//===-- lib/Parser/basic-parsers.h ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_PARSER_BASIC_PARSERS_H_
#define FORTRAN_PARSER_BASIC_PARSERS_H_
// Let a "parser" be an instance of any class that supports this
// type definition and member (or static) function:
//
// using resultType = ...;
// std::optional<resultType> Parse(ParseState &) const;
//
// which either returns a value to signify a successful recognition or else
// returns {} to signify failure. On failure, the state cannot be assumed
// to still be valid, in general -- see below for exceptions.
//
// This header defines the fundamental parser class templates and helper
// template functions. See parser-combinators.txt for documentation.
#include "flang/Common/Fortran-features.h"
#include "flang/Common/idioms.h"
#include "flang/Common/indirection.h"
#include "flang/Parser/char-block.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-state.h"
#include "flang/Parser/provenance.h"
#include "flang/Parser/user-state.h"
#include <cstring>
#include <functional>
#include <list>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
namespace Fortran::parser {
// fail<A>("..."_err_en_US) returns a parser that never succeeds. It reports an
// error message at the current position. The result type is unused,
// but might have to be specified at the point of call to satisfy
// the type checker. The state remains valid.
template <typename A> class FailParser {
public:
using resultType = A;
constexpr FailParser(const FailParser &) = default;
constexpr explicit FailParser(MessageFixedText t) : text_{t} {}
std::optional<A> Parse(ParseState &state) const {
state.Say(text_);
return std::nullopt;
}
private:
const MessageFixedText text_;
};
template <typename A = Success> inline constexpr auto fail(MessageFixedText t) {
return FailParser<A>{t};
}
// pure(x) returns a parser that always succeeds, does not advance the
// parse, and returns a captured value x whose type must be copy-constructible.
//
// pure<A>() is essentially pure(A{}); it returns a default-constructed A{},
// and works even when A is not copy-constructible.
template <typename A> class PureParser {
public:
using resultType = A;
constexpr PureParser(const PureParser &) = default;
constexpr explicit PureParser(A &&x) : value_(std::move(x)) {}
std::optional<A> Parse(ParseState &) const { return value_; }
private:
const A value_;
};
template <typename A> inline constexpr auto pure(A x) {
return PureParser<A>(std::move(x));
}
template <typename A> class PureDefaultParser {
public:
using resultType = A;
constexpr PureDefaultParser(const PureDefaultParser &) = default;
constexpr PureDefaultParser() {}
std::optional<A> Parse(ParseState &) const { return std::make_optional<A>(); }
};
template <typename A> inline constexpr auto pure() {
return PureDefaultParser<A>();
}
// If a is a parser, attempt(a) is the same parser, but on failure
// the ParseState is guaranteed to have been restored to its initial value.
template <typename A> class BacktrackingParser {
public:
using resultType = typename A::resultType;
constexpr BacktrackingParser(const BacktrackingParser &) = default;
constexpr BacktrackingParser(const A &parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
Messages messages{std::move(state.messages())};
ParseState backtrack{state};
std::optional<resultType> result{parser_.Parse(state)};
if (result) {
state.messages().Annex(std::move(messages));
} else {
state = std::move(backtrack);
state.messages() = std::move(messages);
}
return result;
}
private:
const A parser_;
};
template <typename A> inline constexpr auto attempt(const A &parser) {
return BacktrackingParser<A>{parser};
}
// For any parser x, the parser returned by !x is one that succeeds when
// x fails, returning a useless (but present) result. !x fails when x succeeds.
template <typename PA> class NegatedParser {
public:
using resultType = Success;
constexpr NegatedParser(const NegatedParser &) = default;
constexpr NegatedParser(PA p) : parser_{p} {}
std::optional<Success> Parse(ParseState &state) const {
ParseState forked{state};
forked.set_deferMessages(true);
if (parser_.Parse(forked)) {
return std::nullopt;
}
return Success{};
}
private:
const PA parser_;
};
template <typename PA, typename = typename PA::resultType>
constexpr auto operator!(PA p) {
return NegatedParser<PA>(p);
}
// For any parser x, the parser returned by lookAhead(x) is one that succeeds
// or fails if x does, but the state is not modified.
