//===-- sanitizer_common_test.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer/AddressSanitizer runtime.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
// This ensures that including both internal sanitizer_common headers
// and the interface headers does not lead to compilation failures.
// Both may be included in unit tests, where googletest transitively
// pulls in sanitizer interface headers.
// The headers are specifically included using relative paths,
// because a compiler may use a different mismatching version
// of sanitizer headers.
#include "../../../include/sanitizer/asan_interface.h"
#include "../../../include/sanitizer/msan_interface.h"
#include "../../../include/sanitizer/tsan_interface.h"
#include "gtest/gtest.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_platform.h"
#include "sanitizer_pthread_wrappers.h"
namespace __sanitizer {
static bool IsSorted(const uptr *array, uptr n) {
for (uptr i = 1; i < n; i++) {
if (array[i] < array[i - 1]) return false;
}
return true;
}
TEST(SanitizerCommon, SortTest) {
uptr array[100];
uptr n = 100;
// Already sorted.
for (uptr i = 0; i < n; i++) {
array[i] = i;
}
Sort(array, n);
EXPECT_TRUE(IsSorted(array, n));
// Reverse order.
for (uptr i = 0; i < n; i++) {
array[i] = n - 1 - i;
}
Sort(array, n);
EXPECT_TRUE(IsSorted(array, n));
// Mixed order.
for (uptr i = 0; i < n; i++) {
array[i] = (i % 2 == 0) ? i : n - 1 - i;
}
Sort(array, n);
EXPECT_TRUE(IsSorted(array, n));
// All equal.
for (uptr i = 0; i < n; i++) {
array[i] = 42;
}
Sort(array, n);
EXPECT_TRUE(IsSorted(array, n));
// All but one sorted.
for (uptr i = 0; i < n - 1; i++) {
array[i] = i;
}
array[n - 1] = 42;
Sort(array, n);
EXPECT_TRUE(IsSorted(array, n));
// Minimal case - sort three elements.
array[0] = 1;
array[1] = 0;
Sort(array, 2);
EXPECT_TRUE(IsSorted(array, 2));
}
TEST(SanitizerCommon, MmapAlignedOrDieOnFatalError) {
uptr PageSize = GetPageSizeCached();
for (uptr size = 1; size <= 32; size *= 2) {
for (uptr alignment = 1; alignment <= 32; alignment *= 2) {
for (int iter = 0; iter < 100; iter++) {
uptr res = (uptr)MmapAlignedOrDieOnFatalError(
size * PageSize, alignment * PageSize, "MmapAlignedOrDieTest");
EXPECT_EQ(0U, res % (alignment * PageSize));
internal_memset((void*)res, 1, size * PageSize);
UnmapOrDie((void*)res, size * PageSize);
}
}
}
}
TEST(SanitizerCommon, Mprotect) {
uptr PageSize = GetPageSizeCached();
u8 *mem = reinterpret_cast<u8 *>(MmapOrDie(PageSize, "MprotectTest"));
for (u8 *p = mem; p < mem + PageSize; ++p) ++(*p);
MprotectReadOnly(reinterpret_cast<uptr>(mem), PageSize);
for (u8 *p = mem; p < mem + PageSize; ++p) EXPECT_EQ(1u, *p);
EXPECT_DEATH(++mem[0], "");
EXPECT_DEATH(++mem[PageSize / 2], "");
EXPECT_DEATH(++mem[PageSize - 1], "");
MprotectNoAccess(reinterpret_cast<uptr>(mem), PageSize);
