llvm/mlir/lib/Dialect/Linalg/Utils/Utils.cpp

//===- Utils.cpp - Utilities to support the Linalg dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Linalg dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Utils/Utils.h"

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>

#define DEBUG_TYPE

usingnamespacemlir;
usingnamespacepresburger;
usingnamespacemlir::affine;
usingnamespacemlir::linalg;
usingnamespacemlir::scf;

namespace {

// Helper visitor to determine whether an AffineExpr is tiled.
// This is achieved by traversing every AffineDimExpr with position `pos` and
// checking whether the corresponding `tileSizes[pos]` is non-zero.
// This also enforces only positive coefficients occur in multiplications.
//
// Example:
//   `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
//
struct TileCheck : public AffineExprVisitor<TileCheck> {};

} // namespace

static bool isTiled(AffineExpr expr, ArrayRef<OpFoldResult> tileSizes) {}

// Checks whether the `map  varies with respect to a non-zero `tileSize`.
static bool isTiled(AffineMap map, ArrayRef<OpFoldResult> tileSizes) {}

std::optional<RegionMatcher::BinaryOpKind>
RegionMatcher::matchAsScalarBinaryOp(GenericOp op) {}

/// Explicit instantiation of loop nest generator for different loop types.
template struct mlir::linalg::GenerateLoopNest<scf::ForOp>;
template struct mlir::linalg::GenerateLoopNest<scf::ParallelOp>;
template struct mlir::linalg::GenerateLoopNest<AffineForOp>;

/// Given a list of subview ranges, extract individual values for lower, upper
/// bounds and steps and put them into the corresponding vectors.
static void unpackRanges(OpBuilder &builder, Location loc,
                         ArrayRef<Range> ranges, SmallVectorImpl<Value> &lbs,
                         SmallVectorImpl<Value> &ubs,
                         SmallVectorImpl<Value> &steps) {}

//===----------------------------------------------------------------------===//
// General utilities
//===----------------------------------------------------------------------===//

namespace mlir {
namespace linalg {

bool allIndexingsAreProjectedPermutation(LinalgOp op) {}

bool hasOnlyScalarElementwiseOp(Region &r) {}

bool isElementwise(LinalgOp op) {}

bool isParallelIterator(utils::IteratorType iteratorType) {}

bool isReductionIterator(utils::IteratorType iteratorType) {}

Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type,
                            Value source, Value pad, bool nofold) {}

GenericOp makeTransposeOp(OpBuilder &b, Location loc, Value inputTensor,
                          Value outputTensor,
                          ArrayRef<int64_t> transposeVector) {}

GenericOp makeMemRefCopyOp(OpBuilder &b, Location loc, Value from, Value to) {}

/// Specialization to build an scf "for" nest.
template <>
void GenerateLoopNest<scf::ForOp>::doit(
    OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
    ArrayRef<utils::IteratorType> iteratorTypes,
    function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
                                  ValueRange)>
        bodyBuilderFn,
    ArrayRef<linalg::ProcInfo> procInfo) {}

/// Specialization to build affine "for" nest.
template <>
void GenerateLoopNest<AffineForOp>::doit(
    OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
    ArrayRef<utils::IteratorType> iteratorTypes,
    function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
                                  ValueRange)>
        bodyBuilderFn,
    ArrayRef<linalg::ProcInfo> /*procInfo*/) {}

/// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`.
void updateBoundsForCyclicDistribution(OpBuilder &b, Location loc, Value procId,
                                       Value nprocs, Value &lb, Value &ub,
                                       Value &step) {}

/// Generates a loop nest consisting of scf.parallel and scf.for, depending
/// on the `iteratorTypes.` Consecutive parallel loops create a single
/// scf.parallel operation; each sequential loop creates a new scf.for
/// operation. The body of the innermost loop is populated by
/// `bodyBuilderFn` that accepts a range of induction variables for all
/// loops. `ivStorage` is used to store the partial list of induction
/// variables.
// TODO: this function can be made iterative instead. However, it
// will have at most as many recursive calls as nested loops, which rarely
// exceeds 10.
static void generateParallelLoopNest(
    OpBuilder &b, Location loc, ValueRange lbs, ValueRange ubs,
    ValueRange steps, ArrayRef<utils::IteratorType> iteratorTypes,
    ArrayRef<linalg::ProcInfo> procInfo,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn,
    SmallVectorImpl<Value> &ivStorage) {}