template <typename PA> class LookAheadParser {
public:
using resultType = Success;
constexpr LookAheadParser(const LookAheadParser &) = default;
constexpr LookAheadParser(PA p) : parser_{p} {}
std::optional<Success> Parse(ParseState &state) const {
ParseState forked{state};
forked.set_deferMessages(true);
if (parser_.Parse(forked)) {
return Success{};
}
return std::nullopt;
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto lookAhead(PA p) {
return LookAheadParser<PA>{p};
}
// If a is a parser, inContext("..."_en_US, a) runs it in a nested message
// context.
template <typename PA> class MessageContextParser {
public:
using resultType = typename PA::resultType;
constexpr MessageContextParser(const MessageContextParser &) = default;
constexpr MessageContextParser(MessageFixedText t, PA p)
: text_{t}, parser_{p} {}
std::optional<resultType> Parse(ParseState &state) const {
state.PushContext(text_);
std::optional<resultType> result{parser_.Parse(state)};
state.PopContext();
return result;
}
private:
const MessageFixedText text_;
const PA parser_;
};
template <typename PA>
inline constexpr auto inContext(MessageFixedText context, PA parser) {
return MessageContextParser{context, parser};
}
// If a is a parser, withMessage("..."_en_US, a) runs it unchanged if it
// succeeds, and overrides its messages with a specific one if it fails and
// has matched no tokens.
template <typename PA> class WithMessageParser {
public:
using resultType = typename PA::resultType;
constexpr WithMessageParser(const WithMessageParser &) = default;
constexpr WithMessageParser(MessageFixedText t, PA p)
: text_{t}, parser_{p} {}
std::optional<resultType> Parse(ParseState &state) const {
if (state.deferMessages()) { // fast path
std::optional<resultType> result{parser_.Parse(state)};
if (!result) {
state.set_anyDeferredMessages();
}
return result;
}
Messages messages{std::move(state.messages())};
bool hadAnyTokenMatched{state.anyTokenMatched()};
state.set_anyTokenMatched(false);
std::optional<resultType> result{parser_.Parse(state)};
bool emitMessage{false};
if (result) {
messages.Annex(std::move(state.messages()));
if (hadAnyTokenMatched) {
state.set_anyTokenMatched();
}
} else if (state.anyTokenMatched()) {
emitMessage = state.messages().empty();
messages.Annex(std::move(state.messages()));
} else {
emitMessage = true;
if (hadAnyTokenMatched) {
state.set_anyTokenMatched();
}
}
state.messages() = std::move(messages);
if (emitMessage) {
state.Say(text_);
}
return result;
}
private:
const MessageFixedText text_;
const PA parser_;
};
template <typename PA>
inline constexpr auto withMessage(MessageFixedText msg, PA parser) {
return WithMessageParser{msg, parser};
}
// If a and b are parsers, then a >> b returns a parser that succeeds when
// b succeeds after a does so, but fails when either a or b does. The
// result is taken from b. Similarly, a / b also succeeds if both a and b
// do so, but the result is that returned by a.
template <typename PA, typename PB> class SequenceParser {
public:
using resultType = typename PB::resultType;
constexpr SequenceParser(const SequenceParser &) = default;
constexpr SequenceParser(PA pa, PB pb) : pa_{pa}, pb2_{pb} {}
std::optional<resultType> Parse(ParseState &state) const {
if (pa_.Parse(state)) {
return pb2_.Parse(state);
} else {
return std::nullopt;
}
}
private:
const PA pa_;
const PB pb2_;
};
template <typename PA, typename PB>
inline constexpr auto operator>>(PA pa, PB pb) {
return SequenceParser<PA, PB>{pa, pb};
}
template <typename PA, typename PB> class FollowParser {
public:
using resultType = typename PA::resultType;
constexpr FollowParser(const FollowParser &) = default;
constexpr FollowParser(PA pa, PB pb) : pa_{pa}, pb_{pb} {}
std::optional<resultType> Parse(ParseState &state) const {
if (std::optional<resultType> ax{pa_.Parse(state)}) {
