//===-- tsan_trace_test.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_trace.h"
#include <pthread.h>
#include "gtest/gtest.h"
#include "tsan_rtl.h"
#if !defined(__x86_64__)
// These tests are currently crashing on ppc64:
// https://reviews.llvm.org/D110546#3025422
// due to the way we create thread contexts
// There must be some difference in thread initialization
// between normal execution and unit tests.
# define TRACE_TEST(SUITE, NAME) TEST(SUITE, DISABLED_##NAME)
#else
# define TRACE_TEST(SUITE, NAME) TEST(SUITE, NAME)
#endif
namespace __tsan {
// We need to run all trace tests in a new thread,
// so that the thread trace is empty initially.
template <uptr N>
struct ThreadArray {
ThreadArray() {
for (auto *&thr : threads) {
thr = static_cast<ThreadState *>(
MmapOrDie(sizeof(ThreadState), "ThreadState"));
Tid tid = ThreadCreate(cur_thread(), 0, 0, true);
Processor *proc = ProcCreate();
ProcWire(proc, thr);
ThreadStart(thr, tid, 0, ThreadType::Fiber);
}
}
~ThreadArray() {
for (uptr i = 0; i < N; i++) {
if (threads[i])
Finish(i);
}
}
void Finish(uptr i) {
auto *thr = threads[i];
threads[i] = nullptr;
Processor *proc = thr->proc();
ThreadFinish(thr);
ProcUnwire(proc, thr);
ProcDestroy(proc);
UnmapOrDie(thr, sizeof(ThreadState));
}
ThreadState *threads[N];
ThreadState *operator[](uptr i) { return threads[i]; }
ThreadState *operator->() { return threads[0]; }
operator ThreadState *() { return threads[0]; }
};
TRACE_TEST(Trace, RestoreAccess) {
// A basic test with some function entry/exit events,
// some mutex lock/unlock events and some other distracting
// memory events.
ThreadArray<1> thr;
TraceFunc(thr, 0x1000);
TraceFunc(thr, 0x1001);
TraceMutexLock(thr, EventType::kLock, 0x4000, 0x5000, 0x6000);
TraceMutexLock(thr, EventType::kLock, 0x4001, 0x5001, 0x6001);
TraceMutexUnlock(thr, 0x5000);
TraceFunc(thr);
CHECK(TryTraceMemoryAccess(thr, 0x2001, 0x3001, 8, kAccessRead));
TraceMutexLock(thr, EventType::kRLock, 0x4002, 0x5002, 0x6002);
TraceFunc(thr, 0x1002);
CHECK(TryTraceMemoryAccess(thr, 0x2000, 0x3000, 8, kAccessRead));
// This is the access we want to find.
// The previous one is equivalent, but RestoreStack must prefer
// the last of the matchig accesses.
CHECK(TryTraceMemoryAccess(thr, 0x2002, 0x3000, 8, kAccessRead));
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res = RestoreStack(EventType::kAccessExt, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x3000, 8, kAccessRead, &tid,
&stk, &mset, &tag);
CHECK(res);
CHECK_EQ(tid, thr->tid);
CHECK_EQ(stk.size, 3);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], 0x1002);
CHECK_EQ(stk.trace[2], 0x2002);
CHECK_EQ(mset.Size(), 2);
CHECK_EQ(mset.Get(0).addr, 0x5001);
CHECK_EQ(mset.Get(0).stack_id, 0x6001);
CHECK_EQ(mset.Get(0).write, true);
CHECK_EQ(mset.Get(1).addr, 0x5002);
CHECK_EQ(mset.Get(1).stack_id, 0x6002);
CHECK_EQ(mset.Get(1).write, false);
CHECK_EQ(tag, kExternalTagNone);
}
TRACE_TEST(Trace, MemoryAccessSize) {
// Test tracing and matching of accesses of different sizes.
struct Params {
uptr access_size, offset, size;
bool res;
};
Params tests[] = {
{1, 0, 1, true}, {4, 0, 2, true},
{4, 2, 2, true}, {8, 3, 1, true},
{2, 1, 1, true}, {1, 1, 1, false},
{8, 5, 4, false}, {4, static_cast<uptr>(-1l), 4, false},
};
for (auto params : tests) {
for (int type = 0; type < 3; type++) {
ThreadArray<1> thr;
Printf("access_size=%zu, offset=%zu, size=%zu, res=%d, type=%d\n",
params.access_size, params.offset, params.size, params.res, type);
TraceFunc(thr, 0x1000);
switch (type) {
case 0:
// This should emit compressed event.
