//===---- Reduction.cpp - OpenMP device reduction implementation - C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of reduction with KMPC interface.
//
//===----------------------------------------------------------------------===//
#include "Debug.h"
#include "DeviceTypes.h"
#include "DeviceUtils.h"
#include "Interface.h"
#include "Mapping.h"
#include "State.h"
#include "Synchronization.h"
using namespace ompx;
namespace {
#pragma omp begin declare target device_type(nohost)
void gpu_regular_warp_reduce(void *reduce_data, ShuffleReductFnTy shflFct) {
for (uint32_t mask = mapping::getWarpSize() / 2; mask > 0; mask /= 2) {
shflFct(reduce_data, /*LaneId - not used= */ 0,
/*Offset = */ mask, /*AlgoVersion=*/0);
}
}
void gpu_irregular_warp_reduce(void *reduce_data, ShuffleReductFnTy shflFct,
uint32_t size, uint32_t tid) {
uint32_t curr_size;
uint32_t mask;
curr_size = size;
mask = curr_size / 2;
while (mask > 0) {
shflFct(reduce_data, /*LaneId = */ tid, /*Offset=*/mask, /*AlgoVersion=*/1);
curr_size = (curr_size + 1) / 2;
mask = curr_size / 2;
}
}
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 700
static uint32_t gpu_irregular_simd_reduce(void *reduce_data,
ShuffleReductFnTy shflFct) {
uint32_t size, remote_id, physical_lane_id;
physical_lane_id = mapping::getThreadIdInBlock() % mapping::getWarpSize();
__kmpc_impl_lanemask_t lanemask_lt = mapping::lanemaskLT();
__kmpc_impl_lanemask_t Liveness = mapping::activemask();
uint32_t logical_lane_id = utils::popc(Liveness & lanemask_lt) * 2;
__kmpc_impl_lanemask_t lanemask_gt = mapping::lanemaskGT();
do {
Liveness = mapping::activemask();
remote_id = utils::ffs(Liveness & lanemask_gt);
size = utils::popc(Liveness);
logical_lane_id /= 2;
shflFct(reduce_data, /*LaneId =*/logical_lane_id,
/*Offset=*/remote_id - 1 - physical_lane_id, /*AlgoVersion=*/2);
} while (logical_lane_id % 2 == 0 && size > 1);
return (logical_lane_id == 0);
}
#endif
static int32_t nvptx_parallel_reduce_nowait(void *reduce_data,
ShuffleReductFnTy shflFct,
InterWarpCopyFnTy cpyFct) {
uint32_t BlockThreadId = mapping::getThreadIdInBlock();
if (mapping::isMainThreadInGenericMode(/*IsSPMD=*/false))
BlockThreadId = 0;
uint32_t NumThreads = omp_get_num_threads();
if (NumThreads == 1)
return 1;
/*
* This reduce function handles reduction within a team. It handles
* parallel regions in both L1 and L2 parallelism levels. It also
* supports Generic, SPMD, and NoOMP modes.
*
* 1. Reduce within a warp.
* 2. Warp master copies value to warp 0 via shared memory.
* 3. Warp 0 reduces to a single value.
* 4. The reduced value is available in the thread that returns 1.
*/
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
uint32_t WarpsNeeded =
(NumThreads + mapping::getWarpSize() - 1) / mapping::getWarpSize();
uint32_t WarpId = mapping::getWarpIdInBlock();
// Volta execution model:
// For the Generic execution mode a parallel region either has 1 thread and
// beyond that, always a multiple of 32. For the SPMD execution mode we may
// have any number of threads.
if ((NumThreads % mapping::getWarpSize() == 0) || (WarpId < WarpsNeeded - 1))
gpu_regular_warp_reduce(reduce_data, shflFct);
else if (NumThreads > 1) // Only SPMD execution mode comes thru this case.
gpu_irregular_warp_reduce(reduce_data, shflFct,
/*LaneCount=*/NumThreads % mapping::getWarpSize(),
/*LaneId=*/mapping::getThreadIdInBlock() %
mapping::getWarpSize());
// When we have more than [mapping::getWarpSize()] number of threads
// a block reduction is performed here.