if (pb_.Parse(state)) {
return ax;
}
}
return std::nullopt;
}
private:
const PA pa_;
const PB pb_;
};
template <typename PA, typename PB>
inline constexpr auto operator/(PA pa, PB pb) {
return FollowParser<PA, PB>{pa, pb};
}
template <typename PA, typename... Ps> class AlternativesParser {
public:
using resultType = typename PA::resultType;
constexpr AlternativesParser(PA pa, Ps... ps) : ps_{pa, ps...} {}
constexpr AlternativesParser(const AlternativesParser &) = default;
std::optional<resultType> Parse(ParseState &state) const {
Messages messages{std::move(state.messages())};
ParseState backtrack{state};
std::optional<resultType> result{std::get<0>(ps_).Parse(state)};
if constexpr (sizeof...(Ps) > 0) {
if (!result) {
ParseRest<1>(result, state, backtrack);
}
}
state.messages().Annex(std::move(messages));
return result;
}
private:
template <int J>
void ParseRest(std::optional<resultType> &result, ParseState &state,
ParseState &backtrack) const {
ParseState prevState{std::move(state)};
state = backtrack;
result = std::get<J>(ps_).Parse(state);
if (!result) {
state.CombineFailedParses(std::move(prevState));
if constexpr (J < sizeof...(Ps)) {
ParseRest<J + 1>(result, state, backtrack);
}
}
}
const std::tuple<PA, Ps...> ps_;
};
template <typename... Ps> inline constexpr auto first(Ps... ps) {
return AlternativesParser<Ps...>{ps...};
}
template <typename PA, typename PB>
inline constexpr auto operator||(PA pa, PB pb) {
return AlternativesParser<PA, PB>{pa, pb};
}
// If a and b are parsers, then recovery(a,b) returns a parser that succeeds if
// a does so, or if a fails and b succeeds. If a succeeds, b is not attempted.
// All messages from the first parse are retained.
// The two parsers must return values of the same type.
template <typename PA, typename PB> class RecoveryParser {
public:
using resultType = typename PA::resultType;
static_assert(std::is_same_v<resultType, typename PB::resultType>);
constexpr RecoveryParser(const RecoveryParser &) = default;
constexpr RecoveryParser(PA pa, PB pb) : pa_{pa}, pb_{pb} {}
std::optional<resultType> Parse(ParseState &state) const {
bool originallyDeferred{state.deferMessages()};
ParseState backtrack{state};
if (!originallyDeferred && state.messages().empty() &&
!state.anyErrorRecovery()) {
// Fast path. There are no messages or recovered errors in the incoming
// state. Attempt to parse with messages deferred, expecting that the
// parse will succeed silently.
state.set_deferMessages(true);
if (std::optional<resultType> ax{pa_.Parse(state)}) {
if (!state.anyDeferredMessages() && !state.anyErrorRecovery()) {
state.set_deferMessages(false);
return ax;
}
}
state = backtrack;
}
Messages messages{std::move(state.messages())};
if (std::optional<resultType> ax{pa_.Parse(state)}) {
state.messages().Annex(std::move(messages));
return ax;
}
messages.Annex(std::move(state.messages()));
bool hadDeferredMessages{state.anyDeferredMessages()};
bool anyTokenMatched{state.anyTokenMatched()};
state = std::move(backtrack);
state.set_deferMessages(true);
std::optional<resultType> bx{pb_.Parse(state)};
state.messages() = std::move(messages);
state.set_deferMessages(originallyDeferred);
if (anyTokenMatched) {
state.set_anyTokenMatched();
}
if (hadDeferredMessages) {
state.set_anyDeferredMessages();
}
if (bx) {
// Error recovery situations must also produce messages.
CHECK(state.anyDeferredMessages() || state.messages().AnyFatalError());
state.set_anyErrorRecovery();
}
return bx;
}
private:
const PA pa_;
const PB pb_;
};
template <typename PA, typename PB>
inline constexpr auto recovery(PA pa, PB pb) {
return RecoveryParser<PA, PB>{pa, pb};
}
// If x is a parser, then many(x) returns a parser that always succeeds
// and whose value is a list, possibly empty, of the values returned from
// repeated application of x until it fails or does not advance the parse.