CHECK(TryTraceMemoryAccess(thr, 0x2000, 0x3000, params.access_size,
kAccessRead));
break;
case 1:
// This should emit full event.
CHECK(TryTraceMemoryAccess(thr, 0x2000000, 0x3000, params.access_size,
kAccessRead));
break;
case 2:
TraceMemoryAccessRange(thr, 0x2000000, 0x3000, params.access_size,
kAccessRead);
break;
}
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res =
RestoreStack(EventType::kAccessExt, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x3000 + params.offset,
params.size, kAccessRead, &tid, &stk, &mset, &tag);
CHECK_EQ(res, params.res);
if (params.res) {
CHECK_EQ(stk.size, 2);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], type ? 0x2000000 : 0x2000);
}
}
}
}
TRACE_TEST(Trace, RestoreMutexLock) {
// Check of restoration of a mutex lock event.
ThreadArray<1> thr;
TraceFunc(thr, 0x1000);
TraceMutexLock(thr, EventType::kLock, 0x4000, 0x5000, 0x6000);
TraceMutexLock(thr, EventType::kRLock, 0x4001, 0x5001, 0x6001);
TraceMutexLock(thr, EventType::kRLock, 0x4002, 0x5001, 0x6002);
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res = RestoreStack(EventType::kLock, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x5001, 0, 0, &tid, &stk,
&mset, &tag);
CHECK(res);
CHECK_EQ(stk.size, 2);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], 0x4002);
CHECK_EQ(mset.Size(), 2);
CHECK_EQ(mset.Get(0).addr, 0x5000);
CHECK_EQ(mset.Get(0).stack_id, 0x6000);
CHECK_EQ(mset.Get(0).write, true);
CHECK_EQ(mset.Get(1).addr, 0x5001);
CHECK_EQ(mset.Get(1).stack_id, 0x6001);
CHECK_EQ(mset.Get(1).write, false);
}
TRACE_TEST(Trace, MultiPart) {
// Check replay of a trace with multiple parts.
ThreadArray<1> thr;
FuncEntry(thr, 0x1000);
FuncEntry(thr, 0x2000);
MutexPreLock(thr, 0x4000, 0x5000, 0);
MutexPostLock(thr, 0x4000, 0x5000, 0);
MutexPreLock(thr, 0x4000, 0x5000, 0);
MutexPostLock(thr, 0x4000, 0x5000, 0);
const uptr kEvents = 3 * sizeof(TracePart) / sizeof(Event);
for (uptr i = 0; i < kEvents; i++) {
FuncEntry(thr, 0x3000);
MutexPreLock(thr, 0x4002, 0x5002, 0);
MutexPostLock(thr, 0x4002, 0x5002, 0);
MutexUnlock(thr, 0x4003, 0x5002, 0);
FuncExit(thr);
}
FuncEntry(thr, 0x4000);
TraceMutexLock(thr, EventType::kRLock, 0x4001, 0x5001, 0x6001);
CHECK(TryTraceMemoryAccess(thr, 0x2002, 0x3000, 8, kAccessRead));
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res = RestoreStack(EventType::kAccessExt, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x3000, 8, kAccessRead, &tid,
&stk, &mset, &tag);
CHECK(res);
CHECK_EQ(tid, thr->tid);
CHECK_EQ(stk.size, 4);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], 0x2000);
CHECK_EQ(stk.trace[2], 0x4000);
CHECK_EQ(stk.trace[3], 0x2002);
CHECK_EQ(mset.Size(), 2);
CHECK_EQ(mset.Get(0).addr, 0x5000);
CHECK_EQ(mset.Get(0).write, true);
CHECK_EQ(mset.Get(0).count, 2);
CHECK_EQ(mset.Get(1).addr, 0x5001);
CHECK_EQ(mset.Get(1).write, false);
CHECK_EQ(mset.Get(1).count, 1);