volatile u8 t;
(void)t;
EXPECT_DEATH(t = mem[0], "");
EXPECT_DEATH(t = mem[PageSize / 2], "");
EXPECT_DEATH(t = mem[PageSize - 1], "");
}
TEST(SanitizerCommon, InternalMmapVectorRoundUpCapacity) {
InternalMmapVector<uptr> v;
v.reserve(1);
CHECK_EQ(v.capacity(), GetPageSizeCached() / sizeof(uptr));
}
TEST(SanitizerCommon, InternalMmapVectorReize) {
InternalMmapVector<uptr> v;
CHECK_EQ(0U, v.size());
CHECK_GE(v.capacity(), v.size());
v.reserve(1000);
CHECK_EQ(0U, v.size());
CHECK_GE(v.capacity(), 1000U);
v.resize(10000);
CHECK_EQ(10000U, v.size());
CHECK_GE(v.capacity(), v.size());
uptr cap = v.capacity();
v.resize(100);
CHECK_EQ(100U, v.size());
CHECK_EQ(v.capacity(), cap);
v.reserve(10);
CHECK_EQ(100U, v.size());
CHECK_EQ(v.capacity(), cap);
}
TEST(SanitizerCommon, InternalMmapVector) {
InternalMmapVector<uptr> vector;
for (uptr i = 0; i < 100; i++) {
EXPECT_EQ(i, vector.size());
vector.push_back(i);
}
for (uptr i = 0; i < 100; i++) {
EXPECT_EQ(i, vector[i]);
}
for (int i = 99; i >= 0; i--) {
EXPECT_EQ((uptr)i, vector.back());
vector.pop_back();
EXPECT_EQ((uptr)i, vector.size());
}
InternalMmapVector<uptr> empty_vector;
CHECK_EQ(empty_vector.capacity(), 0U);
CHECK_EQ(0U, empty_vector.size());
}
TEST(SanitizerCommon, InternalMmapVectorEq) {
InternalMmapVector<uptr> vector1;
InternalMmapVector<uptr> vector2;
for (uptr i = 0; i < 100; i++) {
vector1.push_back(i);
vector2.push_back(i);
}
EXPECT_TRUE(vector1 == vector2);
EXPECT_FALSE(vector1 != vector2);
vector1.push_back(1);
EXPECT_FALSE(vector1 == vector2);
EXPECT_TRUE(vector1 != vector2);
vector2.push_back(1);
EXPECT_TRUE(vector1 == vector2);
EXPECT_FALSE(vector1 != vector2);
vector1[55] = 1;
EXPECT_FALSE(vector1 == vector2);
EXPECT_TRUE(vector1 != vector2);
}
TEST(SanitizerCommon, InternalMmapVectorSwap) {
InternalMmapVector<uptr> vector1;
InternalMmapVector<uptr> vector2;
InternalMmapVector<uptr> vector3;
InternalMmapVector<uptr> vector4;
for (uptr i = 0; i < 100; i++) {
vector1.push_back(i);
vector2.push_back(i);
vector3.push_back(-i);
vector4.push_back(-i);
}
EXPECT_NE(vector2, vector3);
EXPECT_NE(vector1, vector4);
vector1.swap(vector3);
EXPECT_EQ(vector2, vector3);
EXPECT_EQ(vector1, vector4);
}
void TestThreadInfo(bool main) {
uptr stk_begin = 0;
uptr stk_end = 0;
uptr tls_begin = 0;
uptr tls_end = 0;
GetThreadStackAndTls(main, &stk_begin, &stk_end, &tls_begin, &tls_end);
int stack_var;
EXPECT_NE(stk_begin, (uptr)0);
EXPECT_GT(stk_end, stk_begin);
EXPECT_GT((uptr)&stack_var, stk_begin);
EXPECT_LT((uptr)&stack_var, stk_end);
#if SANITIZER_LINUX && defined(__x86_64__)
static __thread int thread_var;
EXPECT_NE(tls_begin, (uptr)0);
EXPECT_GT(tls_end, tls_begin);
EXPECT_GT((uptr)&thread_var, tls_begin);
EXPECT_LT((uptr)&thread_var, tls_end);
// Ensure that tls and stack do not intersect.