template <typename PA> class ManyParser {
using paType = typename PA::resultType;
public:
using resultType = std::list<paType>;
constexpr ManyParser(const ManyParser &) = default;
constexpr ManyParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
resultType result;
auto at{state.GetLocation()};
while (std::optional<paType> x{parser_.Parse(state)}) {
result.emplace_back(std::move(*x));
if (state.GetLocation() <= at) {
break; // no forward progress, don't loop
}
at = state.GetLocation();
}
return {std::move(result)};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto many(PA parser) {
return ManyParser<PA>{parser};
}
// If x is a parser, then some(x) returns a parser that succeeds if x does
// and whose value is a nonempty list of the values returned from repeated
// application of x until it fails or does not advance the parse. In other
// words, some(x) is a variant of many(x) that has to succeed at least once.
template <typename PA> class SomeParser {
using paType = typename PA::resultType;
public:
using resultType = std::list<paType>;
constexpr SomeParser(const SomeParser &) = default;
constexpr SomeParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
auto start{state.GetLocation()};
if (std::optional<paType> first{parser_.Parse(state)}) {
resultType result;
result.emplace_back(std::move(*first));
if (state.GetLocation() > start) {
result.splice(result.end(), many(parser_).Parse(state).value());
}
return {std::move(result)};
}
return std::nullopt;
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto some(PA parser) {
return SomeParser<PA>{parser};
}
// If x is a parser, skipMany(x) is equivalent to many(x) but with no result.
template <typename PA> class SkipManyParser {
public:
using resultType = Success;
constexpr SkipManyParser(const SkipManyParser &) = default;
constexpr SkipManyParser(PA parser) : parser_{parser} {}
std::optional<Success> Parse(ParseState &state) const {
for (auto at{state.GetLocation()};
parser_.Parse(state) && state.GetLocation() > at;
at = state.GetLocation()) {
}
return Success{};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto skipMany(PA parser) {
return SkipManyParser<PA>{parser};
}
// If x is a parser, skipManyFast(x) is equivalent to skipMany(x).
// The parser x must always advance on success and never invalidate the
// state on failure.
template <typename PA> class SkipManyFastParser {
public:
using resultType = Success;
constexpr SkipManyFastParser(const SkipManyFastParser &) = default;
constexpr SkipManyFastParser(PA parser) : parser_{parser} {}
std::optional<Success> Parse(ParseState &state) const {
while (parser_.Parse(state)) {
}
return Success{};
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto skipManyFast(PA parser) {
return SkipManyFastParser<PA>{parser};
}
// If x is a parser returning some type A, then maybe(x) returns a
// parser that returns std::optional<A>, always succeeding.
template <typename PA> class MaybeParser {
using paType = typename PA::resultType;
public:
using resultType = std::optional<paType>;
constexpr MaybeParser(const MaybeParser &) = default;
constexpr MaybeParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
if (resultType result{parser_.Parse(state)}) {
// permit optional<optional<...>>
return {std::move(result)};
}
return resultType{};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto maybe(PA parser) {
return MaybeParser<PA>{parser};
}
// If x is a parser, then defaulted(x) returns a parser that always
// succeeds. When x succeeds, its result is that of x; otherwise, its
// result is a default-constructed value of x's result type.
template <typename PA> class DefaultedParser {
public:
using resultType = typename PA::resultType;
constexpr DefaultedParser(const DefaultedParser &) = default;
constexpr DefaultedParser(PA p) : parser_{p} {}
std::optional<resultType> Parse(ParseState &state) const {
std::optional<std::optional<resultType>> ax{maybe(parser_).Parse(state)};
if (ax.value()) { // maybe() always succeeds
return std::move(*ax);
}
return resultType{};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto defaulted(PA p) {
return DefaultedParser<PA>(p);
}
// If a is a parser, and f is a function mapping an rvalue of a's result type
// to some other type T, then applyFunction(f, a) returns a parser that succeeds
// iff a does, and whose result value ax has been passed through the function;
// the final result is that returned by the call f(std::move(ax)).
//
// Function application is generalized to functions with more than one
// argument with applyFunction(f, a, b, ...) succeeding if all of the parsers
// a, b, &c. do so, and the result is the value of applying f to their
// results.
//
// applyLambda(f, ...) is the same concept extended to std::function<> functors.
// It is not constexpr.
//
// Member function application is supported by applyMem(f, a). If the
// parser a succeeds and returns some value ax, the result is that returned
// by ax.f(). Additional parser arguments can be specified to supply their
// results to the member function call, so applyMem(f, a, b) succeeds if
// both a and b do so and returns the result of calling ax.f(std::move(bx)).
