//===-- IterationSpace.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IterationSpace.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Support/Utils.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-iteration-space"
unsigned Fortran::lower::getHashValue(
const Fortran::lower::ExplicitIterSpace::ArrayBases &x) {
return Fortran::common::visit(
[&](const auto *p) { return HashEvaluateExpr::getHashValue(*p); }, x);
}
bool Fortran::lower::isEqual(
const Fortran::lower::ExplicitIterSpace::ArrayBases &x,
const Fortran::lower::ExplicitIterSpace::ArrayBases &y) {
return Fortran::common::visit(
Fortran::common::visitors{
// Fortran::semantics::Symbol * are the exception here. These pointers
// have identity; if two Symbol * values are the same (different) then
// they are the same (different) logical symbol.
[&](Fortran::lower::FrontEndSymbol p,
Fortran::lower::FrontEndSymbol q) { return p == q; },
[&](const auto *p, const auto *q) {
if constexpr (std::is_same_v<decltype(p), decltype(q)>) {
LLVM_DEBUG(llvm::dbgs()
<< "is equal: " << p << ' ' << q << ' '
<< IsEqualEvaluateExpr::isEqual(*p, *q) << '\n');
return IsEqualEvaluateExpr::isEqual(*p, *q);
} else {
// Different subtree types are never equal.
return false;
}
}},
x, y);
}
namespace {
/// This class can recover the base array in an expression that contains
/// explicit iteration space symbols. Most of the class can be ignored as it is
/// boilerplate Fortran::evaluate::Expr traversal.
class ArrayBaseFinder {
public:
using RT = bool;
ArrayBaseFinder(llvm::ArrayRef<Fortran::lower::FrontEndSymbol> syms)
: controlVars(syms) {}
template <typename T>
void operator()(const T &x) {
(void)find(x);
}
/// Get the list of bases.
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases>
getBases() const {
LLVM_DEBUG(llvm::dbgs()
<< "number of array bases found: " << bases.size() << '\n');
return bases;
}
private:
// First, the cases that are of interest.
RT find(const Fortran::semantics::Symbol &symbol) {
if (symbol.Rank() > 0) {
bases.push_back(&symbol);
return true;
}
return {};
}
RT find(const Fortran::evaluate::Component &x) {
auto found = find(x.base());
if (!found && x.base().Rank() == 0 && x.Rank() > 0) {
bases.push_back(&x);
return true;
}
return found;
}
RT find(const Fortran::evaluate::ArrayRef &x) {
for (const auto &sub : x.subscript())
(void)find(sub);
if (x.base().IsSymbol()) {
if (x.Rank() > 0 || intersection(x.subscript())) {
bases.push_back(&x);
return true;
}
return {};
}
auto found = find(x.base());
if (!found && ((x.base().Rank() == 0 && x.Rank() > 0) ||
intersection(x.subscript()))) {
bases.push_back(&x);
return true;
}
return found;
}
RT find(const Fortran::evaluate::Triplet &x) {
if (const auto *lower = x.GetLower())
(void)find(*lower);
if (const auto *upper = x.GetUpper())
(void)find(*upper);
return find(x.GetStride());
}
RT find(const Fortran::evaluate::IndirectSubscriptIntegerExpr &x) {
return find(x.value());
}
RT find(const Fortran::evaluate::Subscript &x) { return find(x.u); }
RT find(const Fortran::evaluate::DataRef &x) { return find(x.u); }
RT find(const Fortran::evaluate::CoarrayRef &x) {
assert(false && "coarray reference");
return {};
}
template <typename A>
bool intersection(const A &subscripts) {
return Fortran::lower::symbolsIntersectSubscripts(controlVars, subscripts);
}
// The rest is traversal boilerplate and can be ignored.
