//===-- lib/Decimal/binary-to-decimal.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "big-radix-floating-point.h"
#include "flang/Decimal/decimal.h"
#include <cassert>
#include <cfloat>
#include <string>
namespace Fortran::decimal {
template <int PREC, int LOG10RADIX>
BigRadixFloatingPointNumber<PREC, LOG10RADIX>::BigRadixFloatingPointNumber(
BinaryFloatingPointNumber<PREC> x, enum FortranRounding rounding)
: rounding_{rounding} {
bool negative{x.IsNegative()};
if (x.IsZero()) {
isNegative_ = negative;
return;
}
if (negative) {
x.Negate();
}
int twoPow{x.UnbiasedExponent()};
twoPow -= x.bits - 1;
if (!x.isImplicitMSB) {
++twoPow;
}
int lshift{x.exponentBits};
if (twoPow <= -lshift) {
twoPow += lshift;
lshift = 0;
} else if (twoPow < 0) {
lshift += twoPow;
twoPow = 0;
}
auto word{x.Fraction()};
word <<= lshift;
SetTo(word);
isNegative_ = negative;
// The significand is now encoded in *this as an integer (D) and
// decimal exponent (E): x = D * 10.**E * 2.**twoPow
// twoPow can be positive or negative.
// The goal now is to get twoPow up or down to zero, leaving us with
// only decimal digits and decimal exponent. This is done by
// fast multiplications and divisions of D by 2 and 5.
// (5*D) * 10.**E * 2.**twoPow -> D * 10.**(E+1) * 2.**(twoPow-1)
for (; twoPow > 0 && IsDivisibleBy<5>(); --twoPow) {
DivideBy<5>();
++exponent_;
}
int overflow{0};
for (; twoPow >= 9; twoPow -= 9) {
// D * 10.**E * 2.**twoPow -> (D*(2**9)) * 10.**E * 2.**(twoPow-9)
overflow |= MultiplyBy<512>();
}
for (; twoPow >= 3; twoPow -= 3) {
// D * 10.**E * 2.**twoPow -> (D*(2**3)) * 10.**E * 2.**(twoPow-3)
overflow |= MultiplyBy<8>();
}
for (; twoPow > 0; --twoPow) {
// D * 10.**E * 2.**twoPow -> (2*D) * 10.**E * 2.**(twoPow-1)
overflow |= MultiplyBy<2>();
}
overflow |= DivideByPowerOfTwoInPlace(-twoPow);
assert(overflow == 0);
Normalize();
}
template <int PREC, int LOG10RADIX>
ConversionToDecimalResult
BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToDecimal(char *buffer,
std::size_t n, enum DecimalConversionFlags flags, int maxDigits) const {
if (n < static_cast<std::size_t>(3 + digits_ * LOG10RADIX)) {
return {nullptr, 0, 0, Overflow};
}
char *start{buffer};
if (isNegative_) {
*start++ = '-';
} else if (flags & AlwaysSign) {
*start++ = '+';
}
if (IsZero()) {
*start++ = '0';
*start = '\0';
return {buffer, static_cast<std::size_t>(start - buffer), 0, Exact};
}
char *p{start};
static_assert((LOG10RADIX % 2) == 0, "radix not a power of 100");
static const char lut[] = "0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
// Treat the MSD specially: don't emit leading zeroes.
