//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file was originally auto-generated from a GPU register header file and
// all the instruction definitions were originally commented out. Instructions
// that are not yet supported remain commented out.
//===----------------------------------------------------------------------===//
class GCNPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl;
class UniformSextInreg<ValueType VT> : PatFrag<
(ops node:$src),
(sext_inreg $src, VT),
[{ return !N->isDivergent(); }]>;
class DivergentSextInreg<ValueType VT> : PatFrag<
(ops node:$src),
(sext_inreg $src, VT),
[{ return N->isDivergent(); }]>;
include "SOPInstructions.td"
include "VOPInstructions.td"
include "SMInstructions.td"
include "FLATInstructions.td"
include "BUFInstructions.td"
include "EXPInstructions.td"
include "DSDIRInstructions.td"
include "VINTERPInstructions.td"
//===----------------------------------------------------------------------===//
// VINTRP Instructions
//===----------------------------------------------------------------------===//
// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
def VINTRPDst : VINTRPDstOperand <VGPR_32>;
let Uses = [MODE, M0, EXEC] in {
// FIXME: Specify SchedRW for VINTRP instructions.
multiclass V_INTERP_P1_F32_m : VINTRP_m <
0x00000000,
(outs VINTRPDst:$vdst),
(ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
"v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
[(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
(i32 timm:$attrchan), (i32 timm:$attr), M0))]
>;
let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
// Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
let OtherPredicates = [isNotGFX90APlus] in {
let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
defm V_INTERP_P2_F32 : VINTRP_m <
0x00000001,
(outs VINTRPDst:$vdst),
(ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr,
InterpAttrChan:$attrchan),
"v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
[(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
(i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
defm V_INTERP_MOV_F32 : VINTRP_m <
0x00000002,
(outs VINTRPDst:$vdst),
(ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
"v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
[(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
(i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
} // End OtherPredicates = [isNotGFX90APlus]
} // End Uses = [MODE, M0, EXEC]
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
// Insert a branch to an endpgm block to use as a fallback trap.
def ENDPGM_TRAP : SPseudoInstSI<
(outs), (ins),
[(AMDGPUendpgm_trap)],
"ENDPGM_TRAP"> {
let hasSideEffects = 1;
let usesCustomInserter = 1;
}
def SIMULATED_TRAP : SPseudoInstSI<(outs), (ins), [(AMDGPUsimulated_trap)],
"SIMULATED_TRAP"> {
let hasSideEffects = 1;
let usesCustomInserter = 1;
}
def ATOMIC_FENCE : SPseudoInstSI<
(outs), (ins i32imm:$ordering, i32imm:$scope),
[(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
"ATOMIC_FENCE $ordering, $scope"> {
let hasSideEffects = 1;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
// For use in patterns
def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
(ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
let isPseudo = 1;
let isCodeGenOnly = 1;
let usesCustomInserter = 1;
}
// 64-bit vector move instruction. This is mainly used by the
// SIFoldOperands pass to enable folding of inline immediates.
def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
(ins VSrc_b64:$src0)> {
let isReMaterializable = 1;
let isAsCheapAsAMove = 1;
let isMoveImm = 1;
let SchedRW = [Write64Bit];
let Size = 4;
let UseNamedOperandTable = 1;
}
// 64-bit vector move with dpp. Expanded post-RA.
def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
}
// 64-bit scalar move immediate instruction. This is used to avoid subregs
// initialization and allow rematerialization.
def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
(ins i64imm:$src0)> {
let isReMaterializable = 1;
let isAsCheapAsAMove = 1;
let isMoveImm = 1;
let SchedRW = [WriteSALU, Write64Bit];
let Size = 4;
let Uses = [];
let UseNamedOperandTable = 1;
}
// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
// WQM pass processes it.
def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
// turned into a copy by WQM pass, but does not seed WQM requirements.
def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
// that the @earlyclobber is respected. The @earlyclobber is to make sure that
// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
// accidentally clobber inactive channels of $vdst.