RT find(const Fortran::evaluate::Substring &x) { return find(x.parent()); }
template <typename A>
RT find(const Fortran::semantics::SymbolRef x) {
return find(*x);
}
RT find(const Fortran::evaluate::NamedEntity &x) {
if (x.IsSymbol())
return find(x.GetFirstSymbol());
return find(x.GetComponent());
}
template <typename A, bool C>
RT find(const Fortran::common::Indirection<A, C> &x) {
return find(x.value());
}
template <typename A>
RT find(const std::unique_ptr<A> &x) {
return find(x.get());
}
template <typename A>
RT find(const std::shared_ptr<A> &x) {
return find(x.get());
}
template <typename A>
RT find(const A *x) {
if (x)
return find(*x);
return {};
}
template <typename A>
RT find(const std::optional<A> &x) {
if (x)
return find(*x);
return {};
}
template <typename... A>
RT find(const std::variant<A...> &u) {
return Fortran::common::visit([&](const auto &v) { return find(v); }, u);
}
template <typename A>
RT find(const std::vector<A> &x) {
for (auto &v : x)
(void)find(v);
return {};
}
RT find(const Fortran::evaluate::BOZLiteralConstant &) { return {}; }
RT find(const Fortran::evaluate::NullPointer &) { return {}; }
template <typename T>
RT find(const Fortran::evaluate::Constant<T> &x) {
return {};
}
RT find(const Fortran::evaluate::StaticDataObject &) { return {}; }
RT find(const Fortran::evaluate::ImpliedDoIndex &) { return {}; }
RT find(const Fortran::evaluate::BaseObject &x) {
(void)find(x.u);
return {};
}
RT find(const Fortran::evaluate::TypeParamInquiry &) { return {}; }
RT find(const Fortran::evaluate::ComplexPart &x) { return {}; }
template <typename T>
RT find(const Fortran::evaluate::Designator<T> &x) {
return find(x.u);
}
template <typename T>
RT find(const Fortran::evaluate::Variable<T> &x) {
return find(x.u);
}
RT find(const Fortran::evaluate::DescriptorInquiry &) { return {}; }
RT find(const Fortran::evaluate::SpecificIntrinsic &) { return {}; }
RT find(const Fortran::evaluate::ProcedureDesignator &x) { return {}; }
RT find(const Fortran::evaluate::ProcedureRef &x) {
(void)find(x.proc());
if (x.IsElemental())
(void)find(x.arguments());
return {};
}
RT find(const Fortran::evaluate::ActualArgument &x) {
if (const auto *sym = x.GetAssumedTypeDummy())
(void)find(*sym);
else
(void)find(x.UnwrapExpr());
return {};
}
template <typename T>
RT find(const Fortran::evaluate::FunctionRef<T> &x) {
(void)find(static_cast<const Fortran::evaluate::ProcedureRef &>(x));
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ArrayConstructorValue<T> &) {
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ArrayConstructorValues<T> &) {
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ImpliedDo<T> &) {
return {};
}
RT find(const Fortran::semantics::ParamValue &) { return {}; }
RT find(const Fortran::semantics::DerivedTypeSpec &) { return {}; }
RT find(const Fortran::evaluate::StructureConstructor &) { return {}; }
template <typename D, typename R, typename O>
RT find(const Fortran::evaluate::Operation<D, R, O> &op) {
(void)find(op.left());
return false;
}
template <typename D, typename R, typename LO, typename RO>
RT find(const Fortran::evaluate::Operation<D, R, LO, RO> &op) {
(void)find(op.left());
(void)find(op.right());
return false;
}
RT find(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) {
(void)find(x.u);
return {};
}
template <typename T>
RT find(const Fortran::evaluate::Expr<T> &x) {
(void)find(x.u);
return {};
}
llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases> bases;
llvm::SmallVector<Fortran::lower::FrontEndSymbol> controlVars;
};
} // namespace
void Fortran::lower::ExplicitIterSpace::leave() {
ccLoopNest.pop_back();
