//===-- lib/Evaluate/intrinsics-library.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines host runtime functions that can be used for folding
// intrinsic functions.
// The default host runtime folders are built with <cmath> and
// <complex> functions that are guaranteed to exist from the C++ standard.
#include "flang/Evaluate/intrinsics-library.h"
#include "fold-implementation.h"
#include "host.h"
#include "flang/Common/static-multimap-view.h"
#include "flang/Evaluate/expression.h"
#include <cfloat>
#include <cmath>
#include <complex>
#include <functional>
#if HAS_QUADMATHLIB
#include "quadmath.h"
#include "flang/Common/float128.h"
#endif
#include <type_traits>
namespace Fortran::evaluate {
// Define a vector like class that can hold an arbitrary number of
// Dynamic type and be built at compile time. This is like a
// std::vector<DynamicType>, but constexpr only.
template <typename... FortranType> struct TypeVectorStorage {
static constexpr DynamicType values[]{FortranType{}.GetType()...};
static constexpr const DynamicType *start{&values[0]};
static constexpr const DynamicType *end{start + sizeof...(FortranType)};
};
template <> struct TypeVectorStorage<> {
static constexpr const DynamicType *start{nullptr}, *end{nullptr};
};
struct TypeVector {
template <typename... FortranType> static constexpr TypeVector Create() {
using storage = TypeVectorStorage<FortranType...>;
return TypeVector{storage::start, storage::end, sizeof...(FortranType)};
}
constexpr size_t size() const { return size_; };
using const_iterator = const DynamicType *;
constexpr const_iterator begin() const { return startPtr; }
constexpr const_iterator end() const { return endPtr; }
const DynamicType &operator[](size_t i) const { return *(startPtr + i); }
const DynamicType *startPtr{nullptr};
const DynamicType *endPtr{nullptr};
const size_t size_;
};
inline bool operator==(
const TypeVector &lhs, const std::vector<DynamicType> &rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (size_t i{0}; i < lhs.size(); ++i) {
if (lhs[i] != rhs[i]) {
return false;
}
}
return true;
}
// HostRuntimeFunction holds a pointer to a Folder function that can fold
// a Fortran scalar intrinsic using host runtime functions (e.g libm).
// The folder take care of all conversions between Fortran types and the related
// host types as well as setting and cleaning-up the floating point environment.
// HostRuntimeFunction are intended to be built at compile time (members are all
// constexpr constructible) so that they can be stored in a compile time static
// map.
struct HostRuntimeFunction {
using Folder = Expr<SomeType> (*)(
FoldingContext &, std::vector<Expr<SomeType>> &&);
using Key = std::string_view;
// Needed for implicit compare with keys.
constexpr operator Key() const { return key; }
// Name of the related Fortran intrinsic.
Key key;
// DynamicType of the Expr<SomeType> returns by folder.
DynamicType resultType;
// DynamicTypes expected for the Expr<SomeType> arguments of the folder.
// The folder will crash if provided arguments of different types.
TypeVector argumentTypes;
// Folder to be called to fold the intrinsic with host runtime. The provided
// Expr<SomeType> arguments must wrap scalar constants of the type described
// in argumentTypes, otherwise folder will crash. Any floating point issue
// raised while executing the host runtime will be reported in FoldingContext
// messages.
Folder folder;
};
// Translate a host function type signature (template arguments) into a
// constexpr data representation based on Fortran DynamicType that can be
// stored.
template <typename TR, typename... TA> using FuncPointer = TR (*)(TA...);
template <typename T> struct FuncTypeAnalyzer {};
template <typename HostTR, typename... HostTA>
struct FuncTypeAnalyzer<FuncPointer<HostTR, HostTA...>> {
static constexpr DynamicType result{host::FortranType<HostTR>{}.GetType()};
static constexpr TypeVector arguments{
TypeVector::Create<host::FortranType<HostTA>...>()};
};
// Define helpers to deal with host floating environment.
template <typename TR>
static void CheckFloatingPointIssues(
host::HostFloatingPointEnvironment &hostFPE, const Scalar<TR> &x) {
if constexpr (TR::category == TypeCategory::Complex ||
TR::category == TypeCategory::Real) {
if (x.IsNotANumber()) {
hostFPE.SetFlag(RealFlag::InvalidArgument);
} else if (x.IsInfinite()) {
hostFPE.SetFlag(RealFlag::Overflow);
}
}
}
// Software Subnormal Flushing helper.