/// Specialization for generating a mix of parallel and sequential scf loops.
template <>
void GenerateLoopNest<scf::ParallelOp>::doit(
    OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
    ArrayRef<utils::IteratorType> iteratorTypes,
    function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
                                  ValueRange)>
        bodyBuilderFn,
    ArrayRef<linalg::ProcInfo> procInfo) {}

static Operation *materializeTiledShape(OpBuilder &builder, Location loc,
                                        Value valueToTile,
                                        const SliceParameters &sliceParams) {}

Operation *makeTiledShape(OpBuilder &builder, Location loc, Value valueToTile,
                          ArrayRef<OpFoldResult> tileSizes, AffineMap map,
                          ArrayRef<OpFoldResult> lbs,
                          ArrayRef<OpFoldResult> ubs,
                          ArrayRef<OpFoldResult> subShapeSizes,
                          bool omitPartialTileCheck) {}

SliceParameters
computeSliceParameters(OpBuilder &builder, Location loc, Value valueToTile,
                       ArrayRef<OpFoldResult> tileSizes, AffineMap map,
                       ArrayRef<OpFoldResult> lbs, ArrayRef<OpFoldResult> ubs,
                       ArrayRef<OpFoldResult> subShapeSizes,
                       bool omitPartialTileCheck) {}

SmallVector<OpFoldResult> computeTileOffsets(OpBuilder &b, Location loc,
                                             ArrayRef<OpFoldResult> ivs,
                                             ArrayRef<OpFoldResult> tileSizes) {}

SmallVector<OpFoldResult> computeTileSizes(OpBuilder &b, Location loc,
                                           ArrayRef<OpFoldResult> tileSizes,
                                           ArrayRef<OpFoldResult> sizeBounds) {}

SmallVector<Type> getTensorOutputTypes(LinalgOp op, ValueRange operands) {}

SmallVector<Value> insertSlicesBack(OpBuilder &builder, Location loc,
                                    LinalgOp op, ValueRange operands,
                                    ValueRange results) {}

SmallVector<std::optional<SliceParameters>>
computeAllSliceParameters(OpBuilder &builder, Location loc, LinalgOp linalgOp,
                          ValueRange valuesToTile, ArrayRef<OpFoldResult> ivs,
                          ArrayRef<OpFoldResult> tileSizes,
                          ArrayRef<OpFoldResult> sizeBounds,
                          bool omitPartialTileCheck) {}

SmallVector<Value> makeTiledShapes(OpBuilder &builder, Location loc,
                                   LinalgOp linalgOp, ValueRange valuesToTile,
                                   ArrayRef<OpFoldResult> ivs,
                                   ArrayRef<OpFoldResult> tileSizes,
                                   ArrayRef<OpFoldResult> sizeBounds,
                                   bool omitPartialTileCheck) {}

void offsetIndices(OpBuilder &b, LinalgOp linalgOp,
                   ArrayRef<OpFoldResult> offsets) {}

void offsetIndices(RewriterBase &b, LinalgOp linalgOp,
                   ArrayRef<OpFoldResult> offsets) {}

/// Get the reassociation maps to fold the result of a extract_slice (or source
/// of a insert_slice) operation with given offsets, and sizes to its
/// rank-reduced version. This is only done for the cases where the size is 1
/// and offset is 0. Strictly speaking the offset 0 is not required in general,
/// but non-zero offsets are not handled by SPIR-V backend at this point (and
/// potentially cannot be handled).
std::optional<SmallVector<ReassociationIndices>>
getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) {}

} // namespace linalg
} // namespace mlir