtx, item->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/
lower::omp::isLastItemInQueue(item, queue),
/*useDelayedPrivatization=*/true, &symTable);
dsp.processStep1(&clauseOps);
// 5.8.1 Implicit Data-Mapping Attribute Rules
// The following code follows the implicit data-mapping rules to map all the
// symbols used inside the region that do not have explicit data-environment
// attribute clauses (neither data-sharing; e.g. `private`, nor `map`
// clauses).
auto captureImplicitMap = [&](const semantics::Symbol &sym) {
if (dsp.getAllSymbolsToPrivatize().contains(&sym))
return;
// Structure component symbols don't have bindings, and can only be
// explicitly mapped individually. If a member is captured implicitly
// we map the entirety of the derived type when we find its symbol.
if (sym.owner().IsDerivedType())
return;
// if the symbol is part of an already mapped common block, do not make a
// map for it.
if (const Fortran::semantics::Symbol *common =
Fortran::semantics::FindCommonBlockContaining(sym.GetUltimate()))
if (llvm::is_contained(mapSyms, common))
return;
// If we come across a symbol without a symbol address, we
// return as we cannot process it, this is intended as a
// catch all early exit for symbols that do not have a
// corresponding extended value. Such as subroutines,
// interfaces and named blocks.
if (!converter.getSymbolAddress(sym))
return;
if (!llvm::is_contained(mapSyms, &sym)) {
if (const auto *details =
sym.template detailsIf<semantics::HostAssocDetails>())
converter.copySymbolBinding(details->symbol(), sym);
llvm::SmallVector<mlir::Value> bounds;
std::stringstream name;
fir::ExtendedValue dataExv = converter.getSymbolExtendedValue(sym);
name << sym.name().ToString();
lower::AddrAndBoundsInfo info = getDataOperandBaseAddr(
converter, firOpBuilder, sym, converter.getCurrentLocation());
mlir::Value baseOp = info.rawInput;
if (mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(baseOp.getType())))
bounds = lower::genBoundsOpsFromBox<mlir::omp::MapBoundsOp,
mlir::omp::MapBoundsType>(
firOpBuilder, converter.getCurrentLocation(), dataExv, info);
if (mlir::isa<fir::SequenceType>(fir::unwrapRefType(baseOp.getType()))) {
bool dataExvIsAssumedSize =
semantics::IsAssumedSizeArray(sym.GetUltimate());
bounds = lower::genBaseBoundsOps<mlir::omp::MapBoundsOp,
mlir::omp::MapBoundsType>(
firOpBuilder, converter.getCurrentLocation(), dataExv,
dataExvIsAssumedSize);
}
llvm::omp::OpenMPOffloadMappingFlags mapFlag =
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT;
mlir::omp::VariableCaptureKind captureKind =
mlir::omp::VariableCaptureKind::ByRef;
mlir::Type eleType = baseOp.getType();
if (auto refType = mlir::dyn_cast<fir::ReferenceType>(baseOp.getType()))
eleType = refType.getElementType();
// If a variable is specified in declare target link and if device
// type is not specified as `nohost`, it needs to be mapped tofrom
mlir::ModuleOp mod = firOpBuilder.getModule();
mlir::Operation *op = mod.lookupSymbol(converter.mangleName(sym));
auto declareTargetOp =
llvm::dyn_cast_if_present<mlir::omp::DeclareTargetInterface>(op);
if (declareTargetOp && declareTargetOp.isDeclareTarget()) {
if (declareTargetOp.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::link &&
declareTargetOp.getDeclareTargetDeviceType() !=
mlir::omp::DeclareTargetDeviceType::nohost) {
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
}
} else if (fir::isa_trivial(eleType) || fir::isa_char(eleType)) {
captureKind = mlir::omp::VariableCaptureKind::ByCopy;
} else if (!fir::isa_builtin_cptr_type(eleType)) {
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_FROM;
}
auto location =
mlir::NameLoc::get(mlir::StringAttr::get(firOpBuilder.getContext(),
sym.name().ToString()),
baseOp.getLoc());
mlir::Value mapOp = createMapInfoOp(
firOpBuilder, location, baseOp, /*varPtrPtr=*/mlir::Value{},
name.str(), bounds, /*members=*/{},
/*membersIndex=*/mlir::DenseIntElementsAttr{},
static_cast<
std::underlying_type_t<llvm::omp::OpenMPOffloadMappingFlags>>(
mapFlag),
captureKind, baseOp.getType());
clauseOps.mapVars.push_back(mapOp);
mapSyms.push_back(&sym);
mapLocs.push_back(baseOp.getLoc());
mapTypes.push_back(baseOp.getType());
}
};
lower::pft::visitAllSymbols(eval, captureImplicitMap);
auto targetOp = firOpBuilder.create<mlir::omp::TargetOp>(loc, clauseOps);
genBodyOfTargetOp(converter, symTable, semaCtx, eval, targetOp, mapSyms,
mapLocs, mapTypes, loc, queue, item, dsp);
return targetOp;
}
static mlir::omp::TargetDataOp
genTargetDataOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::TargetDataOperands clauseOps;
llvm::SmallVector<mlir::Type> useDeviceTypes;
llvm::SmallVector<mlir::Location> useDeviceLocs;
llvm::SmallVector<const semantics::Symbol *> useDeviceSyms;
genTargetDataClauses(converter, semaCtx, stmtCtx, item->clauses, loc,
clauseOps, useDeviceTypes, useDeviceLocs, useDeviceSyms);
auto targetDataOp =
converter.getFirOpBuilder().create<mlir::omp::TargetDataOp>(loc,
clauseOps);
genBodyOfTargetDataOp(converter, symTable, semaCtx, eval, targetDataOp,
useDeviceSyms, useDeviceLocs, useDeviceTypes, loc,
queue, item);
return targetDataOp;
}
template <typename OpTy>
static OpTy genTargetEnterExitUpdateDataOp(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, mlir::Location loc,
const ConstructQueue &queue, ConstructQueue::const_iterator item) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
lower::StatementContext stmtCtx;
// GCC 9.3.0 emits a (probably) bogus warning about an unused variable.