// Only flush floating-points. Forward other scalars untouched.
// Software flushing is only performed if hardware flushing is not available
// because it may not result in the same behavior as hardware flushing.
// Some runtime implementations are "working around" subnormal flushing to
// return results that they deem better than returning the result they would
// with a null argument. An example is logf that should return -inf if arguments
// are flushed to zero, but some implementations return -1.03972076416015625e2_4
// for all subnormal values instead. It is impossible to reproduce this with the
// simple software flushing below.
template <typename T>
static constexpr inline const Scalar<T> FlushSubnormals(Scalar<T> &&x) {
if constexpr (T::category == TypeCategory::Real ||
T::category == TypeCategory::Complex) {
return x.FlushSubnormalToZero();
}
return x;
}
// This is the kernel called by all HostRuntimeFunction folders, it convert the
// Fortran Expr<SomeType> to the host runtime function argument types, calls
// the runtime function, and wrap back the result into an Expr<SomeType>.
// It deals with host floating point environment set-up and clean-up.
template <typename FuncType, typename TR, typename... TA, size_t... I>
static Expr<SomeType> ApplyHostFunctionHelper(FuncType func,
FoldingContext &context, std::vector<Expr<SomeType>> &&args,
std::index_sequence<I...>) {
host::HostFloatingPointEnvironment hostFPE;
hostFPE.SetUpHostFloatingPointEnvironment(context);
host::HostType<TR> hostResult{};
Scalar<TR> result{};
std::tuple<Scalar<TA>...> scalarArgs{
GetScalarConstantValue<TA>(args[I]).value()...};
if (context.targetCharacteristics().areSubnormalsFlushedToZero() &&
!hostFPE.hasSubnormalFlushingHardwareControl()) {
hostResult = func(host::CastFortranToHost<TA>(
FlushSubnormals<TA>(std::move(std::get<I>(scalarArgs))))...);
result = FlushSubnormals<TR>(host::CastHostToFortran<TR>(hostResult));
} else {
hostResult = func(host::CastFortranToHost<TA>(std::get<I>(scalarArgs))...);
result = host::CastHostToFortran<TR>(hostResult);
}
if (!hostFPE.hardwareFlagsAreReliable()) {
CheckFloatingPointIssues<TR>(hostFPE, result);
}
hostFPE.CheckAndRestoreFloatingPointEnvironment(context);
return AsGenericExpr(Constant<TR>(std::move(result)));
}
template <typename HostTR, typename... HostTA>
Expr<SomeType> ApplyHostFunction(FuncPointer<HostTR, HostTA...> func,
FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
return ApplyHostFunctionHelper<decltype(func), host::FortranType<HostTR>,
host::FortranType<HostTA>...>(
func, context, std::move(args), std::index_sequence_for<HostTA...>{});
}
// FolderFactory builds a HostRuntimeFunction for the host runtime function
// passed as a template argument.
// Its static member function "fold" is the resulting folder. It captures the
// host runtime function pointer and pass it to the host runtime function folder
// kernel.
template <typename HostFuncType, HostFuncType func> class FolderFactory {
public:
static constexpr HostRuntimeFunction Create(const std::string_view &name) {
return HostRuntimeFunction{name, FuncTypeAnalyzer<HostFuncType>::result,
FuncTypeAnalyzer<HostFuncType>::arguments, &Fold};
}
private:
static Expr<SomeType> Fold(
FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
return ApplyHostFunction(func, context, std::move(args));
}
};
// Define host runtime libraries that can be used for folding and
// fill their description if they are available.
enum class LibraryVersion {
Libm,
LibmExtensions,
PgmathFast,
PgmathRelaxed,
PgmathPrecise
};
template <typename HostT, LibraryVersion> struct HostRuntimeLibrary {
// When specialized, this class holds a static constexpr table containing
// all the HostRuntimeLibrary for functions of library LibraryVersion
// that returns a value of type HostT.