let Constraints = "@earlyclobber $vdst" in {
def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
}
} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
def WWM_COPY : SPseudoInstSI <
(outs unknown:$dst), (ins unknown:$src)> {
let hasSideEffects = 0;
let isAsCheapAsAMove = 1;
let isConvergent = 1;
}
def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
let Uses = [EXEC];
let Defs = [EXEC, SCC];
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
}
def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
}
def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
let Uses = [EXEC];
let Defs = [EXEC, SCC];
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
}
def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
}
let usesCustomInserter = 1 in {
let WaveSizePredicate = isWave32 in
def S_INVERSE_BALLOT_U32 : SPseudoInstSI<
(outs SReg_32:$sdst), (ins SSrc_b32:$mask),
[(set i1:$sdst, (int_amdgcn_inverse_ballot i32:$mask))]
>;
let WaveSizePredicate = isWave64 in
def S_INVERSE_BALLOT_U64 : SPseudoInstSI<
(outs SReg_64:$sdst), (ins SSrc_b64:$mask),
[(set i1:$sdst, (int_amdgcn_inverse_ballot i64:$mask))]
>;
} // End usesCustomInserter = 1
// Pseudo instructions used for @llvm.fptrunc.round. The final codegen is done
// in the ModeRegister pass.
let Uses = [MODE, EXEC] in {
def FPTRUNC_ROUND_F16_F32_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
(ins VGPR_32:$src0, i32imm:$round)>;
def FPTRUNC_ROUND_F32_F64_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
(ins VReg_64:$src0, i32imm:$round)>;
} // End Uses = [MODE, EXEC]
def : GCNPat <(f16 (fptrunc_round f32:$src0, (i32 SupportedRoundMode:$round))),
(FPTRUNC_ROUND_F16_F32_PSEUDO $src0, (as_hw_round_mode $round))>;
def : GCNPat <(f32 (fptrunc_round f64:$src0, (i32 SupportedRoundMode:$round))),
(FPTRUNC_ROUND_F32_F64_PSEUDO $src0, (as_hw_round_mode $round))>;
// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
// restoring it after we're done.
let isConvergent = 1 in
def V_SET_INACTIVE_B32 : VOP3_Pseudo<"v_set_inactive_b32", VOP2e_I32_I32_I32_I1>;
foreach vt = Reg32Types.types in {
def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)),
(V_SET_INACTIVE_B32 0, VSrc_b32:$src, 0, VSrc_b32:$inactive, (IMPLICIT_DEF))>;
}
def : GCNPat<(i32 (int_amdgcn_set_inactive_chain_arg i32:$src, i32:$inactive)),
(V_SET_INACTIVE_B32 0, VGPR_32:$src, 0, VGPR_32:$inactive, (IMPLICIT_DEF))>;
let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
(ins VSrc_b32: $src, VSrc_b32:$strategy),
[(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> {
}
def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
(ins VSrc_b32: $src, VSrc_b32:$strategy),
[(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> {
}
}
let usesCustomInserter = 1, Defs = [VCC] in {
def V_ADD_U64_PSEUDO : VPseudoInstSI <
(outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
[(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
>;
def V_SUB_U64_PSEUDO : VPseudoInstSI <
(outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
[(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
>;
} // End usesCustomInserter = 1, Defs = [VCC]
let usesCustomInserter = 1, Defs = [SCC] in {
def S_ADD_U64_PSEUDO : SPseudoInstSI <
(outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
[(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
>;
def S_SUB_U64_PSEUDO : SPseudoInstSI <
(outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
[(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
>;
def S_ADD_CO_PSEUDO : SPseudoInstSI <
(outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
>;
def S_SUB_CO_PSEUDO : SPseudoInstSI <
(outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
>;
def S_UADDO_PSEUDO : SPseudoInstSI <
(outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
>;
def S_USUBO_PSEUDO : SPseudoInstSI <
(outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
>;
let OtherPredicates = [HasShaderCyclesHiLoRegisters] in
def GET_SHADERCYCLESHILO : SPseudoInstSI<
(outs SReg_64:$sdst), (ins),
[(set SReg_64:$sdst, (i64 (readcyclecounter)))]
>;
} // End usesCustomInserter = 1, Defs = [SCC]
let usesCustomInserter = 1 in {
def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
[(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
} // End let usesCustomInserter = 1, SALU = 1
// Wrap an instruction by duplicating it, except for setting isTerminator.