[[maybe_unused]] llvm::omp::Directive directive;
if constexpr (std::is_same_v<OpTy, mlir::omp::TargetEnterDataOp>) {
directive = llvm::omp::Directive::OMPD_target_enter_data;
} else if constexpr (std::is_same_v<OpTy, mlir::omp::TargetExitDataOp>) {
directive = llvm::omp::Directive::OMPD_target_exit_data;
} else if constexpr (std::is_same_v<OpTy, mlir::omp::TargetUpdateOp>) {
directive = llvm::omp::Directive::OMPD_target_update;
} else {
llvm_unreachable("Unexpected TARGET DATA construct");
}
mlir::omp::TargetEnterExitUpdateDataOperands clauseOps;
genTargetEnterExitUpdateDataClauses(converter, semaCtx, stmtCtx,
item->clauses, loc, directive, clauseOps);
return firOpBuilder.create<OpTy>(loc, clauseOps);
}
static mlir::omp::TaskOp
genTaskOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::TaskOperands clauseOps;
genTaskClauses(converter, semaCtx, stmtCtx, item->clauses, loc, clauseOps);
return genOpWithBody<mlir::omp::TaskOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_task)
.setClauses(&item->clauses),
queue, item, clauseOps);
}
static mlir::omp::TaskgroupOp
genTaskgroupOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
mlir::omp::TaskgroupOperands clauseOps;
genTaskgroupClauses(converter, semaCtx, item->clauses, loc, clauseOps);
return genOpWithBody<mlir::omp::TaskgroupOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_taskgroup)
.setClauses(&item->clauses),
queue, item, clauseOps);
}
static mlir::omp::TaskwaitOp
genTaskwaitOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
mlir::omp::TaskwaitOperands clauseOps;
genTaskwaitClauses(converter, semaCtx, item->clauses, loc, clauseOps);
return converter.getFirOpBuilder().create<mlir::omp::TaskwaitOp>(loc,
clauseOps);
}
static mlir::omp::TaskyieldOp
genTaskyieldOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
return converter.getFirOpBuilder().create<mlir::omp::TaskyieldOp>(loc);
}
static mlir::omp::TeamsOp
genTeamsOp(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::TeamsOperands clauseOps;
genTeamsClauses(converter, semaCtx, stmtCtx, item->clauses, loc, clauseOps);
return genOpWithBody<mlir::omp::TeamsOp>(
OpWithBodyGenInfo(converter, symTable, semaCtx, loc, eval,
llvm::omp::Directive::OMPD_teams)
.setClauses(&item->clauses),
queue, item, clauseOps);
}
//===----------------------------------------------------------------------===//
// Code generation functions for the standalone version of constructs that can
// also be a leaf of a composite construct
//===----------------------------------------------------------------------===//
static void genStandaloneDistribute(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::DistributeOperands distributeClauseOps;
genDistributeClauses(converter, semaCtx, stmtCtx, item->clauses, loc,
distributeClauseOps);
// TODO: Support delayed privatization.
DataSharingProcessor dsp(converter, semaCtx, item->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/false, &symTable);
dsp.processStep1();
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, item->clauses, loc,
loopNestClauseOps, iv);
// TODO: Populate entry block arguments with private variables.
auto distributeOp = genWrapperOp<mlir::omp::DistributeOp>(
converter, loc, distributeClauseOps, /*blockArgTypes=*/{});
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, item,
loopNestClauseOps, iv,
/*wrapperSyms=*/{}, distributeOp.getRegion().getArguments(),
llvm::omp::Directive::OMPD_distribute, dsp);
}
static void genStandaloneDo(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::WsloopOperands wsloopClauseOps;
llvm::SmallVector<const semantics::Symbol *> reductionSyms;
llvm::SmallVector<mlir::Type> reductionTypes;
genWsloopClauses(converter, semaCtx, stmtCtx, item->clauses, loc,
wsloopClauseOps, reductionTypes, reductionSyms);
// TODO: Support delayed privatization.
DataSharingProcessor dsp(converter, semaCtx, item->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/false, &symTable);
dsp.processStep1();
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, item->clauses, loc,
loopNestClauseOps, iv);
// TODO: Add private variables to entry block arguments.
auto wsloopOp = genWrapperOp<mlir::omp::WsloopOp>(
converter, loc, wsloopClauseOps, reductionTypes);
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, item,
loopNestClauseOps, iv, reductionSyms,
wsloopOp.getRegion().getArguments(),
llvm::omp::Directive::OMPD_do, dsp);
}
static void genStandaloneParallel(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
mlir::omp::ParallelOperands clauseOps;
llvm::SmallVector<const semantics::Symbol *> reductionSyms;
llvm::SmallVector<mlir::Type> reductionTypes;
genParallelClauses(converter, semaCtx, stmtCtx, item->clauses, loc, clauseOps,
reductionTypes, reductionSyms);
std::optional<DataSharingProcessor> dsp;
if (enableDelayedPrivatization) {
dsp.emplace(converter, semaCtx, item->clauses, eval,
lower::omp::isLastItemInQueue(item, queue),
/*useDelayedPrivatization=*/true, &symTable);
dsp->processStep1(&clauseOps);
}
genParallelOp(converter, symTable, semaCtx, eval, loc, queue, item, clauseOps,
reductionSyms, reductionTypes,
enableDelayedPrivatization ? &dsp.value() : nullptr);
}
static void genStandaloneSimd(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
mlir::omp::SimdOperands simdClauseOps;
genSimdClauses(converter, semaCtx, item->clauses, loc, simdClauseOps);
// TODO: Support delayed privatization.
DataSharingProcessor dsp(converter, semaCtx, item->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/false, &symTable);
dsp.processStep1();
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, item->clauses, loc,
loopNestClauseOps, iv);
// TODO: Populate entry block arguments with reduction and private variables.
auto simdOp = genWrapperOp<mlir::omp::SimdOp>(converter, loc, simdClauseOps,
/*blockArgTypes=*/{});
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, item,
loopNestClauseOps, iv,
/*wrapperSyms=*/{}, simdOp.getRegion().getArguments(),
llvm::omp::Directive::OMPD_simd, dsp);
}
static void genStandaloneTaskloop(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
TODO(loc, "Taskloop construct");
}
//===----------------------------------------------------------------------===//
// Code generation functions for composite constructs
//===----------------------------------------------------------------------===//
static void genCompositeDistributeParallelDo(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
assert(std::distance(item, queue.end()) == 3 && "Invalid leaf constructs");
ConstructQueue::const_iterator distributeItem = item;
ConstructQueue::const_iterator parallelItem = std::next(distributeItem);
ConstructQueue::const_iterator doItem = std::next(parallelItem);
// Create parent omp.parallel first.