Digit dig{digit_[digits_ - 1]};
char stack[LOG10RADIX], *sp{stack};
for (int k{0}; k < log10Radix; k += 2) {
Digit newDig{dig / 100};
auto d{static_cast<std::uint32_t>(dig) -
std::uint32_t{100} * static_cast<std::uint32_t>(newDig)};
dig = newDig;
const char *q{lut + d + d};
*sp++ = q[1];
*sp++ = q[0];
}
while (sp > stack && sp[-1] == '0') {
--sp;
}
while (sp > stack) {
*p++ = *--sp;
}
for (int j{digits_ - 1}; j-- > 0;) {
Digit dig{digit_[j]};
char *reverse{p += log10Radix};
for (int k{0}; k < log10Radix; k += 2) {
Digit newDig{dig / 100};
auto d{static_cast<std::uint32_t>(dig) -
std::uint32_t{100} * static_cast<std::uint32_t>(newDig)};
dig = newDig;
const char *q{lut + d + d};
*--reverse = q[1];
*--reverse = q[0];
}
}
// Adjust exponent so the effective decimal point is to
// the left of the first digit.
int expo = exponent_ + p - start;
// Trim trailing zeroes.
while (p[-1] == '0') {
--p;
}
char *end{start + maxDigits};
if (maxDigits == 0) {
p = end;
}
if (p <= end) {
*p = '\0';
return {buffer, static_cast<std::size_t>(p - buffer), expo, Exact};
} else {
// Apply a digit limit, possibly with rounding.
bool incr{false};
switch (rounding_) {
case RoundNearest:
incr = *end > '5' ||
(*end == '5' && (p > end + 1 || ((end[-1] - '0') & 1) != 0));
break;
case RoundUp:
incr = !isNegative_;
break;
case RoundDown:
incr = isNegative_;
break;
case RoundToZero:
break;
case RoundCompatible:
incr = *end >= '5';
break;
}
p = end;
if (incr) {
while (p > start && p[-1] == '9') {
--p;
}
if (p == start) {
*p++ = '1';
++expo;
} else {
++p[-1];
}
}
*p = '\0';
return {buffer, static_cast<std::size_t>(p - buffer), expo, Inexact};
}
}
template <int PREC, int LOG10RADIX>
bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::Mean(
const BigRadixFloatingPointNumber &that) {
while (digits_ < that.digits_) {
digit_[digits_++] = 0;
}
int carry{0};
for (int j{0}; j < that.digits_; ++j) {
Digit v{digit_[j] + that.digit_[j] + carry};
if (v >= radix) {
digit_[j] = v - radix;
carry = 1;
} else {
digit_[j] = v;
carry = 0;
}
}
if (carry != 0) {
AddCarry(that.digits_, carry);
}
return DivideBy<2>() != 0;
}
template <int PREC, int LOG10RADIX>
void BigRadixFloatingPointNumber<PREC, LOG10RADIX>::Minimize(
BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more) {
int leastExponent{exponent_};
if (less.exponent_ < leastExponent) {
leastExponent = less.exponent_;
}
if (more.exponent_ < leastExponent) {
leastExponent = more.exponent_;
}
while (exponent_ > leastExponent) {
--exponent_;
MultiplyBy<10>();
}
while (less.exponent_ > leastExponent) {
--less.exponent_;
less.MultiplyBy<10>();
}
while (more.exponent_ > leastExponent) {
--more.exponent_;
more.MultiplyBy<10>();
}
if (less.Mean(*this)) {
less.AddCarry(); // round up
}
if (!more.Mean(*this)) {
more.Decrement(); // round down
}
while (less.digits_ < more.digits_) {
less.digit_[less.digits_++] = 0;
}
while (more.digits_ < less.digits_) {
more.digit_[more.digits_++] = 0;
}
int digits{more.digits_};
int same{0};
while (same < digits &&
less.digit_[digits - 1 - same] == more.digit_[digits - 1 - same]) {
++same;
}
if (same == digits) {
return;
}
digits_ = same + 1;
int offset{digits - digits_};
exponent_ += offset * log10Radix;
for (int j{0}; j < digits_; ++j) {
digit_[j] = more.digit_[j + offset];
}
Digit least{less.digit_[offset]};
Digit my{digit_[0]};
while (true) {
Digit q{my / 10u};
Digit r{my - 10 * q};
Digit lq{least / 10u};
Digit lr{least - 10 * lq};
if (r != 0 && lq == q) {
Digit sub{(r - lr) >> 1};
digit_[0] -= sub;
break;
} else {
least = lq;
my = q;
DivideBy<10>();
++exponent_;
}
}
Normalize();
}
template <int PREC>