};
using HostRuntimeMap = common::StaticMultimapView<HostRuntimeFunction>;
// Map numerical intrinsic to <cmath>/<complex> functions
// (Note: ABS() is folded in fold-real.cpp.)
template <typename HostT>
struct HostRuntimeLibrary<HostT, LibraryVersion::Libm> {
using F = FuncPointer<HostT, HostT>;
using F2 = FuncPointer<HostT, HostT, HostT>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{std::acos}>::Create("acos"),
FolderFactory<F, F{std::acosh}>::Create("acosh"),
FolderFactory<F, F{std::asin}>::Create("asin"),
FolderFactory<F, F{std::asinh}>::Create("asinh"),
FolderFactory<F, F{std::atan}>::Create("atan"),
FolderFactory<F2, F2{std::atan2}>::Create("atan2"),
FolderFactory<F, F{std::atanh}>::Create("atanh"),
FolderFactory<F, F{std::cos}>::Create("cos"),
FolderFactory<F, F{std::cosh}>::Create("cosh"),
FolderFactory<F, F{std::erf}>::Create("erf"),
FolderFactory<F, F{std::erfc}>::Create("erfc"),
FolderFactory<F, F{std::exp}>::Create("exp"),
FolderFactory<F, F{std::tgamma}>::Create("gamma"),
FolderFactory<F, F{std::log}>::Create("log"),
FolderFactory<F, F{std::log10}>::Create("log10"),
FolderFactory<F, F{std::lgamma}>::Create("log_gamma"),
FolderFactory<F2, F2{std::pow}>::Create("pow"),
FolderFactory<F, F{std::sin}>::Create("sin"),
FolderFactory<F, F{std::sinh}>::Create("sinh"),
FolderFactory<F, F{std::tan}>::Create("tan"),
FolderFactory<F, F{std::tanh}>::Create("tanh"),
};
// Note: cmath does not have modulo and erfc_scaled equivalent
// Note regarding lack of bessel function support:
// C++17 defined standard Bessel math functions std::cyl_bessel_j
// and std::cyl_neumann that can be used for Fortran j and y
// bessel functions. However, they are not yet implemented in
// clang libc++ (ok in GNU libstdc++). C maths functions j0...
// are not C standard but a GNU extension so they are not used
// to avoid introducing incompatibilities.
// Use libpgmath to get bessel function folding support.
// TODO: Add Bessel functions when possible.
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
// Helpers to map complex std::pow whose resolution in F2{std::pow} is
// ambiguous as of clang++ 20.
template <typename HostT>
static std::complex<HostT> StdPowF2(
const std::complex<HostT> &x, const std::complex<HostT> &y) {
return std::pow(x, y);
}
template <typename HostT>
static std::complex<HostT> StdPowF2A(
const HostT &x, const std::complex<HostT> &y) {
return std::pow(x, y);
}
template <typename HostT>
static std::complex<HostT> StdPowF2B(
const std::complex<HostT> &x, const HostT &y) {
return std::pow(x, y);
}
template <typename HostT>
struct HostRuntimeLibrary<std::complex<HostT>, LibraryVersion::Libm> {
using F = FuncPointer<std::complex<HostT>, const std::complex<HostT> &>;
using F2 = FuncPointer<std::complex<HostT>, const std::complex<HostT> &,
const std::complex<HostT> &>;
using F2A = FuncPointer<std::complex<HostT>, const HostT &,
const std::complex<HostT> &>;
using F2B = FuncPointer<std::complex<HostT>, const std::complex<HostT> &,
const HostT &>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{std::acos}>::Create("acos"),
FolderFactory<F, F{std::acosh}>::Create("acosh"),
FolderFactory<F, F{std::asin}>::Create("asin"),
FolderFactory<F, F{std::asinh}>::Create("asinh"),
FolderFactory<F, F{std::atan}>::Create("atan"),
FolderFactory<F, F{std::atanh}>::Create("atanh"),
FolderFactory<F, F{std::cos}>::Create("cos"),
FolderFactory<F, F{std::cosh}>::Create("cosh"),
FolderFactory<F, F{std::exp}>::Create("exp"),
FolderFactory<F, F{std::log}>::Create("log"),
FolderFactory<F2, F2{StdPowF2}>::Create("pow"),
FolderFactory<F2A, F2A{StdPowF2A}>::Create("pow"),
FolderFactory<F2B, F2B{StdPowF2B}>::Create("pow"),
FolderFactory<F, F{std::sin}>::Create("sin"),
FolderFactory<F, F{std::sinh}>::Create("sinh"),
FolderFactory<F, F{std::sqrt}>::Create("sqrt"),
FolderFactory<F, F{std::tan}>::Create("tan"),
FolderFactory<F, F{std::tanh}>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
// Note regarding cmath:
// - cmath does not have modulo and erfc_scaled equivalent
// - C++17 defined standard Bessel math functions std::cyl_bessel_j
// and std::cyl_neumann that can be used for Fortran j and y
// bessel functions. However, they are not yet implemented in
// clang libc++ (ok in GNU libstdc++). Instead, the Posix libm
// extensions are used when available below.