mlir::omp::ParallelOperands parallelClauseOps;
llvm::SmallVector<const semantics::Symbol *> parallelReductionSyms;
llvm::SmallVector<mlir::Type> parallelReductionTypes;
genParallelClauses(converter, semaCtx, stmtCtx, parallelItem->clauses, loc,
parallelClauseOps, parallelReductionTypes,
parallelReductionSyms);
DataSharingProcessor dsp(converter, semaCtx, doItem->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/true, &symTable);
dsp.processStep1(¶llelClauseOps);
genParallelOp(converter, symTable, semaCtx, eval, loc, queue, parallelItem,
parallelClauseOps, parallelReductionSyms,
parallelReductionTypes, &dsp, /*isComposite=*/true);
// Clause processing.
mlir::omp::DistributeOperands distributeClauseOps;
genDistributeClauses(converter, semaCtx, stmtCtx, distributeItem->clauses,
loc, distributeClauseOps);
mlir::omp::WsloopOperands wsloopClauseOps;
llvm::SmallVector<const semantics::Symbol *> wsloopReductionSyms;
llvm::SmallVector<mlir::Type> wsloopReductionTypes;
genWsloopClauses(converter, semaCtx, stmtCtx, doItem->clauses, loc,
wsloopClauseOps, wsloopReductionTypes, wsloopReductionSyms);
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, doItem->clauses, loc,
loopNestClauseOps, iv);
// Operation creation.
// TODO: Populate entry block arguments with private variables.
auto distributeOp = genWrapperOp<mlir::omp::DistributeOp>(
converter, loc, distributeClauseOps, /*blockArgTypes=*/{});
distributeOp.setComposite(/*val=*/true);
// TODO: Add private variables to entry block arguments.
auto wsloopOp = genWrapperOp<mlir::omp::WsloopOp>(
converter, loc, wsloopClauseOps, wsloopReductionTypes);
wsloopOp.setComposite(/*val=*/true);
// Construct wrapper entry block list and associated symbols. It is important
// that the symbol order and the block argument order match, so that the
// symbol-value bindings created are correct.
auto &wrapperSyms = wsloopReductionSyms;
auto wrapperArgs = llvm::to_vector(
llvm::concat<mlir::BlockArgument>(distributeOp.getRegion().getArguments(),
wsloopOp.getRegion().getArguments()));
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, doItem,
loopNestClauseOps, iv, wrapperSyms, wrapperArgs,
llvm::omp::Directive::OMPD_distribute_parallel_do, dsp);
}
static void genCompositeDistributeParallelDoSimd(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
mlir::Location loc, const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
assert(std::distance(item, queue.end()) == 4 && "Invalid leaf constructs");
ConstructQueue::const_iterator distributeItem = item;
ConstructQueue::const_iterator parallelItem = std::next(distributeItem);
ConstructQueue::const_iterator doItem = std::next(parallelItem);
ConstructQueue::const_iterator simdItem = std::next(doItem);
// Create parent omp.parallel first.
mlir::omp::ParallelOperands parallelClauseOps;
llvm::SmallVector<const semantics::Symbol *> parallelReductionSyms;
llvm::SmallVector<mlir::Type> parallelReductionTypes;
genParallelClauses(converter, semaCtx, stmtCtx, parallelItem->clauses, loc,
parallelClauseOps, parallelReductionTypes,
parallelReductionSyms);
DataSharingProcessor dsp(converter, semaCtx, simdItem->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/true, &symTable);
dsp.processStep1(¶llelClauseOps);
genParallelOp(converter, symTable, semaCtx, eval, loc, queue, parallelItem,
parallelClauseOps, parallelReductionSyms,
parallelReductionTypes, &dsp, /*isComposite=*/true);
// Clause processing.
mlir::omp::DistributeOperands distributeClauseOps;
genDistributeClauses(converter, semaCtx, stmtCtx, distributeItem->clauses,
loc, distributeClauseOps);
mlir::omp::WsloopOperands wsloopClauseOps;
llvm::SmallVector<const semantics::Symbol *> wsloopReductionSyms;
llvm::SmallVector<mlir::Type> wsloopReductionTypes;
genWsloopClauses(converter, semaCtx, stmtCtx, doItem->clauses, loc,
wsloopClauseOps, wsloopReductionTypes, wsloopReductionSyms);
mlir::omp::SimdOperands simdClauseOps;
genSimdClauses(converter, semaCtx, simdItem->clauses, loc, simdClauseOps);
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, simdItem->clauses, loc,
loopNestClauseOps, iv);
// Operation creation.
// TODO: Populate entry block arguments with private variables.
auto distributeOp = genWrapperOp<mlir::omp::DistributeOp>(
converter, loc, distributeClauseOps, /*blockArgTypes=*/{});
distributeOp.setComposite(/*val=*/true);
// TODO: Add private variables to entry block arguments.
auto wsloopOp = genWrapperOp<mlir::omp::WsloopOp>(
converter, loc, wsloopClauseOps, wsloopReductionTypes);
wsloopOp.setComposite(/*val=*/true);
// TODO: Populate entry block arguments with reduction and private variables.
auto simdOp = genWrapperOp<mlir::omp::SimdOp>(converter, loc, simdClauseOps,
/*blockArgTypes=*/{});
simdOp.setComposite(/*val=*/true);
// Construct wrapper entry block list and associated symbols. It is important
// that the symbol order and the block argument order match, so that the
// symbol-value bindings created are correct.
auto &wrapperSyms = wsloopReductionSyms;
auto wrapperArgs = llvm::to_vector(llvm::concat<mlir::BlockArgument>(
distributeOp.getRegion().getArguments(),
wsloopOp.getRegion().getArguments(), simdOp.getRegion().getArguments()));
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, simdItem,
loopNestClauseOps, iv, wrapperSyms, wrapperArgs,
llvm::omp::Directive::OMPD_distribute_parallel_do_simd, dsp);
}
static void genCompositeDistributeSimd(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
assert(std::distance(item, queue.end()) == 2 && "Invalid leaf constructs");
ConstructQueue::const_iterator distributeItem = item;
ConstructQueue::const_iterator simdItem = std::next(distributeItem);
// Clause processing.
mlir::omp::DistributeOperands distributeClauseOps;
genDistributeClauses(converter, semaCtx, stmtCtx, distributeItem->clauses,
loc, distributeClauseOps);
mlir::omp::SimdOperands simdClauseOps;
genSimdClauses(converter, semaCtx, simdItem->clauses, loc, simdClauseOps);
// TODO: Support delayed privatization.
DataSharingProcessor dsp(converter, semaCtx, simdItem->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/false, &symTable);
dsp.processStep1();
// Pass the innermost leaf construct's clauses because that's where COLLAPSE
// is placed by construct decomposition.
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, simdItem->clauses, loc,
loopNestClauseOps, iv);
// Operation creation.