//
// Only L1 parallel region can enter this if condition.
if (NumThreads > mapping::getWarpSize()) {
// Gather all the reduced values from each warp
// to the first warp.
cpyFct(reduce_data, WarpsNeeded);
if (WarpId == 0)
gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
BlockThreadId);
}
return BlockThreadId == 0;
#else
__kmpc_impl_lanemask_t Liveness = mapping::activemask();
if (Liveness == lanes::All) // Full warp
gpu_regular_warp_reduce(reduce_data, shflFct);
else if (!(Liveness & (Liveness + 1))) // Partial warp but contiguous lanes
gpu_irregular_warp_reduce(reduce_data, shflFct,
/*LaneCount=*/utils::popc(Liveness),
/*LaneId=*/mapping::getThreadIdInBlock() %
mapping::getWarpSize());
else { // Dispersed lanes. Only threads in L2
// parallel region may enter here; return
// early.
return gpu_irregular_simd_reduce(reduce_data, shflFct);
}
// When we have more than [mapping::getWarpSize()] number of threads
// a block reduction is performed here.
//
// Only L1 parallel region can enter this if condition.
if (NumThreads > mapping::getWarpSize()) {
uint32_t WarpsNeeded =
(NumThreads + mapping::getWarpSize() - 1) / mapping::getWarpSize();
// Gather all the reduced values from each warp
// to the first warp.
cpyFct(reduce_data, WarpsNeeded);
uint32_t WarpId = BlockThreadId / mapping::getWarpSize();
if (WarpId == 0)
gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
BlockThreadId);
return BlockThreadId == 0;
}
// Get the OMP thread Id. This is different from BlockThreadId in the case of
// an L2 parallel region.
return BlockThreadId == 0;
#endif // __CUDA_ARCH__ >= 700
}
uint32_t roundToWarpsize(uint32_t s) {
if (s < mapping::getWarpSize())
return 1;
return (s & ~(unsigned)(mapping::getWarpSize() - 1));
}
uint32_t kmpcMin(uint32_t x, uint32_t y) { return x < y ? x : y; }
} // namespace
extern "C" {
int32_t __kmpc_nvptx_parallel_reduce_nowait_v2(IdentTy *Loc,
uint64_t reduce_data_size,
void *reduce_data,
ShuffleReductFnTy shflFct,
InterWarpCopyFnTy cpyFct) {
return nvptx_parallel_reduce_nowait(reduce_data, shflFct, cpyFct);
}
int32_t __kmpc_nvptx_teams_reduce_nowait_v2(
IdentTy *Loc, void *GlobalBuffer, uint32_t num_of_records,
uint64_t reduce_data_size, void *reduce_data, ShuffleReductFnTy shflFct,
InterWarpCopyFnTy cpyFct, ListGlobalFnTy lgcpyFct, ListGlobalFnTy lgredFct,
ListGlobalFnTy glcpyFct, ListGlobalFnTy glredFct) {
// Terminate all threads in non-SPMD mode except for the master thread.
uint32_t ThreadId = mapping::getThreadIdInBlock();
if (mapping::isGenericMode()) {
if (!mapping::isMainThreadInGenericMode())
return 0;
ThreadId = 0;
}
uint32_t &IterCnt = state::getKernelLaunchEnvironment().ReductionIterCnt;
uint32_t &Cnt = state::getKernelLaunchEnvironment().ReductionCnt;
// In non-generic mode all workers participate in the teams reduction.