EXPECT_TRUE(tls_begin < stk_begin || tls_begin >= stk_end);
EXPECT_TRUE(tls_end < stk_begin || tls_end >= stk_end);
EXPECT_TRUE((tls_begin < stk_begin) == (tls_end < stk_begin));
#endif
}
static void *WorkerThread(void *arg) {
TestThreadInfo(false);
return 0;
}
TEST(SanitizerCommon, ThreadStackTlsMain) {
InitTlsSize();
TestThreadInfo(true);
}
TEST(SanitizerCommon, ThreadStackTlsWorker) {
InitTlsSize();
pthread_t t;
PTHREAD_CREATE(&t, 0, WorkerThread, 0);
PTHREAD_JOIN(t, 0);
}
bool UptrLess(uptr a, uptr b) {
return a < b;
}
TEST(SanitizerCommon, InternalLowerBound) {
std::vector<int> arr = {1, 3, 5, 7, 11};
EXPECT_EQ(0u, InternalLowerBound(arr, 0));
EXPECT_EQ(0u, InternalLowerBound(arr, 1));
EXPECT_EQ(1u, InternalLowerBound(arr, 2));
EXPECT_EQ(1u, InternalLowerBound(arr, 3));
EXPECT_EQ(2u, InternalLowerBound(arr, 4));
EXPECT_EQ(2u, InternalLowerBound(arr, 5));
EXPECT_EQ(3u, InternalLowerBound(arr, 6));
EXPECT_EQ(3u, InternalLowerBound(arr, 7));
EXPECT_EQ(4u, InternalLowerBound(arr, 8));
EXPECT_EQ(4u, InternalLowerBound(arr, 9));
EXPECT_EQ(4u, InternalLowerBound(arr, 10));
EXPECT_EQ(4u, InternalLowerBound(arr, 11));
EXPECT_EQ(5u, InternalLowerBound(arr, 12));
}
TEST(SanitizerCommon, InternalLowerBoundVsStdLowerBound) {
std::vector<int> data;
auto create_item = [] (size_t i, size_t j) {
auto v = i * 10000 + j;
return ((v << 6) + (v >> 6) + 0x9e3779b9) % 100;
};
for (size_t i = 0; i < 1000; ++i) {
data.resize(i);
for (size_t j = 0; j < i; ++j) {
data[j] = create_item(i, j);
}
std::sort(data.begin(), data.end());
for (size_t j = 0; j < i; ++j) {
int val = create_item(i, j);
for (auto to_find : {val - 1, val, val + 1}) {
uptr expected =
std::lower_bound(data.begin(), data.end(), to_find) - data.begin();
EXPECT_EQ(expected,
InternalLowerBound(data, to_find, std::less<int>()));
}
}
}
}
class SortAndDedupTest : public ::testing::TestWithParam<std::vector<int>> {};
TEST_P(SortAndDedupTest, SortAndDedup) {
std::vector<int> v_std = GetParam();
std::sort(v_std.begin(), v_std.end());
v_std.erase(std::unique(v_std.begin(), v_std.end()), v_std.end());
std::vector<int> v = GetParam();
SortAndDedup(v);
EXPECT_EQ(v_std, v);
}
const std::vector<int> kSortAndDedupTests[] = {
{},
{1},
{1, 1},
{1, 1, 1},
{1, 2, 3},
{3, 2, 1},
{1, 2, 2, 3},
{3, 3, 2, 1, 2},
{3, 3, 2, 1, 2},
{1, 2, 1, 1, 2, 1, 1, 1, 2, 2},
{1, 3, 3, 2, 3, 1, 3, 1, 4, 4, 2, 1, 4, 1, 1, 2, 2},
};
INSTANTIATE_TEST_SUITE_P(SortAndDedupTest, SortAndDedupTest,
::testing::ValuesIn(kSortAndDedupTests));
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TEST(SanitizerCommon, FindPathToBinary) {
char *true_path = FindPathToBinary("true");
EXPECT_NE((char*)0, internal_strstr(true_path, "/bin/true"));
InternalFree(true_path);
EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj"));
}
#elif SANITIZER_WINDOWS
TEST(SanitizerCommon, FindPathToBinary) {
// ntdll.dll should be on PATH in all supported test environments on all
// supported Windows versions.