// TODO: Populate entry block arguments with private variables.
auto distributeOp = genWrapperOp<mlir::omp::DistributeOp>(
converter, loc, distributeClauseOps, /*blockArgTypes=*/{});
distributeOp.setComposite(/*val=*/true);
// TODO: Populate entry block arguments with reduction and private variables.
auto simdOp = genWrapperOp<mlir::omp::SimdOp>(converter, loc, simdClauseOps,
/*blockArgTypes=*/{});
simdOp.setComposite(/*val=*/true);
// Construct wrapper entry block list and associated symbols. It is important
// that the symbol order and the block argument order match, so that the
// symbol-value bindings created are correct.
// TODO: Add omp.distribute private and omp.simd private and reduction args.
auto wrapperArgs = llvm::to_vector(
llvm::concat<mlir::BlockArgument>(distributeOp.getRegion().getArguments(),
simdOp.getRegion().getArguments()));
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, simdItem,
loopNestClauseOps, iv, /*wrapperSyms=*/{}, wrapperArgs,
llvm::omp::Directive::OMPD_distribute_simd, dsp);
}
static void genCompositeDoSimd(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
lower::StatementContext stmtCtx;
assert(std::distance(item, queue.end()) == 2 && "Invalid leaf constructs");
ConstructQueue::const_iterator doItem = item;
ConstructQueue::const_iterator simdItem = std::next(doItem);
// Clause processing.
mlir::omp::WsloopOperands wsloopClauseOps;
llvm::SmallVector<const semantics::Symbol *> wsloopReductionSyms;
llvm::SmallVector<mlir::Type> wsloopReductionTypes;
genWsloopClauses(converter, semaCtx, stmtCtx, doItem->clauses, loc,
wsloopClauseOps, wsloopReductionTypes, wsloopReductionSyms);
mlir::omp::SimdOperands simdClauseOps;
genSimdClauses(converter, semaCtx, simdItem->clauses, loc, simdClauseOps);
// TODO: Support delayed privatization.
DataSharingProcessor dsp(converter, semaCtx, simdItem->clauses, eval,
/*shouldCollectPreDeterminedSymbols=*/true,
/*useDelayedPrivatization=*/false, &symTable);
dsp.processStep1();
// Pass the innermost leaf construct's clauses because that's where COLLAPSE
// is placed by construct decomposition.
mlir::omp::LoopNestOperands loopNestClauseOps;
llvm::SmallVector<const semantics::Symbol *> iv;
genLoopNestClauses(converter, semaCtx, eval, simdItem->clauses, loc,
loopNestClauseOps, iv);
// Operation creation.
// TODO: Add private variables to entry block arguments.
auto wsloopOp = genWrapperOp<mlir::omp::WsloopOp>(
converter, loc, wsloopClauseOps, wsloopReductionTypes);
wsloopOp.setComposite(/*val=*/true);
// TODO: Populate entry block arguments with reduction and private variables.
auto simdOp = genWrapperOp<mlir::omp::SimdOp>(converter, loc, simdClauseOps,
/*blockArgTypes=*/{});
simdOp.setComposite(/*val=*/true);
// Construct wrapper entry block list and associated symbols. It is important
// that the symbol and block argument order match, so that the symbol-value
// bindings created are correct.
// TODO: Add omp.wsloop private and omp.simd private and reduction args.
auto wrapperArgs = llvm::to_vector(llvm::concat<mlir::BlockArgument>(
wsloopOp.getRegion().getArguments(), simdOp.getRegion().getArguments()));
genLoopNestOp(converter, symTable, semaCtx, eval, loc, queue, simdItem,
loopNestClauseOps, iv, wsloopReductionSyms, wrapperArgs,
llvm::omp::Directive::OMPD_do_simd, dsp);
}
static void genCompositeTaskloopSimd(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
assert(std::distance(item, queue.end()) == 2 && "Invalid leaf constructs");
TODO(loc, "Composite TASKLOOP SIMD");
}
//===----------------------------------------------------------------------===//
// Dispatch
//===----------------------------------------------------------------------===//
static bool genOMPCompositeDispatch(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
using llvm::omp::Directive;
using lower::omp::matchLeafSequence;
// TODO: Privatization for composite constructs is currently only done based
// on the clauses for their last leaf construct, which may not always be
// correct. Consider per-leaf privatization of composite constructs once
// delayed privatization is supported by all participating ops.
if (matchLeafSequence(item, queue, Directive::OMPD_distribute_parallel_do))
genCompositeDistributeParallelDo(converter, symTable, semaCtx, eval, loc,
queue, item);
else if (matchLeafSequence(item, queue,
Directive::OMPD_distribute_parallel_do_simd))
genCompositeDistributeParallelDoSimd(converter, symTable, semaCtx, eval,
loc, queue, item);
else if (matchLeafSequence(item, queue, Directive::OMPD_distribute_simd))
genCompositeDistributeSimd(converter, symTable, semaCtx, eval, loc, queue,
item);
else if (matchLeafSequence(item, queue, Directive::OMPD_do_simd))
genCompositeDoSimd(converter, symTable, semaCtx, eval, loc, queue, item);
else if (matchLeafSequence(item, queue, Directive::OMPD_taskloop_simd))
genCompositeTaskloopSimd(converter, symTable, semaCtx, eval, loc, queue,
item);
else
return false;
return true;
}
static void genOMPDispatch(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval, mlir::Location loc,
const ConstructQueue &queue,
ConstructQueue::const_iterator item) {
assert(item != queue.end());
bool loopLeaf = llvm::omp::getDirectiveAssociation(item->id) ==
llvm::omp::Association::Loop;
if (loopLeaf) {
symTable.pushScope();
if (genOMPCompositeDispatch(converter, symTable, semaCtx, eval, loc, queue,
item)) {
symTable.popScope();
return;
}
}
switch (llvm::omp::Directive dir = item->id) {
case llvm::omp::Directive::OMPD_barrier:
genBarrierOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_distribute:
genStandaloneDistribute(converter, symTable, semaCtx, eval, loc, queue,
item);
break;
case llvm::omp::Directive::OMPD_do:
genStandaloneDo(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_loop:
TODO(loc, "Unhandled directive " + llvm::omp::getOpenMPDirectiveName(dir));
break;
case llvm::omp::Directive::OMPD_masked:
genMaskedOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_master:
genMasterOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_ordered:
// Block-associated "ordered" construct.
genOrderedRegionOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_parallel:
genStandaloneParallel(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_section:
llvm_unreachable("genOMPDispatch: OMPD_section");
// Lowered in the enclosing genSectionsOp.
break;
case llvm::omp::Directive::OMPD_sections:
// Called directly from genOMP([...], OpenMPSectionsConstruct) because it
// has a different prototype.