#if _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600
/// Define libm extensions
/// Bessel functions are defined in POSIX.1-2001.
// Remove float bessel functions for AIX and Darwin as they are not supported
#if !defined(_AIX) && !defined(__APPLE__)
template <> struct HostRuntimeLibrary<float, LibraryVersion::LibmExtensions> {
using F = FuncPointer<float, float>;
using FN = FuncPointer<float, int, float>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::j0f}>::Create("bessel_j0"),
FolderFactory<F, F{::j1f}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jnf}>::Create("bessel_jn"),
FolderFactory<F, F{::y0f}>::Create("bessel_y0"),
FolderFactory<F, F{::y1f}>::Create("bessel_y1"),
FolderFactory<FN, FN{::ynf}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif
#if HAS_QUADMATHLIB
template <> struct HostRuntimeLibrary<__float128, LibraryVersion::Libm> {
using F = FuncPointer<__float128, __float128>;
using F2 = FuncPointer<__float128, __float128, __float128>;
using FN = FuncPointer<__float128, int, __float128>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::acosq}>::Create("acos"),
FolderFactory<F, F{::acoshq}>::Create("acosh"),
FolderFactory<F, F{::asinq}>::Create("asin"),
FolderFactory<F, F{::asinhq}>::Create("asinh"),
FolderFactory<F, F{::atanq}>::Create("atan"),
FolderFactory<F2, F2{::atan2q}>::Create("atan2"),
FolderFactory<F, F{::atanhq}>::Create("atanh"),
FolderFactory<F, F{::j0q}>::Create("bessel_j0"),
FolderFactory<F, F{::j1q}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jnq}>::Create("bessel_jn"),
FolderFactory<F, F{::y0q}>::Create("bessel_y0"),
FolderFactory<F, F{::y1q}>::Create("bessel_y1"),
FolderFactory<FN, FN{::ynq}>::Create("bessel_yn"),
FolderFactory<F, F{::cosq}>::Create("cos"),
FolderFactory<F, F{::coshq}>::Create("cosh"),
FolderFactory<F, F{::erfq}>::Create("erf"),
FolderFactory<F, F{::erfcq}>::Create("erfc"),
FolderFactory<F, F{::expq}>::Create("exp"),
FolderFactory<F, F{::tgammaq}>::Create("gamma"),
FolderFactory<F, F{::logq}>::Create("log"),
FolderFactory<F, F{::log10q}>::Create("log10"),
FolderFactory<F, F{::lgammaq}>::Create("log_gamma"),
FolderFactory<F2, F2{::powq}>::Create("pow"),
FolderFactory<F, F{::sinq}>::Create("sin"),
FolderFactory<F, F{::sinhq}>::Create("sinh"),
FolderFactory<F, F{::tanq}>::Create("tan"),
FolderFactory<F, F{::tanhq}>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<__complex128, LibraryVersion::Libm> {
using F = FuncPointer<__complex128, __complex128>;
using F2 = FuncPointer<__complex128, __complex128, __complex128>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::cacosq}>::Create("acos"),
FolderFactory<F, F{::cacoshq}>::Create("acosh"),
FolderFactory<F, F{::casinq}>::Create("asin"),
FolderFactory<F, F{::casinhq}>::Create("asinh"),
FolderFactory<F, F{::catanq}>::Create("atan"),
FolderFactory<F, F{::catanhq}>::Create("atanh"),
FolderFactory<F, F{::ccosq}>::Create("cos"),
FolderFactory<F, F{::ccoshq}>::Create("cosh"),
FolderFactory<F, F{::cexpq}>::Create("exp"),
FolderFactory<F, F{::clogq}>::Create("log"),
FolderFactory<F2, F2{::cpowq}>::Create("pow"),
FolderFactory<F, F{::csinq}>::Create("sin"),
FolderFactory<F, F{::csinhq}>::Create("sinh"),
FolderFactory<F, F{::csqrtq}>::Create("sqrt"),
FolderFactory<F, F{::ctanq}>::Create("tan"),
FolderFactory<F, F{::ctanhq}>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif
template <> struct HostRuntimeLibrary<double, LibraryVersion::LibmExtensions> {
using F = FuncPointer<double, double>;
using FN = FuncPointer<double, int, double>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::j0}>::Create("bessel_j0"),
FolderFactory<F, F{::j1}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jn}>::Create("bessel_jn"),
FolderFactory<F, F{::y0}>::Create("bessel_y0"),
FolderFactory<F, F{::y1}>::Create("bessel_y1"),
FolderFactory<FN, FN{::yn}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#if LDBL_MANT_DIG == 80 || LDBL_MANT_DIG == 113
template <>
struct HostRuntimeLibrary<long double, LibraryVersion::LibmExtensions> {
using F = FuncPointer<long double, long double>;
using FN = FuncPointer<long double, int, long double>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::j0l}>::Create("bessel_j0"),
FolderFactory<F, F{::j1l}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jnl}>::Create("bessel_jn"),
FolderFactory<F, F{::y0l}>::Create("bessel_y0"),
FolderFactory<F, F{::y1l}>::Create("bessel_y1"),
FolderFactory<FN, FN{::ynl}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif // LDBL_MANT_DIG == 80 || LDBL_MANT_DIG == 113
#endif //_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600
/// Define pgmath description
#if LINK_WITH_LIBPGMATH
// Only use libpgmath for folding if it is available.
// First declare all libpgmaths functions
#define PGMATH_LINKING
#define PGMATH_DECLARE
#include "flang/Evaluate/pgmath.h.inc"
#define REAL_FOLDER(name, func) \
FolderFactory<decltype(&func), &func>::Create(#name)
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathFast> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_FAST
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathFast> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_FAST
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathRelaxed> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_RELAXED
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathRelaxed> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_RELAXED
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathPrecise> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_PRECISE
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathPrecise> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_PRECISE
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
// TODO: double _Complex/float _Complex have been removed from llvm flang
// pgmath.h.inc because they caused warnings, they need to be added back
// so that the complex pgmath versions can be used when requested.
#endif /* LINK_WITH_LIBPGMATH */
// Helper to check if a HostRuntimeLibrary specialization exists
template <typename T, typename = void> struct IsAvailable : std::false_type {};
template <typename T>
struct IsAvailable<T, decltype((void)T::table, void())> : std::true_type {};
// Define helpers to find host runtime library map according to desired version
// and type.
template <typename HostT, LibraryVersion version>
static const HostRuntimeMap *GetHostRuntimeMapHelper(
[[maybe_unused]] DynamicType resultType) {
// A library must only be instantiated if LibraryVersion is
// available on the host and if HostT maps to a Fortran type.
// For instance, whenever long double and double are both 64-bits, double
// is mapped to Fortran 64bits real type, and long double will be left
// unmapped.