class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
base_inst.OutOperandList,
base_inst.InOperandList> {
let Uses = base_inst.Uses;
let Defs = base_inst.Defs;
let isTerminator = 1;
let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
let hasSideEffects = base_inst.hasSideEffects;
let UseNamedOperandTable = base_inst.UseNamedOperandTable;
let CodeSize = base_inst.CodeSize;
let SchedRW = base_inst.SchedRW;
}
let WaveSizePredicate = isWave64 in {
def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>;
}
let WaveSizePredicate = isWave32 in {
def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>;
}
def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
[(int_amdgcn_wave_barrier)]> {
let SchedRW = [];
let hasNoSchedulingInfo = 1;
let hasSideEffects = 1;
let mayLoad = 0;
let mayStore = 0;
let isConvergent = 1;
let FixedSize = 1;
let Size = 0;
let isMeta = 1;
}
def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
[(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
let SchedRW = [];
let hasNoSchedulingInfo = 1;
let hasSideEffects = 1;
let mayLoad = 0;
let mayStore = 0;
let isConvergent = 1;
let FixedSize = 1;
let Size = 0;
let isMeta = 1;
}
def SCHED_GROUP_BARRIER : SPseudoInstSI<
(outs),
(ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
[(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
let SchedRW = [];
let hasNoSchedulingInfo = 1;
let hasSideEffects = 1;
let mayLoad = 0;
let mayStore = 0;
let isConvergent = 1;
let FixedSize = 1;
let Size = 0;
let isMeta = 1;
}
def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
[(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
let SchedRW = [];
let hasNoSchedulingInfo = 1;
let hasSideEffects = 1;
let mayLoad = 0;
let mayStore = 0;
let isConvergent = 1;
let FixedSize = 1;
let Size = 0;
let isMeta = 1;
}
// SI pseudo instructions. These are used by the CFG structurizer pass
// and should be lowered to ISA instructions prior to codegen.
// As we have enhanced control flow intrinsics to work under unstructured CFG,
// duplicating such intrinsics can be actually treated as legal. On the contrary,
// by making them non-duplicable, we are observing better code generation result.
// So we choose to mark them non-duplicable in hope of getting better code
// generation as well as simplied CFG during Machine IR optimization stage.
let isTerminator = 1, isNotDuplicable = 1 in {
def SI_IF: CFPseudoInstSI <
(outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
[(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
let Constraints = "";
let Size = 12;
let hasSideEffects = 1;
let IsNeverUniform = 1;
}
def SI_ELSE : CFPseudoInstSI <
(outs SReg_1:$dst),
(ins SReg_1:$src, brtarget:$target), [], 1, 1> {
let Size = 12;
let hasSideEffects = 1;
let IsNeverUniform = 1;
}
def SI_WATERFALL_LOOP : CFPseudoInstSI <
(outs),
(ins brtarget:$target), [], 1> {
let Size = 8;
let isBranch = 1;
let Defs = [];
}
def SI_LOOP : CFPseudoInstSI <
(outs), (ins SReg_1:$saved, brtarget:$target),
[(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
let Size = 8;
let isBranch = 1;
let hasSideEffects = 1;
let IsNeverUniform = 1;
}
} // End isTerminator = 1
def SI_END_CF : CFPseudoInstSI <
(outs), (ins SReg_1:$saved), [], 1, 1> {
let Size = 4;
let isAsCheapAsAMove = 1;
let isReMaterializable = 1;
let hasSideEffects = 1;
let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
let mayLoad = 1; // FIXME: Should not need memory flags
let mayStore = 1;
}
def SI_IF_BREAK : CFPseudoInstSI <
(outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
let Size = 4;
let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
let isAsCheapAsAMove = 1;
let isReMaterializable = 1;
}
// Branch to the early termination block of the shader if SCC is 0.
// This uses SCC from a previous SALU operation, i.e. the update of
// a mask of live lanes after a kill/demote operation.
// Only valid in pixel shaders.
def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
let Uses = [EXEC,SCC];
}
let Uses = [EXEC] in {
multiclass PseudoInstKill <dag ins> {
// Even though this pseudo can usually be expanded without an SCC def, we
// conservatively assume that it has an SCC def, both because it is sometimes
// required in degenerate cases (when V_CMPX cannot be used due to constant
// bus limitations) and because it allows us to avoid having to track SCC
// liveness across basic blocks.