ConversionToDecimalResult ConvertToDecimal(char *buffer, std::size_t size,
enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, BinaryFloatingPointNumber<PREC> x) {
if (x.IsNaN()) {
return {"NaN", 3, 0, Invalid};
} else if (x.IsInfinite()) {
if (x.IsNegative()) {
return {"-Inf", 4, 0, Exact};
} else if (flags & AlwaysSign) {
return {"+Inf", 4, 0, Exact};
} else {
return {"Inf", 3, 0, Exact};
}
} else {
using Big = BigRadixFloatingPointNumber<PREC>;
Big number{x, rounding};
if ((flags & Minimize) && !x.IsZero()) {
// To emit the fewest decimal digits necessary to represent the value
// in such a way that decimal-to-binary conversion to the same format
// with a fixed assumption about rounding will return the same binary
// value, we also perform binary-to-decimal conversion on the two
// binary values immediately adjacent to this one, use them to identify
// the bounds of the range of decimal values that will map back to the
// original binary value, and find a (not necessary unique) shortest
// decimal sequence in that range.
using Binary = typename Big::Real;
Binary less{x};
less.Previous();
Binary more{x};
if (!x.IsMaximalFiniteMagnitude()) {
more.Next();
}
number.Minimize(Big{less, rounding}, Big{more, rounding});
}
return number.ConvertToDecimal(buffer, size, flags, digits);
}
}
template ConversionToDecimalResult ConvertToDecimal<8>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<8>);
template ConversionToDecimalResult ConvertToDecimal<11>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<11>);
template ConversionToDecimalResult ConvertToDecimal<24>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<24>);
template ConversionToDecimalResult ConvertToDecimal<53>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<53>);
template ConversionToDecimalResult ConvertToDecimal<64>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<64>);
template ConversionToDecimalResult ConvertToDecimal<113>(char *, std::size_t,
enum DecimalConversionFlags, int, enum FortranRounding,
BinaryFloatingPointNumber<113>);
extern "C" {
RT_EXT_API_GROUP_BEGIN
ConversionToDecimalResult ConvertFloatToDecimal(char *buffer, std::size_t size,
enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, float x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<24>(x));
}
ConversionToDecimalResult ConvertDoubleToDecimal(char *buffer, std::size_t size,
enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, double x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<53>(x));
}
#if LDBL_MANT_DIG == 64
ConversionToDecimalResult ConvertLongDoubleToDecimal(char *buffer,
std::size_t size, enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, long double x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<64>(x));
}
#elif LDBL_MANT_DIG == 113
ConversionToDecimalResult ConvertLongDoubleToDecimal(char *buffer,
std::size_t size, enum DecimalConversionFlags flags, int digits,
enum FortranRounding rounding, long double x) {
return Fortran::decimal::ConvertToDecimal(buffer, size, flags, digits,
rounding, Fortran::decimal::BinaryFloatingPointNumber<113>(x));
}
#endif
RT_EXT_API_GROUP_END
} // extern "C"
template <int PREC, int LOG10RADIX>
template <typename STREAM>
STREAM &BigRadixFloatingPointNumber<PREC, LOG10RADIX>::Dump(STREAM &o) const {
if (isNegative_) {
o << '-';
}
o << "10**(" << exponent_ << ") * ... (rounding "
<< static_cast<int>(rounding_) << ")\n";
for (int j{digits_}; --j >= 0;) {
std::string str{std::to_string(digit_[j])};
o << std::string(20 - str.size(), ' ') << str << " [" << j << ']';
if (j + 1 == digitLimit_) {
o << " (limit)";
}
o << '\n';
}
return o;
}
} // namespace Fortran::decimal