// This code path is still taken when iterating through the construct queue
// in genBodyOfOp
break;
case llvm::omp::Directive::OMPD_simd:
genStandaloneSimd(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_single:
genSingleOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_target:
genTargetOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_target_data:
genTargetDataOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_target_enter_data:
genTargetEnterExitUpdateDataOp<mlir::omp::TargetEnterDataOp>(
converter, symTable, semaCtx, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_target_exit_data:
genTargetEnterExitUpdateDataOp<mlir::omp::TargetExitDataOp>(
converter, symTable, semaCtx, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_target_update:
genTargetEnterExitUpdateDataOp<mlir::omp::TargetUpdateOp>(
converter, symTable, semaCtx, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_task:
genTaskOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_taskgroup:
genTaskgroupOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_taskloop:
genStandaloneTaskloop(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_taskwait:
genTaskwaitOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_taskyield:
genTaskyieldOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_teams:
genTeamsOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
case llvm::omp::Directive::OMPD_tile:
case llvm::omp::Directive::OMPD_unroll:
TODO(loc, "Unhandled loop directive (" +
llvm::omp::getOpenMPDirectiveName(dir) + ")");
// case llvm::omp::Directive::OMPD_workdistribute:
case llvm::omp::Directive::OMPD_workshare:
// FIXME: Workshare is not a commonly used OpenMP construct, an
// implementation for this feature will come later. For the codes
// that use this construct, add a single construct for now.
genSingleOp(converter, symTable, semaCtx, eval, loc, queue, item);
break;
default:
// Combined and composite constructs should have been split into a sequence
// of leaf constructs when building the construct queue.
assert(!llvm::omp::isLeafConstruct(dir) &&
"Unexpected compound construct.");
break;
}
if (loopLeaf)
symTable.popScope();
}
//===----------------------------------------------------------------------===//
// OpenMPDeclarativeConstruct visitors
//===----------------------------------------------------------------------===//
static void
genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPDeclarativeAllocate &declarativeAllocate) {
TODO(converter.getCurrentLocation(), "OpenMPDeclarativeAllocate");
}
static void genOMP(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPDeclareReductionConstruct &declareReductionConstruct) {
TODO(converter.getCurrentLocation(), "OpenMPDeclareReductionConstruct");
}
static void
genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPDeclareSimdConstruct &declareSimdConstruct) {
TODO(converter.getCurrentLocation(), "OpenMPDeclareSimdConstruct");
}
static void
genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPDeclareTargetConstruct &declareTargetConstruct) {
mlir::omp::DeclareTargetOperands clauseOps;
llvm::SmallVector<DeclareTargetCapturePair> symbolAndClause;
mlir::ModuleOp mod = converter.getFirOpBuilder().getModule();
getDeclareTargetInfo(converter, semaCtx, eval, declareTargetConstruct,
clauseOps, symbolAndClause);
for (const DeclareTargetCapturePair &symClause : symbolAndClause) {
mlir::Operation *op = mod.lookupSymbol(
converter.mangleName(std::get<const semantics::Symbol &>(symClause)));
// Some symbols are deferred until later in the module, these are handled
// upon finalization of the module for OpenMP inside of Bridge, so we simply
// skip for now.
if (!op)
continue;
markDeclareTarget(
op, converter,
std::get<mlir::omp::DeclareTargetCaptureClause>(symClause),
clauseOps.deviceType);
}
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPRequiresConstruct &requiresConstruct) {
// Requires directives are gathered and processed in semantics and
// then combined in the lowering bridge before triggering codegen
// just once. Hence, there is no need to lower each individual
// occurrence here.
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPThreadprivate &threadprivate) {
// The directive is lowered when instantiating the variable to
// support the case of threadprivate variable declared in module.
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPDeclarativeConstruct &ompDeclConstruct) {
Fortran::common::visit(
[&](auto &&s) { return genOMP(converter, symTable, semaCtx, eval, s); },
ompDeclConstruct.u);
}
//===----------------------------------------------------------------------===//
// OpenMPStandaloneConstruct visitors
//===----------------------------------------------------------------------===//
static void genOMP(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPSimpleStandaloneConstruct &simpleStandaloneConstruct) {
const auto &directive = std::get<parser::OmpSimpleStandaloneDirective>(
simpleStandaloneConstruct.t);
List<Clause> clauses = makeClauses(
std::get<parser::OmpClauseList>(simpleStandaloneConstruct.t), semaCtx);
mlir::Location currentLocation = converter.genLocation(directive.source);
ConstructQueue queue{
buildConstructQueue(converter.getFirOpBuilder().getModule(), semaCtx,
eval, directive.source, directive.v, clauses)};
if (directive.v == llvm::omp::Directive::OMPD_ordered) {
// Standalone "ordered" directive.
genOrderedOp(converter, symTable, semaCtx, eval, currentLocation, queue,
queue.begin());
} else {
// Dispatch handles the "block-associated" variant of "ordered".