if constexpr (host::FortranTypeExists<HostT>()) {
using Lib = HostRuntimeLibrary<HostT, version>;
if constexpr (IsAvailable<Lib>::value) {
if (host::FortranType<HostT>{}.GetType() == resultType) {
return &Lib::map;
}
}
}
return nullptr;
}
template <LibraryVersion version>
static const HostRuntimeMap *GetHostRuntimeMapVersion(DynamicType resultType) {
if (resultType.category() == TypeCategory::Real) {
if (const auto *map{GetHostRuntimeMapHelper<float, version>(resultType)}) {
return map;
}
if (const auto *map{GetHostRuntimeMapHelper<double, version>(resultType)}) {
return map;
}
if (const auto *map{
GetHostRuntimeMapHelper<long double, version>(resultType)}) {
return map;
}
#if HAS_QUADMATHLIB
if (const auto *map{
GetHostRuntimeMapHelper<__float128, version>(resultType)}) {
return map;
}
#endif
}
if (resultType.category() == TypeCategory::Complex) {
if (const auto *map{GetHostRuntimeMapHelper<std::complex<float>, version>(
resultType)}) {
return map;
}
if (const auto *map{GetHostRuntimeMapHelper<std::complex<double>, version>(
resultType)}) {
return map;
}
if (const auto *map{
GetHostRuntimeMapHelper<std::complex<long double>, version>(
resultType)}) {
return map;
}
#if HAS_QUADMATHLIB
if (const auto *map{
GetHostRuntimeMapHelper<__complex128, version>(resultType)}) {
return map;
}
#endif
}
return nullptr;
}
static const HostRuntimeMap *GetHostRuntimeMap(
LibraryVersion version, DynamicType resultType) {
switch (version) {
case LibraryVersion::Libm:
return GetHostRuntimeMapVersion<LibraryVersion::Libm>(resultType);
case LibraryVersion::LibmExtensions:
return GetHostRuntimeMapVersion<LibraryVersion::LibmExtensions>(resultType);
case LibraryVersion::PgmathPrecise:
return GetHostRuntimeMapVersion<LibraryVersion::PgmathPrecise>(resultType);
case LibraryVersion::PgmathRelaxed:
return GetHostRuntimeMapVersion<LibraryVersion::PgmathRelaxed>(resultType);
case LibraryVersion::PgmathFast:
return GetHostRuntimeMapVersion<LibraryVersion::PgmathFast>(resultType);
}
return nullptr;
}
static const HostRuntimeFunction *SearchInHostRuntimeMap(
const HostRuntimeMap &map, const std::string &name, DynamicType resultType,
const std::vector<DynamicType> &argTypes) {
auto sameNameRange{map.equal_range(name)};
for (const auto *iter{sameNameRange.first}; iter != sameNameRange.second;
++iter) {
if (iter->resultType == resultType && iter->argumentTypes == argTypes) {
return &*iter;
}
}
return nullptr;
}
// Search host runtime libraries for an exact type match.
static const HostRuntimeFunction *SearchHostRuntime(const std::string &name,
DynamicType resultType, const std::vector<DynamicType> &argTypes) {
// TODO: When command line options regarding targeted numerical library is
// available, this needs to be revisited to take it into account. So far,
// default to libpgmath if F18 is built with it.
#if LINK_WITH_LIBPGMATH
if (const auto *map{
GetHostRuntimeMap(LibraryVersion::PgmathPrecise, resultType)}) {
if (const auto *hostFunction{
SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
return hostFunction;
}
}
// Default to libm if functions or types are not available in pgmath.
#endif
if (const auto *map{GetHostRuntimeMap(LibraryVersion::Libm, resultType)}) {
if (const auto *hostFunction{
SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
return hostFunction;
}
}
if (const auto *map{
GetHostRuntimeMap(LibraryVersion::LibmExtensions, resultType)}) {
if (const auto *hostFunction{
SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
return hostFunction;
}
}
return nullptr;
}
// Return a DynamicType that can hold all values of a given type.
// This is used to allow 16bit float to be folded with 32bits and
// x87 float to be folded with IEEE 128bits.
static DynamicType BiggerType(DynamicType type) {
if (type.category() == TypeCategory::Real ||
type.category() == TypeCategory::Complex) {
// 16 bits floats to IEEE 32 bits float
if (type.kind() == common::RealKindForPrecision(11) ||
type.kind() == common::RealKindForPrecision(8)) {
return {type.category(), common::RealKindForPrecision(24)};
}
// x87 float to IEEE 128 bits float
if (type.kind() == common::RealKindForPrecision(64)) {
return {type.category(), common::RealKindForPrecision(113)};
}
}
return type;
}
/// Structure to register intrinsic argument checks that must be performed.
using ArgumentVerifierFunc = bool (*)(
const std::vector<Expr<SomeType>> &, FoldingContext &);
struct ArgumentVerifier {
using Key = std::string_view;
// Needed for implicit compare with keys.