}
TRACE_TEST(Trace, DeepSwitch) {
ThreadArray<1> thr;
for (int i = 0; i < 2000; i++) {
FuncEntry(thr, 0x1000);
const uptr kEvents = sizeof(TracePart) / sizeof(Event);
for (uptr i = 0; i < kEvents; i++) {
TraceMutexLock(thr, EventType::kLock, 0x4000, 0x5000, 0x6000);
TraceMutexUnlock(thr, 0x5000);
}
}
}
void CheckTraceState(uptr count, uptr finished, uptr excess, uptr recycle) {
Lock l(&ctx->slot_mtx);
Printf("CheckTraceState(%zu/%zu, %zu/%zu, %zu/%zu, %zu/%zu)\n",
ctx->trace_part_total_allocated, count,
ctx->trace_part_recycle_finished, finished,
ctx->trace_part_finished_excess, excess,
ctx->trace_part_recycle.Size(), recycle);
CHECK_EQ(ctx->trace_part_total_allocated, count);
CHECK_EQ(ctx->trace_part_recycle_finished, finished);
CHECK_EQ(ctx->trace_part_finished_excess, excess);
CHECK_EQ(ctx->trace_part_recycle.Size(), recycle);
}
TRACE_TEST(TraceAlloc, SingleThread) {
TraceResetForTesting();
auto check_thread = [&](ThreadState *thr, uptr size, uptr count,
uptr finished, uptr excess, uptr recycle) {
CHECK_EQ(thr->tctx->trace.parts.Size(), size);
CheckTraceState(count, finished, excess, recycle);
};
ThreadArray<2> threads;
check_thread(threads[0], 0, 0, 0, 0, 0);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 1, 1, 0, 0, 0);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 2, 2, 0, 0, 0);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 3, 3, 0, 0, 1);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 3, 3, 0, 0, 1);
threads.Finish(0);
CheckTraceState(3, 3, 0, 3);
threads.Finish(1);
CheckTraceState(3, 3, 0, 3);
}
TRACE_TEST(TraceAlloc, FinishedThreadReuse) {
TraceResetForTesting();
constexpr uptr Hi = Trace::kFinishedThreadHi;
constexpr uptr kThreads = 4 * Hi;
ThreadArray<kThreads> threads;
for (uptr i = 0; i < kThreads; i++) {
Printf("thread %zu\n", i);
TraceSwitchPartImpl(threads[i]);
if (i <= Hi)
CheckTraceState(i + 1, i, 0, i);
else if (i <= 2 * Hi)
CheckTraceState(Hi + 1, Hi, i - Hi, Hi);
else
CheckTraceState(Hi + 1, Hi, Hi, Hi);
threads.Finish(i);
if (i < Hi)
CheckTraceState(i + 1, i + 1, 0, i + 1);
else if (i < 2 * Hi)
CheckTraceState(Hi + 1, Hi + 1, i - Hi + 1, Hi + 1);
else
CheckTraceState(Hi + 1, Hi + 1, Hi + 1, Hi + 1);
}
}
TRACE_TEST(TraceAlloc, FinishedThreadReuse2) {
TraceResetForTesting();
// constexpr uptr Lo = Trace::kFinishedThreadLo;
// constexpr uptr Hi = Trace::kFinishedThreadHi;
constexpr uptr Min = Trace::kMinParts;
constexpr uptr kThreads = 10;
constexpr uptr kParts = 2 * Min;
ThreadArray<kThreads> threads;
for (uptr i = 0; i < kThreads; i++) {
Printf("thread %zu\n", i);
for (uptr j = 0; j < kParts; j++) TraceSwitchPartImpl(threads[i]);
if (i == 0)
CheckTraceState(Min, 0, 0, 1);
else
CheckTraceState(2 * Min, 0, Min, Min + 1);
threads.Finish(i);
if (i == 0)
CheckTraceState(Min, Min, 0, Min);
else
CheckTraceState(2 * Min, 2 * Min, Min, 2 * Min);
}
}
} // namespace __tsan