genOMPDispatch(converter, symTable, semaCtx, eval, currentLocation, queue,
queue.begin());
}
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPFlushConstruct &flushConstruct) {
const auto &verbatim = std::get<parser::Verbatim>(flushConstruct.t);
const auto &objectList =
std::get<std::optional<parser::OmpObjectList>>(flushConstruct.t);
const auto &clauseList =
std::get<std::optional<std::list<parser::OmpMemoryOrderClause>>>(
flushConstruct.t);
ObjectList objects =
objectList ? makeObjects(*objectList, semaCtx) : ObjectList{};
List<Clause> clauses =
clauseList ? makeList(*clauseList,
[&](auto &&s) { return makeClause(s.v, semaCtx); })
: List<Clause>{};
mlir::Location currentLocation = converter.genLocation(verbatim.source);
ConstructQueue queue{buildConstructQueue(
converter.getFirOpBuilder().getModule(), semaCtx, eval, verbatim.source,
llvm::omp::Directive::OMPD_flush, clauses)};
genFlushOp(converter, symTable, semaCtx, eval, currentLocation, objects,
queue, queue.begin());
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPCancelConstruct &cancelConstruct) {
TODO(converter.getCurrentLocation(), "OpenMPCancelConstruct");
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPCancellationPointConstruct
&cancellationPointConstruct) {
TODO(converter.getCurrentLocation(), "OpenMPCancelConstruct");
}
static void
genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPStandaloneConstruct &standaloneConstruct) {
Fortran::common::visit(
[&](auto &&s) { return genOMP(converter, symTable, semaCtx, eval, s); },
standaloneConstruct.u);
}
//===----------------------------------------------------------------------===//
// OpenMPConstruct visitors
//===----------------------------------------------------------------------===//
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPAllocatorsConstruct &allocsConstruct) {
TODO(converter.getCurrentLocation(), "OpenMPAllocatorsConstruct");
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPAtomicConstruct &atomicConstruct) {
Fortran::common::visit(
common::visitors{
[&](const parser::OmpAtomicRead &atomicRead) {
mlir::Location loc = converter.genLocation(atomicRead.source);
lower::genOmpAccAtomicRead<parser::OmpAtomicRead,
parser::OmpAtomicClauseList>(
converter, atomicRead, loc);
},
[&](const parser::OmpAtomicWrite &atomicWrite) {
mlir::Location loc = converter.genLocation(atomicWrite.source);
lower::genOmpAccAtomicWrite<parser::OmpAtomicWrite,
parser::OmpAtomicClauseList>(
converter, atomicWrite, loc);
},
[&](const parser::OmpAtomic &atomicConstruct) {
mlir::Location loc = converter.genLocation(atomicConstruct.source);
lower::genOmpAtomic<parser::OmpAtomic, parser::OmpAtomicClauseList>(
converter, atomicConstruct, loc);
},
[&](const parser::OmpAtomicUpdate &atomicUpdate) {
mlir::Location loc = converter.genLocation(atomicUpdate.source);
lower::genOmpAccAtomicUpdate<parser::OmpAtomicUpdate,
parser::OmpAtomicClauseList>(
converter, atomicUpdate, loc);
},
[&](const parser::OmpAtomicCapture &atomicCapture) {
mlir::Location loc = converter.genLocation(atomicCapture.source);
lower::genOmpAccAtomicCapture<parser::OmpAtomicCapture,
parser::OmpAtomicClauseList>(
converter, atomicCapture, loc);
},
},
atomicConstruct.u);
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPBlockConstruct &blockConstruct) {
const auto &beginBlockDirective =
std::get<parser::OmpBeginBlockDirective>(blockConstruct.t);
const auto &endBlockDirective =
std::get<parser::OmpEndBlockDirective>(blockConstruct.t);
mlir::Location currentLocation =
converter.genLocation(beginBlockDirective.source);
const auto origDirective =
std::get<parser::OmpBlockDirective>(beginBlockDirective.t).v;
List<Clause> clauses = makeClauses(
std::get<parser::OmpClauseList>(beginBlockDirective.t), semaCtx);
clauses.append(makeClauses(
std::get<parser::OmpClauseList>(endBlockDirective.t), semaCtx));
assert(llvm::omp::blockConstructSet.test(origDirective) &&
"Expected block construct");
(void)origDirective;
for (const Clause &clause : clauses) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (!std::holds_alternative<clause::Allocate>(clause.u) &&
!std::holds_alternative<clause::Copyin>(clause.u) &&
!std::holds_alternative<clause::Copyprivate>(clause.u) &&
!std::holds_alternative<clause::Default>(clause.u) &&
!std::holds_alternative<clause::Depend>(clause.u) &&
!std::holds_alternative<clause::Filter>(clause.u) &&
!std::holds_alternative<clause::Final>(clause.u) &&
!std::holds_alternative<clause::Firstprivate>(clause.u) &&
!std::holds_alternative<clause::HasDeviceAddr>(clause.u) &&
!std::holds_alternative<clause::If>(clause.u) &&
!std::holds_alternative<clause::IsDevicePtr>(clause.u) &&
!std::holds_alternative<clause::Map>(clause.u) &&
!std::holds_alternative<clause::Nowait>(clause.u) &&
!std::holds_alternative<clause::NumTeams>(clause.u) &&
!std::holds_alternative<clause::NumThreads>(clause.u) &&
!std::holds_alternative<clause::Priority>(clause.u) &&
!std::holds_alternative<clause::Private>(clause.u) &&
!std::holds_alternative<clause::ProcBind>(clause.u) &&
!std::holds_alternative<clause::Reduction>(clause.u) &&
!std::holds_alternative<clause::Shared>(clause.u) &&
!std::holds_alternative<clause::Simd>(clause.u) &&
!std::holds_alternative<clause::ThreadLimit>(clause.u) &&
!std::holds_alternative<clause::Threads>(clause.u) &&
!std::holds_alternative<clause::UseDeviceAddr>(clause.u) &&
!std::holds_alternative<clause::UseDevicePtr>(clause.u)) {
TODO(clauseLocation, "OpenMP Block construct clause");
}
}
llvm::omp::Directive directive =
std::get<parser::OmpBlockDirective>(beginBlockDirective.t).v;
const parser::CharBlock &source =
std::get<parser::OmpBlockDirective>(beginBlockDirective.t).source;
ConstructQueue queue{
buildConstructQueue(converter.getFirOpBuilder().getModule(), semaCtx,
eval, source, directive, clauses)};
genOMPDispatch(converter, symTable, semaCtx, eval, currentLocation, queue,
queue.begin());
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPCriticalConstruct &criticalConstruct) {
const auto &cd = std::get<parser::OmpCriticalDirective>(criticalConstruct.t);
List<Clause> clauses =
makeClauses(std::get<parser::OmpClauseList>(cd.t), semaCtx);
ConstructQueue queue{buildConstructQueue(
converter.getFirOpBuilder().getModule(), semaCtx, eval, cd.source,
llvm::omp::Directive::OMPD_critical, clauses)};
const auto &name = std::get<std::optional<parser::Name>>(cd.t);
mlir::Location currentLocation = converter.getCurrentLocation();