constexpr operator Key() const { return key; }
Key key;
ArgumentVerifierFunc verifier;
};
static constexpr int lastArg{-1};
static constexpr int firstArg{0};
static const Expr<SomeType> &GetArg(
int position, const std::vector<Expr<SomeType>> &args) {
if (position == lastArg) {
CHECK(!args.empty());
return args.back();
}
CHECK(position >= 0 && static_cast<std::size_t>(position) < args.size());
return args[position];
}
template <typename T>
static bool IsInRange(const Expr<T> &expr, int lb, int ub) {
if (auto scalar{GetScalarConstantValue<T>(expr)}) {
auto lbValue{Scalar<T>::FromInteger(value::Integer<8>{lb}).value};
auto ubValue{Scalar<T>::FromInteger(value::Integer<8>{ub}).value};
return Satisfies(RelationalOperator::LE, lbValue.Compare(*scalar)) &&
Satisfies(RelationalOperator::LE, scalar->Compare(ubValue));
}
return true;
}
/// Verify that the argument in an intrinsic call belongs to [lb, ub] if is
/// real.
template <int lb, int ub>
static bool VerifyInRangeIfReal(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal{
std::get_if<Expr<SomeReal>>(&GetArg(firstArg, args).u)}) {
bool isInRange{
std::visit([&](const auto &x) -> bool { return IsInRange(x, lb, ub); },
someReal->u)};
if (!isInRange) {
context.messages().Say(
"argument is out of range [%d., %d.]"_warn_en_US, lb, ub);
}
return isInRange;
}
return true;
}
template <int argPosition, const char *argName>
static bool VerifyStrictlyPositiveIfReal(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(argPosition, args).u)) {
const bool isStrictlyPositive{std::visit(
[&](const auto &x) -> bool {
using T = typename std::decay_t<decltype(x)>::Result;
auto scalar{GetScalarConstantValue<T>(x)};
return Satisfies(
RelationalOperator::LT, Scalar<T>{}.Compare(*scalar));
},
someReal->u)};
if (!isStrictlyPositive) {
context.messages().Say(
"argument '%s' must be strictly positive"_warn_en_US, argName);
}
return isStrictlyPositive;
}
return true;
}
/// Verify that an intrinsic call argument is not zero if it is real.
template <int argPosition, const char *argName>
static bool VerifyNotZeroIfReal(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(argPosition, args).u)) {
const bool isNotZero{std::visit(
[&](const auto &x) -> bool {
using T = typename std::decay_t<decltype(x)>::Result;
auto scalar{GetScalarConstantValue<T>(x)};
return !scalar || !scalar->IsZero();
},
someReal->u)};
if (!isNotZero) {
context.messages().Say(
"argument '%s' must be different from zero"_warn_en_US, argName);
}
return isNotZero;
}
return true;
}
/// Verify that the argument in an intrinsic call is not zero if is complex.
static bool VerifyNotZeroIfComplex(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someComplex =
std::get_if<Expr<SomeComplex>>(&GetArg(firstArg, args).u)) {
const bool isNotZero{std::visit(
[&](const auto &z) -> bool {
using T = typename std::decay_t<decltype(z)>::Result;
auto scalar{GetScalarConstantValue<T>(z)};
return !scalar || !scalar->IsZero();
},
someComplex->u)};
if (!isNotZero) {
context.messages().Say(
"complex argument must be different from zero"_warn_en_US);
}
return isNotZero;
}
return true;
}
// Verify that the argument in an intrinsic call is not zero and not a negative
// integer.
static bool VerifyGammaLikeArgument(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(firstArg, args).u)) {
const bool isValid{std::visit(
[&](const auto &x) -> bool {
using T = typename std::decay_t<decltype(x)>::Result;
auto scalar{GetScalarConstantValue<T>(x)};
if (scalar) {
return !scalar->IsZero() &&
!(scalar->IsNegative() &&
scalar->ToWholeNumber().value == scalar);
}
return true;
},
someReal->u)};
if (!isValid) {
context.messages().Say(
"argument must not be a negative integer or zero"_warn_en_US);
}
return isValid;
}
return true;
}
// Verify that two real arguments are not both zero.