char *ntdll_path = FindPathToBinary("ntdll.dll");
EXPECT_NE((char*)0, internal_strstr(ntdll_path, "ntdll.dll"));
InternalFree(ntdll_path);
EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj"));
}
#endif
TEST(SanitizerCommon, StripPathPrefix) {
EXPECT_EQ(0, StripPathPrefix(0, "prefix"));
EXPECT_STREQ("foo", StripPathPrefix("foo", 0));
EXPECT_STREQ("dir/file.cc",
StripPathPrefix("/usr/lib/dir/file.cc", "/usr/lib/"));
EXPECT_STREQ("/file.cc", StripPathPrefix("/usr/myroot/file.cc", "/myroot"));
EXPECT_STREQ("file.h", StripPathPrefix("/usr/lib/./file.h", "/usr/lib/"));
}
TEST(SanitizerCommon, RemoveANSIEscapeSequencesFromString) {
RemoveANSIEscapeSequencesFromString(nullptr);
const char *buffs[22] = {
"Default", "Default",
"\033[95mLight magenta", "Light magenta",
"\033[30mBlack\033[32mGreen\033[90mGray", "BlackGreenGray",
"\033[106mLight cyan \033[107mWhite ", "Light cyan White ",
"\033[31mHello\033[0m World", "Hello World",
"\033[38;5;82mHello \033[38;5;198mWorld", "Hello World",
"123[653456789012", "123[653456789012",
"Normal \033[5mBlink \033[25mNormal", "Normal Blink Normal",
"\033[106m\033[107m", "",
"", "",
" ", " ",
};
for (size_t i = 0; i < ARRAY_SIZE(buffs); i+=2) {
char *buffer_copy = internal_strdup(buffs[i]);
RemoveANSIEscapeSequencesFromString(buffer_copy);
EXPECT_STREQ(buffer_copy, buffs[i+1]);
InternalFree(buffer_copy);
}
}
TEST(SanitizerCommon, InternalScopedStringAppend) {
InternalScopedString str;
EXPECT_EQ(0U, str.length());
EXPECT_STREQ("", str.data());
str.Append("");
EXPECT_EQ(0U, str.length());
EXPECT_STREQ("", str.data());
str.Append("foo");
EXPECT_EQ(3U, str.length());
EXPECT_STREQ("foo", str.data());
str.Append("");
EXPECT_EQ(3U, str.length());
EXPECT_STREQ("foo", str.data());
str.Append("123\000456");
EXPECT_EQ(6U, str.length());
EXPECT_STREQ("foo123", str.data());
}
TEST(SanitizerCommon, InternalScopedStringAppendF) {
InternalScopedString str;
EXPECT_EQ(0U, str.length());
EXPECT_STREQ("", str.data());
str.AppendF("foo");
EXPECT_EQ(3U, str.length());
EXPECT_STREQ("foo", str.data());
int x = 1234;
str.AppendF("%d", x);
EXPECT_EQ(7U, str.length());
EXPECT_STREQ("foo1234", str.data());
str.AppendF("%d", x);
EXPECT_EQ(11U, str.length());
EXPECT_STREQ("foo12341234", str.data());
str.clear();
EXPECT_EQ(0U, str.length());
EXPECT_STREQ("", str.data());
}
TEST(SanitizerCommon, InternalScopedStringLarge) {
InternalScopedString str;
std::string expected;
for (int i = 0; i < 1000; ++i) {
std::string append(i, 'a' + i % 26);
expected += append;
str.AppendF("%s", append.c_str());
EXPECT_EQ(expected, str.data());
}
}
TEST(SanitizerCommon, InternalScopedStringLargeFormat) {
InternalScopedString str;
std::string expected;
for (int i = 0; i < 1000; ++i) {
std::string append(i, 'a' + i % 26);
expected += append;
str.AppendF("%s", append.c_str());
EXPECT_EQ(expected, str.data());
}
}