// Runs a sequence of parsers until one fails or all have succeeded.
// Collects their results in a std::tuple<std::optional<>...>.
template <typename... PARSER>
using ApplyArgs = std::tuple<std::optional<typename PARSER::resultType>...>;
template <typename... PARSER, std::size_t... J>
inline bool ApplyHelperArgs(const std::tuple<PARSER...> &parsers,
ApplyArgs<PARSER...> &args, ParseState &state, std::index_sequence<J...>) {
return (... &&
(std::get<J>(args) = std::get<J>(parsers).Parse(state),
std::get<J>(args).has_value()));
}
// Applies a function to the arguments collected by ApplyHelperArgs.
template <typename RESULT, typename... PARSER>
using ApplicableFunctionPointer = RESULT (*)(typename PARSER::resultType &&...);
template <typename RESULT, typename... PARSER>
using ApplicableFunctionObject =
const std::function<RESULT(typename PARSER::resultType &&...)> &;
template <template <typename...> class FUNCTION, typename RESULT,
typename... PARSER, std::size_t... J>
inline RESULT ApplyHelperFunction(FUNCTION<RESULT, PARSER...> f,
ApplyArgs<PARSER...> &&args, std::index_sequence<J...>) {
return f(std::move(*std::get<J>(args))...);
}
template <template <typename...> class FUNCTION, typename RESULT,
typename... PARSER>
class ApplyFunction {
using funcType = FUNCTION<RESULT, PARSER...>;
public:
using resultType = RESULT;
constexpr ApplyFunction(const ApplyFunction &) = default;
constexpr ApplyFunction(funcType f, PARSER... p)
: function_{f}, parsers_{p...} {}
std::optional<resultType> Parse(ParseState &state) const {
ApplyArgs<PARSER...> results;
using Sequence = std::index_sequence_for<PARSER...>;
if (ApplyHelperArgs(parsers_, results, state, Sequence{})) {
return ApplyHelperFunction<FUNCTION, RESULT, PARSER...>(
function_, std::move(results), Sequence{});
} else {
return std::nullopt;
}
}
private:
const funcType function_;
const std::tuple<PARSER...> parsers_;
};
template <typename RESULT, typename... PARSER>
inline constexpr auto applyFunction(
ApplicableFunctionPointer<RESULT, PARSER...> f, const PARSER &...parser) {
return ApplyFunction<ApplicableFunctionPointer, RESULT, PARSER...>{
f, parser...};
}
template <typename RESULT, typename... PARSER>
inline /* not constexpr */ auto applyLambda(
ApplicableFunctionObject<RESULT, PARSER...> f, const PARSER &...parser) {
return ApplyFunction<ApplicableFunctionObject, RESULT, PARSER...>{
f, parser...};
}
// Member function application
template <typename OBJPARSER, typename... PARSER> class AMFPHelper {
using resultType = typename OBJPARSER::resultType;
public:
using type = void (resultType::*)(typename PARSER::resultType &&...);
};
template <typename OBJPARSER, typename... PARSER>
using ApplicableMemberFunctionPointer =
typename AMFPHelper<OBJPARSER, PARSER...>::type;
template <typename OBJPARSER, typename... PARSER, std::size_t... J>
inline auto ApplyHelperMember(
ApplicableMemberFunctionPointer<OBJPARSER, PARSER...> mfp,
ApplyArgs<OBJPARSER, PARSER...> &&args, std::index_sequence<J...>) ->
typename OBJPARSER::resultType {
((*std::get<0>(args)).*mfp)(std::move(*std::get<J + 1>(args))...);
return std::get<0>(std::move(args));
}
template <typename OBJPARSER, typename... PARSER> class ApplyMemberFunction {
using funcType = ApplicableMemberFunctionPointer<OBJPARSER, PARSER...>;
public:
using resultType = typename OBJPARSER::resultType;
constexpr ApplyMemberFunction(const ApplyMemberFunction &) = default;
constexpr ApplyMemberFunction(funcType f, OBJPARSER o, PARSER... p)
: function_{f}, parsers_{o, p...} {}
std::optional<resultType> Parse(ParseState &state) const {
ApplyArgs<OBJPARSER, PARSER...> results;
using Sequence1 = std::index_sequence_for<OBJPARSER, PARSER...>;
using Sequence2 = std::index_sequence_for<PARSER...>;
if (ApplyHelperArgs(parsers_, results, state, Sequence1{})) {
return ApplyHelperMember<OBJPARSER, PARSER...>(
function_, std::move(results), Sequence2{});
} else {
return std::nullopt;
}
}
private:
const funcType function_;
const std::tuple<OBJPARSER, PARSER...> parsers_;
};
template <typename OBJPARSER, typename... PARSER>
inline constexpr auto applyMem(
ApplicableMemberFunctionPointer<OBJPARSER, PARSER...> mfp,
const OBJPARSER &objParser, PARSER... parser) {
return ApplyMemberFunction<OBJPARSER, PARSER...>{mfp, objParser, parser...};
}
// As is done with function application via applyFunction() above, class
// instance construction can also be based upon the results of successful
// parses. For some type T and zero or more parsers a, b, &c., the call
// construct<T>(a, b, ...) returns a parser that succeeds if all of
// its argument parsers do so in succession, and whose result is an
// instance of T constructed upon the values they returned.