let Defs = [EXEC,SCC] in
def _PSEUDO : PseudoInstSI <(outs), ins> {
let isConvergent = 1;
let usesCustomInserter = 1;
}
let Defs = [EXEC,SCC] in
def _TERMINATOR : SPseudoInstSI <(outs), ins> {
let isTerminator = 1;
}
}
defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
let Defs = [VCC] in
defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
let Defs = [EXEC,VCC] in
def SI_ILLEGAL_COPY : SPseudoInstSI <
(outs unknown:$dst), (ins unknown:$src),
[], " ; illegal copy $src to $dst">;
} // End Uses = [EXEC], Defs = [EXEC,VCC]
// Branch on undef scc. Used to avoid intermediate copy from
// IMPLICIT_DEF to SCC.
def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> {
let isTerminator = 1;
let usesCustomInserter = 1;
let isBranch = 1;
}
def SI_PS_LIVE : PseudoInstSI <
(outs SReg_1:$dst), (ins),
[(set i1:$dst, (int_amdgcn_ps_live))]> {
let SALU = 1;
}
let Uses = [EXEC] in {
def SI_LIVE_MASK : PseudoInstSI <
(outs SReg_1:$dst), (ins),
[(set i1:$dst, (int_amdgcn_live_mask))]> {
let SALU = 1;
}
let Defs = [EXEC,SCC] in {
// Demote: Turn a pixel shader thread into a helper lane.
def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
} // End Defs = [EXEC,SCC]
} // End Uses = [EXEC]
def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
[(int_amdgcn_unreachable)],
"; divergent unreachable"> {
let Size = 0;
let hasNoSchedulingInfo = 1;
let FixedSize = 1;
let isMeta = 1;
let maybeAtomic = 0;
}
// Used as an isel pseudo to directly emit initialization with an
// s_mov_b32 rather than a copy of another initialized
// register. MachineCSE skips copies, and we don't want to have to
// fold operands before it runs.
def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
let Defs = [M0];
let usesCustomInserter = 1;
let isAsCheapAsAMove = 1;
let isReMaterializable = 1;
}
def SI_INIT_EXEC : SPseudoInstSI <
(outs), (ins i64imm:$src),
[(int_amdgcn_init_exec (i64 timm:$src))]> {
let Defs = [EXEC];
let isAsCheapAsAMove = 1;
}
def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
(outs), (ins SSrc_b32:$input, i32imm:$shift),
[(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
let Defs = [EXEC];
}
// Sets EXEC to all lanes and returns the previous EXEC.
def SI_INIT_WHOLE_WAVE : SPseudoInstSI <
(outs SReg_1:$dst), (ins),
[(set i1:$dst, (int_amdgcn_init_whole_wave))]> {
let Defs = [EXEC];
let Uses = [EXEC];
let isConvergent = 1;
}
// Return for returning shaders to a shader variant epilog.
def SI_RETURN_TO_EPILOG : SPseudoInstSI <
(outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
let hasNoSchedulingInfo = 1;
let DisableWQM = 1;
let FixedSize = 1;
// TODO: Should this be true?
let isMeta = 0;
}
// Return for returning function calls.
def SI_RETURN : SPseudoInstSI <
(outs), (ins), [(AMDGPUret_glue)],
"; return"> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
let SchedRW = [WriteBranch];
}
// Return for returning function calls without output register.
//
// This version is only needed so we can fill in the output register
// in the custom inserter.
def SI_CALL_ISEL : SPseudoInstSI <
(outs), (ins SSrc_b64:$src0, unknown:$callee),
[(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
let Size = 4;
let isCall = 1;
let SchedRW = [WriteBranch];
let usesCustomInserter = 1;
// TODO: Should really base this on the call target
let isConvergent = 1;
}
def : GCNPat<
(AMDGPUcall i64:$src0, (i64 0)),
(SI_CALL_ISEL $src0, (i64 0))
>;
// Wrapper around s_swappc_b64 with extra $callee parameter to track
// the called function after regalloc.
def SI_CALL : SPseudoInstSI <
(outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
let Size = 4;
let FixedSize = 1;
let isCall = 1;
let UseNamedOperandTable = 1;
let SchedRW = [WriteBranch];
// TODO: Should really base this on the call target
let isConvergent = 1;
}
class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs),
(ins rc:$src0, unknown:$callee, i32imm:$fpdiff),
[(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
let Size = 4;
let FixedSize = 1;
let isCall = 1;
let isTerminator = 1;
let isReturn = 1;
let isBarrier = 1;
let UseNamedOperandTable = 1;
let SchedRW = [WriteBranch];
// TODO: Should really base this on the call target
let isConvergent = 1;
}
// Tail call handling pseudo
def SI_TCRETURN : SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>;
def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>;
// Handle selecting indirect tail calls
def : GCNPat<
(AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
(SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
>;
// Handle selecting indirect tail calls for AMDGPU_gfx
def : GCNPat<
(AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)),
(SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
>;
// Pseudo for the llvm.amdgcn.cs.chain intrinsic.