// In generic mode only the team master participates in the teams
// reduction because the workers are waiting for parallel work.
uint32_t NumThreads = omp_get_num_threads();
uint32_t TeamId = omp_get_team_num();
uint32_t NumTeams = omp_get_num_teams();
static unsigned SHARED(Bound);
static unsigned SHARED(ChunkTeamCount);
// Block progress for teams greater than the current upper
// limit. We always only allow a number of teams less or equal
// to the number of slots in the buffer.
bool IsMaster = (ThreadId == 0);
while (IsMaster) {
Bound = atomic::load(&IterCnt, atomic::aquire);
if (TeamId < Bound + num_of_records)
break;
}
if (IsMaster) {
int ModBockId = TeamId % num_of_records;
if (TeamId < num_of_records) {
lgcpyFct(GlobalBuffer, ModBockId, reduce_data);
} else
lgredFct(GlobalBuffer, ModBockId, reduce_data);
// Propagate the memory writes above to the world.
fence::kernel(atomic::release);
// Increment team counter.
// This counter is incremented by all teams in the current
// num_of_records chunk.
ChunkTeamCount = atomic::inc(&Cnt, num_of_records - 1u, atomic::seq_cst,
atomic::MemScopeTy::device);
}
// Synchronize in SPMD mode as in generic mode all but 1 threads are in the
// state machine.
if (mapping::isSPMDMode())
synchronize::threadsAligned(atomic::acq_rel);
// reduce_data is global or shared so before being reduced within the
// warp we need to bring it in local memory:
// local_reduce_data = reduce_data[i]
//
// Example for 3 reduction variables a, b, c (of potentially different
// types):
//
// buffer layout (struct of arrays):
// a, a, ..., a, b, b, ... b, c, c, ... c
// |__________|
// num_of_records
//
// local_data_reduce layout (struct):
// a, b, c
//
// Each thread will have a local struct containing the values to be
// reduced:
// 1. do reduction within each warp.
// 2. do reduction across warps.
// 3. write the final result to the main reduction variable
// by returning 1 in the thread holding the reduction result.
// Check if this is the very last team.
unsigned NumRecs = kmpcMin(NumTeams, uint32_t(num_of_records));
if (ChunkTeamCount == NumTeams - Bound - 1) {
// Ensure we see the global memory writes by other teams
fence::kernel(atomic::aquire);
//
// Last team processing.
//
if (ThreadId >= NumRecs)
return 0;
NumThreads = roundToWarpsize(kmpcMin(NumThreads, NumRecs));
if (ThreadId >= NumThreads)
return 0;
// Load from buffer and reduce.
glcpyFct(GlobalBuffer, ThreadId, reduce_data);
for (uint32_t i = NumThreads + ThreadId; i < NumRecs; i += NumThreads)
glredFct(GlobalBuffer, i, reduce_data);
// Reduce across warps to the warp master.
if (NumThreads > 1) {
gpu_regular_warp_reduce(reduce_data, shflFct);
// When we have more than [mapping::getWarpSize()] number of threads
// a block reduction is performed here.
uint32_t ActiveThreads = kmpcMin(NumRecs, NumThreads);
if (ActiveThreads > mapping::getWarpSize()) {
uint32_t WarpsNeeded = (ActiveThreads + mapping::getWarpSize() - 1) /
mapping::getWarpSize();
// Gather all the reduced values from each warp
// to the first warp.
cpyFct(reduce_data, WarpsNeeded);
uint32_t WarpId = ThreadId / mapping::getWarpSize();
if (WarpId == 0)
gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
ThreadId);
}
}
if (IsMaster) {
Cnt = 0;
IterCnt = 0;
return 1;
}
return 0;
}
if (IsMaster && ChunkTeamCount == num_of_records - 1) {
// Allow SIZE number of teams to proceed writing their
// intermediate results to the global buffer.
atomic::add(&IterCnt, uint32_t(num_of_records), atomic::seq_cst);
}
return 0;
}
}
void *__kmpc_reduction_get_fixed_buffer() {
return state::getKernelLaunchEnvironment().ReductionBuffer;
}
#pragma omp end declare target