// With a single argument that is a parser with no usable value,
// construct<T>(p) invokes T's default nullary constructor (T(){}).
// (This means that "construct<T>(Foo >> Bar >> ok)" is functionally
// equivalent to "Foo >> Bar >> construct<T>()", but I'd like to hold open
// the opportunity to make construct<> capture source provenance all of the
// time, and the first form will then lead to better error positioning.)
template <typename RESULT, typename... PARSER, std::size_t... J>
inline RESULT ApplyHelperConstructor(
ApplyArgs<PARSER...> &&args, std::index_sequence<J...>) {
return RESULT{std::move(*std::get<J>(args))...};
}
template <typename RESULT, typename... PARSER> class ApplyConstructor {
public:
using resultType = RESULT;
constexpr ApplyConstructor(const ApplyConstructor &) = default;
constexpr explicit ApplyConstructor(PARSER... p) : parsers_{p...} {}
std::optional<resultType> Parse(ParseState &state) const {
if constexpr (sizeof...(PARSER) == 0) {
return RESULT{};
} else {
if constexpr (sizeof...(PARSER) == 1) {
return ParseOne(state);
} else {
ApplyArgs<PARSER...> results;
using Sequence = std::index_sequence_for<PARSER...>;
if (ApplyHelperArgs(parsers_, results, state, Sequence{})) {
return ApplyHelperConstructor<RESULT, PARSER...>(
std::move(results), Sequence{});
}
}
return std::nullopt;
}
}
private:
std::optional<resultType> ParseOne(ParseState &state) const {
if constexpr (std::is_same_v<Success, typename PARSER::resultType...>) {
if (std::get<0>(parsers_).Parse(state)) {
return RESULT{};
}
} else if (auto arg{std::get<0>(parsers_).Parse(state)}) {
return RESULT{std::move(*arg)};
}
return std::nullopt;
}
const std::tuple<PARSER...> parsers_;
};
template <typename RESULT, typename... PARSER>
inline constexpr auto construct(PARSER... p) {
return ApplyConstructor<RESULT, PARSER...>{p...};
}
// For a parser p, indirect(p) returns a parser that builds an indirect
// reference to p's return type.
template <typename PA> inline constexpr auto indirect(PA p) {
return construct<common::Indirection<typename PA::resultType>>(p);
}
// If a and b are parsers, then nonemptySeparated(a, b) returns a parser
// that succeeds if a does. If a succeeds, it then applies many(b >> a).
// The result is the list of the values returned from all of the applications
// of a.
template <typename T>
common::IfNoLvalue<std::list<T>, T> prepend(T &&head, std::list<T> &&rest) {
rest.push_front(std::move(head));
return std::move(rest);
}
template <typename PA, typename PB> class NonemptySeparated {
private:
using paType = typename PA::resultType;
public:
using resultType = std::list<paType>;
constexpr NonemptySeparated(const NonemptySeparated &) = default;
constexpr NonemptySeparated(PA p, PB sep) : parser_{p}, separator_{sep} {}
std::optional<resultType> Parse(ParseState &state) const {
return applyFunction<std::list<paType>>(
prepend<paType>, parser_, many(separator_ >> parser_))
.Parse(state);
}
private:
const PA parser_;
const PB separator_;
};
template <typename PA, typename PB>
inline constexpr auto nonemptySeparated(PA p, PB sep) {
return NonemptySeparated<PA, PB>{p, sep};
}
// ok is a parser that always succeeds. It is useful when a parser
// must discard its result in order to be compatible in type with other
// parsers in an alternative, e.g. "x >> ok || y >> ok" is type-safe even
// when x and y have distinct result types.