genCriticalOp(converter, symTable, semaCtx, eval, currentLocation, queue,
queue.begin(), name);
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPExecutableAllocate &execAllocConstruct) {
TODO(converter.getCurrentLocation(), "OpenMPExecutableAllocate");
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPLoopConstruct &loopConstruct) {
const auto &beginLoopDirective =
std::get<parser::OmpBeginLoopDirective>(loopConstruct.t);
List<Clause> clauses = makeClauses(
std::get<parser::OmpClauseList>(beginLoopDirective.t), semaCtx);
if (auto &endLoopDirective =
std::get<std::optional<parser::OmpEndLoopDirective>>(
loopConstruct.t)) {
clauses.append(makeClauses(
std::get<parser::OmpClauseList>(endLoopDirective->t), semaCtx));
}
mlir::Location currentLocation =
converter.genLocation(beginLoopDirective.source);
llvm::omp::Directive directive =
std::get<parser::OmpLoopDirective>(beginLoopDirective.t).v;
const parser::CharBlock &source =
std::get<parser::OmpLoopDirective>(beginLoopDirective.t).source;
ConstructQueue queue{
buildConstructQueue(converter.getFirOpBuilder().getModule(), semaCtx,
eval, source, directive, clauses)};
genOMPDispatch(converter, symTable, semaCtx, eval, currentLocation, queue,
queue.begin());
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPSectionConstruct §ionConstruct) {
// Do nothing here. SECTION is lowered inside of the lowering for Sections
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPSectionsConstruct §ionsConstruct) {
const auto &beginSectionsDirective =
std::get<parser::OmpBeginSectionsDirective>(sectionsConstruct.t);
List<Clause> clauses = makeClauses(
std::get<parser::OmpClauseList>(beginSectionsDirective.t), semaCtx);
const auto &endSectionsDirective =
std::get<parser::OmpEndSectionsDirective>(sectionsConstruct.t);
const auto §ionBlocks =
std::get<parser::OmpSectionBlocks>(sectionsConstruct.t);
clauses.append(makeClauses(
std::get<parser::OmpClauseList>(endSectionsDirective.t), semaCtx));
mlir::Location currentLocation = converter.getCurrentLocation();
llvm::omp::Directive directive =
std::get<parser::OmpSectionsDirective>(beginSectionsDirective.t).v;
const parser::CharBlock &source =
std::get<parser::OmpSectionsDirective>(beginSectionsDirective.t).source;
ConstructQueue queue{
buildConstructQueue(converter.getFirOpBuilder().getModule(), semaCtx,
eval, source, directive, clauses)};
ConstructQueue::iterator next = queue.begin();
// Generate constructs that come first e.g. Parallel
while (next != queue.end() &&
next->id != llvm::omp::Directive::OMPD_sections) {
genOMPDispatch(converter, symTable, semaCtx, eval, currentLocation, queue,
next);
next = std::next(next);
}
// call genSectionsOp directly (not via genOMPDispatch) so that we can add the
// sectionBlocks argument
assert(next != queue.end());
assert(next->id == llvm::omp::Directive::OMPD_sections);
genSectionsOp(converter, symTable, semaCtx, eval, currentLocation, queue,
next, sectionBlocks);
assert(std::next(next) == queue.end());
}
static void genOMP(lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPConstruct &ompConstruct) {
Fortran::common::visit(
[&](auto &&s) { return genOMP(converter, symTable, semaCtx, eval, s); },
ompConstruct.u);
}
//===----------------------------------------------------------------------===//
// Public functions
//===----------------------------------------------------------------------===//
mlir::Operation *Fortran::lower::genOpenMPTerminator(fir::FirOpBuilder &builder,
mlir::Operation *op,
mlir::Location loc) {
if (mlir::isa<mlir::omp::AtomicUpdateOp, mlir::omp::DeclareReductionOp,
mlir::omp::LoopNestOp>(op))
return builder.create<mlir::omp::YieldOp>(loc);
return builder.create<mlir::omp::TerminatorOp>(loc);
}
void Fortran::lower::genOpenMPConstruct(lower::AbstractConverter &converter,
lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPConstruct &omp) {
lower::SymMapScope scope(symTable);
genOMP(converter, symTable, semaCtx, eval, omp);
}
void Fortran::lower::genOpenMPDeclarativeConstruct(
lower::AbstractConverter &converter, lower::SymMap &symTable,
semantics::SemanticsContext &semaCtx, lower::pft::Evaluation &eval,
const parser::OpenMPDeclarativeConstruct &omp) {
genOMP(converter, symTable, semaCtx, eval, omp);
genNestedEvaluations(converter, eval);
}
void Fortran::lower::genOpenMPSymbolProperties(
lower::AbstractConverter &converter, const lower::pft::Variable &var) {
assert(var.hasSymbol() && "Expecting Symbol");
const semantics::Symbol &sym = var.getSymbol();
if (sym.test(semantics::Symbol::Flag::OmpThreadprivate))
lower::genThreadprivateOp(converter, var);
if (sym.test(semantics::Symbol::Flag::OmpDeclareTarget))
lower::genDeclareTargetIntGlobal(converter, var);
}
int64_t
Fortran::lower::getCollapseValue(const parser::OmpClauseList &clauseList) {
for (const parser::OmpClause &clause : clauseList.v) {
if (const auto &collapseClause =
std::get_if<parser::OmpClause::Collapse>(&clause.u)) {
const auto *expr = semantics::GetExpr(collapseClause->v);
return evaluate::ToInt64(*expr).value();
}
}
return 1;
}
void Fortran::lower::genThreadprivateOp(lower::AbstractConverter &converter,
const lower::pft::Variable &var) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Location currentLocation = converter.getCurrentLocation();
const semantics::Symbol &sym = var.getSymbol();
mlir::Value symThreadprivateValue;
if (const semantics::Symbol *common =
semantics::FindCommonBlockContaining(sym.GetUltimate())) {
mlir::Value commonValue = converter.getSymbolAddress(*common);
if (mlir::isa<mlir::omp::ThreadprivateOp>(commonValue.getDefiningOp())) {
// Generate ThreadprivateOp for a common block instead of its members and
// only do it once for a common block.
return;
}
// Generate ThreadprivateOp and rebind the common block.
mlir::Value commonThreadprivateValue =
firOpBuilder.create<mlir::omp::ThreadprivateOp>(
currentLocation, commonValue.getType(), commonValue);
converter.bindSymbol(*common, commonThreadprivateValue);
// Generate the threadprivate value for the common block member.
symThreadprivateValue = genCommonBlockMember(converter, currentLocation,
sym, commonThreadprivateValue);
} else if (!var.isGlobal()) {
// Non-global variable which can be in threadprivate directive must be one
// variable in main program, and it has implicit SAVE attribute. Take it as
// with SAVE attribute, so to create GlobalOp for it to simplify the
// translation to LLVM IR.