#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_IOS
TEST(SanitizerCommon, GetRandom) {
u8 buffer_1[32], buffer_2[32];
for (bool blocking : { false, true }) {
EXPECT_FALSE(GetRandom(nullptr, 32, blocking));
EXPECT_FALSE(GetRandom(buffer_1, 0, blocking));
EXPECT_FALSE(GetRandom(buffer_1, 512, blocking));
EXPECT_EQ(ARRAY_SIZE(buffer_1), ARRAY_SIZE(buffer_2));
for (uptr size = 4; size <= ARRAY_SIZE(buffer_1); size += 4) {
for (uptr i = 0; i < 100; i++) {
EXPECT_TRUE(GetRandom(buffer_1, size, blocking));
EXPECT_TRUE(GetRandom(buffer_2, size, blocking));
EXPECT_NE(internal_memcmp(buffer_1, buffer_2, size), 0);
}
}
}
}
#endif
TEST(SanitizerCommon, ReservedAddressRangeInit) {
uptr init_size = 0xffff;
ReservedAddressRange address_range;
uptr res = address_range.Init(init_size);
CHECK_NE(res, (void*)-1);
UnmapOrDie((void*)res, init_size);
// Should be able to map into the same space now.
ReservedAddressRange address_range2;
uptr res2 = address_range2.Init(init_size, nullptr, res);
CHECK_EQ(res, res2);
// TODO(flowerhack): Once this is switched to the "real" implementation
// (rather than passing through to MmapNoAccess*), enforce and test "no
// double initializations allowed"
}
TEST(SanitizerCommon, ReservedAddressRangeMap) {
constexpr uptr init_size = 0xffff;
ReservedAddressRange address_range;
uptr res = address_range.Init(init_size);
CHECK_NE(res, (void*) -1);
// Valid mappings should succeed.
CHECK_EQ(res, address_range.Map(res, init_size));
// Valid mappings should be readable.
unsigned char buffer[init_size];
memcpy(buffer, reinterpret_cast<void *>(res), init_size);
// TODO(flowerhack): Once this is switched to the "real" implementation, make
// sure you can only mmap into offsets in the Init range.
}
TEST(SanitizerCommon, ReservedAddressRangeUnmap) {
uptr PageSize = GetPageSizeCached();
uptr init_size = PageSize * 8;
ReservedAddressRange address_range;
uptr base_addr = address_range.Init(init_size);
CHECK_NE(base_addr, (void*)-1);
CHECK_EQ(base_addr, address_range.Map(base_addr, init_size));
// Unmapping the entire range should succeed.
address_range.Unmap(base_addr, init_size);
// Map a new range.
base_addr = address_range.Init(init_size);
CHECK_EQ(base_addr, address_range.Map(base_addr, init_size));
// Windows doesn't allow partial unmappings.
#if !SANITIZER_WINDOWS
// Unmapping at the beginning should succeed.
address_range.Unmap(base_addr, PageSize);
// Unmapping at the end should succeed.
uptr new_start = reinterpret_cast<uptr>(address_range.base()) +
address_range.size() - PageSize;
address_range.Unmap(new_start, PageSize);
#endif
// Unmapping in the middle of the ReservedAddressRange should fail.
EXPECT_DEATH(address_range.Unmap(base_addr + (PageSize * 2), PageSize), ".*");
}
TEST(SanitizerCommon, ReadBinaryNameCached) {
char buf[256];
EXPECT_NE((uptr)0, ReadBinaryNameCached(buf, sizeof(buf)));
}
} // namespace __sanitizer