struct OkParser {
using resultType = Success;
constexpr OkParser() {}
static constexpr std::optional<Success> Parse(ParseState &) {
return Success{};
}
};
constexpr OkParser ok;
// A variant of recovery() above for convenience.
template <typename PA, typename PB>
inline constexpr auto localRecovery(MessageFixedText msg, PA pa, PB pb) {
return recovery(withMessage(msg, pa), pb >> pure<typename PA::resultType>());
}
// nextCh is a parser that succeeds if the parsing state is not
// at the end of its input, returning the next character location and
// advancing the parse when it does so.
struct NextCh {
using resultType = const char *;
constexpr NextCh() {}
std::optional<const char *> Parse(ParseState &state) const {
if (std::optional<const char *> result{state.GetNextChar()}) {
return result;
}
state.Say("end of file"_err_en_US);
return std::nullopt;
}
};
constexpr NextCh nextCh;
// If a is a parser for some nonstandard language feature LF, extension<LF>(a)
// is a parser that optionally enabled, sets a strict conformance violation
// flag, and may emit a warning message, if those are enabled.
template <LanguageFeature LF, typename PA> class NonstandardParser {
public:
using resultType = typename PA::resultType;
constexpr NonstandardParser(const NonstandardParser &) = default;
constexpr NonstandardParser(PA parser, MessageFixedText msg)
: parser_{parser}, message_{msg} {}
constexpr NonstandardParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
if (UserState * ustate{state.userState()}) {
if (!ustate->features().IsEnabled(LF)) {
return std::nullopt;
}
}
auto at{state.GetLocation()};
auto result{parser_.Parse(state)};
if (result && !message_.empty()) {
state.Nonstandard(
CharBlock{at, std::max(state.GetLocation(), at + 1)}, LF, message_);
}
return result;
}
private:
const PA parser_;
const MessageFixedText message_;
};
template <LanguageFeature LF, typename PA>
inline constexpr auto extension(MessageFixedText feature, PA parser) {
return NonstandardParser<LF, PA>(parser, feature);
}
template <LanguageFeature LF, typename PA>
inline constexpr auto extension(PA parser) {
return NonstandardParser<LF, PA>(parser);
}
// If a is a parser for some deprecated or deleted language feature LF,
// deprecated<LF>(a) is a parser that is optionally enabled, sets a strict
// conformance violation flag, and may emit a warning message, if enabled.
template <LanguageFeature LF, typename PA> class DeprecatedParser {
public:
using resultType = typename PA::resultType;
constexpr DeprecatedParser(const DeprecatedParser &) = default;
constexpr DeprecatedParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
if (UserState * ustate{state.userState()}) {
if (!ustate->features().IsEnabled(LF)) {
return std::nullopt;
}
}
auto at{state.GetLocation()};
auto result{parser_.Parse(state)};
if (result) {
state.Nonstandard(CharBlock{at, state.GetLocation()}, LF,
"deprecated usage"_port_en_US);
}
return result;
}
private:
const PA parser_;
};
template <LanguageFeature LF, typename PA>
inline constexpr auto deprecated(PA parser) {
return DeprecatedParser<LF, PA>(parser);
}
// Parsing objects with "source" members.
template <typename PA> class SourcedParser {
public:
using resultType = typename PA::resultType;
constexpr SourcedParser(const SourcedParser &) = default;
constexpr SourcedParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
const char *start{state.GetLocation()};
auto result{parser_.Parse(state)};
if (result) {
const char *end{state.GetLocation()};
for (; start < end && start[0] == ' '; ++start) {
}
for (; start < end && end[-1] == ' '; --end) {
}
result->source = CharBlock{start, end};
}
return result;
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto sourced(PA parser) {
return SourcedParser<PA>{parser};
}
} // namespace Fortran::parser
#endif // FORTRAN_PARSER_BASIC_PARSERS_H_