// Avoids performing multiple globalInitializations.
fir::GlobalOp global;
auto module = converter.getModuleOp();
std::string globalName = converter.mangleName(sym);
if (module.lookupSymbol<fir::GlobalOp>(globalName))
global = module.lookupSymbol<fir::GlobalOp>(globalName);
else
global = globalInitialization(converter, firOpBuilder, sym, var,
currentLocation);
mlir::Value symValue = firOpBuilder.create<fir::AddrOfOp>(
currentLocation, global.resultType(), global.getSymbol());
symThreadprivateValue = firOpBuilder.create<mlir::omp::ThreadprivateOp>(
currentLocation, symValue.getType(), symValue);
} else {
mlir::Value symValue = converter.getSymbolAddress(sym);
// The symbol may be use-associated multiple times, and nothing needs to be
// done after the original symbol is mapped to the threadprivatized value
// for the first time. Use the threadprivatized value directly.
mlir::Operation *op;
if (auto declOp = symValue.getDefiningOp<hlfir::DeclareOp>())
op = declOp.getMemref().getDefiningOp();
else
op = symValue.getDefiningOp();
if (mlir::isa<mlir::omp::ThreadprivateOp>(op))
return;
symThreadprivateValue = firOpBuilder.create<mlir::omp::ThreadprivateOp>(
currentLocation, symValue.getType(), symValue);
}
fir::ExtendedValue sexv = converter.getSymbolExtendedValue(sym);
fir::ExtendedValue symThreadprivateExv =
getExtendedValue(sexv, symThreadprivateValue);
converter.bindSymbol(sym, symThreadprivateExv);
}
// This function replicates threadprivate's behaviour of generating
// an internal fir.GlobalOp for non-global variables in the main program
// that have the implicit SAVE attribute, to simplifiy LLVM-IR and MLIR
// generation.
void Fortran::lower::genDeclareTargetIntGlobal(
lower::AbstractConverter &converter, const lower::pft::Variable &var) {
if (!var.isGlobal()) {
// A non-global variable which can be in a declare target directive must
// be a variable in the main program, and it has the implicit SAVE
// attribute. We create a GlobalOp for it to simplify the translation to
// LLVM IR.
globalInitialization(converter, converter.getFirOpBuilder(),
var.getSymbol(), var, converter.getCurrentLocation());
}
}
bool Fortran::lower::isOpenMPTargetConstruct(
const parser::OpenMPConstruct &omp) {
llvm::omp::Directive dir = llvm::omp::Directive::OMPD_unknown;
if (const auto *block = std::get_if<parser::OpenMPBlockConstruct>(&omp.u)) {
const auto &begin = std::get<parser::OmpBeginBlockDirective>(block->t);
dir = std::get<parser::OmpBlockDirective>(begin.t).v;
} else if (const auto *loop =
std::get_if<parser::OpenMPLoopConstruct>(&omp.u)) {
const auto &begin = std::get<parser::OmpBeginLoopDirective>(loop->t);
dir = std::get<parser::OmpLoopDirective>(begin.t).v;
}
return llvm::omp::allTargetSet.test(dir);
}
void Fortran::lower::gatherOpenMPDeferredDeclareTargets(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPDeclarativeConstruct &ompDecl,
llvm::SmallVectorImpl<OMPDeferredDeclareTargetInfo>
&deferredDeclareTarget) {
Fortran::common::visit(
common::visitors{
[&](const parser::OpenMPDeclareTargetConstruct &ompReq) {
collectDeferredDeclareTargets(converter, semaCtx, eval, ompReq,
deferredDeclareTarget);
},
[&](const auto &) {},
},
ompDecl.u);
}
bool Fortran::lower::isOpenMPDeviceDeclareTarget(
lower::AbstractConverter &converter, semantics::SemanticsContext &semaCtx,
lower::pft::Evaluation &eval,
const parser::OpenMPDeclarativeConstruct &ompDecl) {
return Fortran::common::visit(
common::visitors{
[&](const parser::OpenMPDeclareTargetConstruct &ompReq) {
mlir::omp::DeclareTargetDeviceType targetType =
getDeclareTargetFunctionDevice(converter, semaCtx, eval, ompReq)
.value_or(mlir::omp::DeclareTargetDeviceType::host);
return targetType != mlir::omp::DeclareTargetDeviceType::host;
},
[&](const auto &) { return false; },
},
ompDecl.u);
}
// In certain cases such as subroutine or function interfaces which declare
// but do not define or directly call the subroutine or function in the same
// module, their lowering is delayed until after the declare target construct
// itself is processed, so there symbol is not within the table.
//
// This function will also return true if we encounter any device declare
// target cases, to satisfy checking if we require the requires attributes
// on the module.
bool Fortran::lower::markOpenMPDeferredDeclareTargetFunctions(
mlir::Operation *mod,
llvm::SmallVectorImpl<OMPDeferredDeclareTargetInfo> &deferredDeclareTargets,
AbstractConverter &converter) {
bool deviceCodeFound = false;
auto modOp = llvm::cast<mlir::ModuleOp>(mod);
for (auto declTar : deferredDeclareTargets) {
mlir::Operation *op = modOp.lookupSymbol(converter.mangleName(declTar.sym));
// Due to interfaces being optionally emitted on usage in a module,
// not finding an operation at this point cannot be a hard error, we
// simply ignore it for now.
// TODO: Add semantic checks for detecting cases where an erronous
// (undefined) symbol has been supplied to a declare target clause
if (!op)
continue;
auto devType = declTar.declareTargetDeviceType;
if (!deviceCodeFound && devType != mlir::omp::DeclareTargetDeviceType::host)
deviceCodeFound = true;
markDeclareTarget(op, converter, declTar.declareTargetCaptureClause,
devType);
}
return deviceCodeFound;
}
void Fortran::lower::genOpenMPRequires(mlir::Operation *mod,
const semantics::Symbol *symbol) {
using MlirRequires = mlir::omp::ClauseRequires;
using SemaRequires = semantics::WithOmpDeclarative::RequiresFlag;
if (auto offloadMod =
llvm::dyn_cast<mlir::omp::OffloadModuleInterface>(mod)) {
semantics::WithOmpDeclarative::RequiresFlags semaFlags;
if (symbol) {
common::visit(
[&](const auto &details) {
if constexpr (std::is_base_of_v<semantics::WithOmpDeclarative,
std::decay_t<decltype(details)>>) {
if (details.has_ompRequires())
semaFlags = *details.ompRequires();
}
},
symbol->details());
}
// Use pre-populated omp.requires module attribute if it was set, so that
// the "-fopenmp-force-usm" compiler option is honored.
MlirRequires mlirFlags = offloadMod.getRequires();
if (semaFlags.test(SemaRequires::ReverseOffload))
mlirFlags = mlirFlags | MlirRequires::reverse_offload;
if (semaFlags.test(SemaRequires::UnifiedAddress))
mlirFlags = mlirFlags | MlirRequires::unified_address;
if (semaFlags.test(SemaRequires::UnifiedSharedMemory))
mlirFlags = mlirFlags | MlirRequires::unified_shared_memory;
if (semaFlags.test(SemaRequires::DynamicAllocators))
mlirFlags = mlirFlags | MlirRequires::dynamic_allocators;
offloadMod.setRequires(mlirFlags);
}
}