static bool VerifyAtan2LikeArguments(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(firstArg, args).u)) {
const bool isValid{std::visit(
[&](const auto &typedExpr) -> bool {
using T = typename std::decay_t<decltype(typedExpr)>::Result;
auto x{GetScalarConstantValue<T>(typedExpr)};
auto y{GetScalarConstantValue<T>(GetArg(lastArg, args))};
if (x && y) {
return !(x->IsZero() && y->IsZero());
}
return true;
},
someReal->u)};
if (!isValid) {
context.messages().Say(
"'x' and 'y' arguments must not be both zero"_warn_en_US);
}
return isValid;
}
return true;
}
template <ArgumentVerifierFunc... F>
static bool CombineVerifiers(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
return (... && F(args, context));
}
/// Define argument names to be used error messages when the intrinsic have
/// several arguments.
static constexpr char xName[]{"x"};
static constexpr char pName[]{"p"};
/// Register argument verifiers for all intrinsics folded with runtime.
static constexpr ArgumentVerifier intrinsicArgumentVerifiers[]{
{"acos", VerifyInRangeIfReal<-1, 1>},
{"asin", VerifyInRangeIfReal<-1, 1>},
{"atan2", VerifyAtan2LikeArguments},
{"bessel_y0", VerifyStrictlyPositiveIfReal<firstArg, xName>},
{"bessel_y1", VerifyStrictlyPositiveIfReal<firstArg, xName>},
{"bessel_yn", VerifyStrictlyPositiveIfReal<lastArg, xName>},
{"gamma", VerifyGammaLikeArgument},
{"log",
CombineVerifiers<VerifyStrictlyPositiveIfReal<firstArg, xName>,
VerifyNotZeroIfComplex>},
{"log10", VerifyStrictlyPositiveIfReal<firstArg, xName>},
{"log_gamma", VerifyGammaLikeArgument},
{"mod", VerifyNotZeroIfReal<lastArg, pName>},
};
const ArgumentVerifierFunc *findVerifier(const std::string &intrinsicName) {
static constexpr Fortran::common::StaticMultimapView<ArgumentVerifier>
verifiers(intrinsicArgumentVerifiers);
static_assert(verifiers.Verify(), "map must be sorted");
auto range{verifiers.equal_range(intrinsicName)};
if (range.first != range.second) {
return &range.first->verifier;
}
return nullptr;
}
/// Ensure argument verifiers, if any, are run before calling the runtime
/// wrapper to fold an intrinsic.
static HostRuntimeWrapper AddArgumentVerifierIfAny(
const std::string &intrinsicName, const HostRuntimeFunction &hostFunction) {
if (const auto *verifier{findVerifier(intrinsicName)}) {
const HostRuntimeFunction *hostFunctionPtr = &hostFunction;
return [hostFunctionPtr, verifier](
FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
const bool validArguments{(*verifier)(args, context)};
if (!validArguments) {
// Silence fp signal warnings since a more detailed warning about
// invalid arguments was already emitted.
parser::Messages localBuffer;
parser::ContextualMessages localMessages{&localBuffer};
FoldingContext localContext{context, localMessages};
return hostFunctionPtr->folder(localContext, std::move(args));
}
return hostFunctionPtr->folder(context, std::move(args));
};
}
return hostFunction.folder;
}
std::optional<HostRuntimeWrapper> GetHostRuntimeWrapper(const std::string &name,
DynamicType resultType, const std::vector<DynamicType> &argTypes) {
if (const auto *hostFunction{SearchHostRuntime(name, resultType, argTypes)}) {
return AddArgumentVerifierIfAny(name, *hostFunction);
}
// If no exact match, search with "bigger" types and insert type
// conversions around the folder.
std::vector<evaluate::DynamicType> biggerArgTypes;
evaluate::DynamicType biggerResultType{BiggerType(resultType)};
for (auto type : argTypes) {
biggerArgTypes.emplace_back(BiggerType(type));
}
if (const auto *hostFunction{
SearchHostRuntime(name, biggerResultType, biggerArgTypes)}) {
auto hostFolderWithChecks{AddArgumentVerifierIfAny(name, *hostFunction)};
return [hostFunction, resultType, hostFolderWithChecks](
FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
auto nArgs{args.size()};
for (size_t i{0}; i < nArgs; ++i) {
args[i] = Fold(context,
ConvertToType(hostFunction->argumentTypes[i], std::move(args[i]))
.value());
}
return Fold(context,
ConvertToType(
resultType, hostFolderWithChecks(context, std::move(args)))
.value());
};
}
return std::nullopt;
}
} // namespace Fortran::evaluate