--forallContextOpen;
conditionalCleanup();
}
void Fortran::lower::ExplicitIterSpace::addSymbol(
Fortran::lower::FrontEndSymbol sym) {
assert(!symbolStack.empty());
symbolStack.back().push_back(sym);
}
void Fortran::lower::ExplicitIterSpace::exprBase(Fortran::lower::FrontEndExpr x,
bool lhs) {
ArrayBaseFinder finder(collectAllSymbols());
finder(*x);
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases> bases =
finder.getBases();
if (rhsBases.empty())
endAssign();
if (lhs) {
if (bases.empty()) {
lhsBases.push_back(std::nullopt);
return;
}
assert(bases.size() >= 1 && "must detect an array reference on lhs");
if (bases.size() > 1)
rhsBases.back().append(bases.begin(), bases.end() - 1);
lhsBases.push_back(bases.back());
return;
}
rhsBases.back().append(bases.begin(), bases.end());
}
void Fortran::lower::ExplicitIterSpace::endAssign() { rhsBases.emplace_back(); }
void Fortran::lower::ExplicitIterSpace::pushLevel() {
symbolStack.push_back(llvm::SmallVector<Fortran::lower::FrontEndSymbol>{});
}
void Fortran::lower::ExplicitIterSpace::popLevel() { symbolStack.pop_back(); }
void Fortran::lower::ExplicitIterSpace::conditionalCleanup() {
if (forallContextOpen == 0) {
// Exiting the outermost FORALL context.
// Cleanup any residual mask buffers.
outermostContext().finalizeAndReset();
// Clear and reset all the cached information.
symbolStack.clear();
lhsBases.clear();
rhsBases.clear();
loadBindings.clear();
ccLoopNest.clear();
innerArgs.clear();
outerLoop = std::nullopt;
clearLoops();
counter = 0;
}
}
std::optional<size_t>
Fortran::lower::ExplicitIterSpace::findArgPosition(fir::ArrayLoadOp load) {
if (lhsBases[counter]) {
auto ld = loadBindings.find(*lhsBases[counter]);
std::optional<size_t> optPos;
if (ld != loadBindings.end() && ld->second == load)
optPos = static_cast<size_t>(0u);
assert(optPos.has_value() && "load does not correspond to lhs");
return optPos;
}
return std::nullopt;
}
llvm::SmallVector<Fortran::lower::FrontEndSymbol>
Fortran::lower::ExplicitIterSpace::collectAllSymbols() {
llvm::SmallVector<Fortran::lower::FrontEndSymbol> result;
for (llvm::SmallVector<FrontEndSymbol> vec : symbolStack)
result.append(vec.begin(), vec.end());
return result;
}
llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
const Fortran::lower::ImplicitIterSpace &e) {
for (const llvm::SmallVector<
Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr> &xs :
e.getMasks()) {
s << "{ ";
for (const Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr &x : xs)
x->AsFortran(s << '(') << "), ";
s << "}\n";
}
return s;
}
llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
const Fortran::lower::ExplicitIterSpace &e) {
auto dump = [&](const auto &u) {
Fortran::common::visit(
Fortran::common::visitors{
[&](const Fortran::semantics::Symbol *y) {
s << " " << *y << '\n';
},
[&](const Fortran::evaluate::ArrayRef *y) {
s << " ";
if (y->base().IsSymbol())
s << y->base().GetFirstSymbol();
else
s << y->base().GetComponent().GetLastSymbol();
s << '\n';
},
[&](const Fortran::evaluate::Component *y) {
s << " " << y->GetLastSymbol() << '\n';
}},
u);
};
s << "LHS bases:\n";
for (const std::optional<Fortran::lower::ExplicitIterSpace::ArrayBases> &u :
e.lhsBases)
if (u)
dump(*u);
s << "RHS bases:\n";
for (const llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases>
&bases : e.rhsBases) {
for (const Fortran::lower::ExplicitIterSpace::ArrayBases &u : bases)
dump(u);
s << '\n';
}
return s;
}
void Fortran::lower::ImplicitIterSpace::dump() const {
llvm::errs() << *this << '\n';
}
void Fortran::lower::ExplicitIterSpace::dump() const {
llvm::errs() << *this << '\n';
}