// This is essentially a tail call, but it also takes a mask to put in EXEC
// right before jumping to the callee.
class SI_CS_CHAIN_TC<
ValueType execvt, Predicate wavesizepred,
RegisterOperand execrc = getSOPSrcForVT<execvt>.ret>
: SPseudoInstSI <(outs),
(ins CCR_SGPR_64:$src0, unknown:$callee, i32imm:$fpdiff, execrc:$exec)> {
let FixedSize = 0;
let isCall = 1;
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
let UseNamedOperandTable = 1;
let SchedRW = [WriteBranch];
let isConvergent = 1;
let WaveSizePredicate = wavesizepred;
}
def SI_CS_CHAIN_TC_W32 : SI_CS_CHAIN_TC<i32, isWave32>;
def SI_CS_CHAIN_TC_W64 : SI_CS_CHAIN_TC<i64, isWave64>;
// Handle selecting direct & indirect calls via SI_CS_CHAIN_TC_W32/64
multiclass si_cs_chain_tc_pattern<
dag callee, ValueType execvt, RegisterOperand execrc, Instruction tc> {
def : GCNPat<
(AMDGPUtc_return_chain i64:$src0, callee, (i32 timm:$fpdiff), execvt:$exec),
(tc CCR_SGPR_64:$src0, callee, i32imm:$fpdiff, execrc:$exec)
>;
}
multiclass si_cs_chain_tc_patterns<
ValueType execvt,
RegisterOperand execrc = getSOPSrcForVT<execvt>.ret,
Instruction tc = !if(!eq(execvt, i32), SI_CS_CHAIN_TC_W32, SI_CS_CHAIN_TC_W64)
> {
defm direct: si_cs_chain_tc_pattern<(tglobaladdr:$callee), execvt, execrc, tc>;
defm indirect: si_cs_chain_tc_pattern<(i64 0), execvt, execrc, tc>;
}
defm : si_cs_chain_tc_patterns<i32>;
defm : si_cs_chain_tc_patterns<i64>;
def ADJCALLSTACKUP : SPseudoInstSI<
(outs), (ins i32imm:$amt0, i32imm:$amt1),
[(callseq_start timm:$amt0, timm:$amt1)],
"; adjcallstackup $amt0 $amt1"> {
let Size = 8; // Worst case. (s_add_u32 + constant)
let FixedSize = 1;
let hasSideEffects = 1;
let usesCustomInserter = 1;
let SchedRW = [WriteSALU];
let Defs = [SCC];
}
def ADJCALLSTACKDOWN : SPseudoInstSI<
(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)],
"; adjcallstackdown $amt1"> {
let Size = 8; // Worst case. (s_add_u32 + constant)
let hasSideEffects = 1;
let usesCustomInserter = 1;
let SchedRW = [WriteSALU];
let Defs = [SCC];
}
let Defs = [M0, EXEC, SCC],
UseNamedOperandTable = 1 in {
// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
// addressing implementation.
class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
(outs VGPR_32:$vdst),
(ins rc:$src, VS_32:$idx, i32imm:$offset)> {
let usesCustomInserter = 1;
}
class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
(outs rc:$vdst),
(ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
let Constraints = "$src = $vdst";
let usesCustomInserter = 1;
}
def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
} // End Uses = [EXEC], Defs = [M0, EXEC]
// This is a pseudo variant of the v_movreld_b32 instruction in which the
// vector operand appears only twice, once as def and once as use. Using this
// pseudo avoids problems with the Two Address instructions pass.
class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
RegisterOperand val_ty> : PseudoInstSI <
(outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
let Constraints = "$vsrc = $vdst";
let Uses = [M0];
}
class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
let VALU = 1;
let VOP1 = 1;
let Uses = [M0, EXEC];
}
class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
RegisterOperand val_ty> :
INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
let SALU = 1;
let SOP1 = 1;
let Uses = [M0];
}
class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
// pseudos we avoid spills or copies being inserted within indirect sequences
// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
// this mode switching.
class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
(outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
let Constraints = "$vsrc = $vdst";
let VALU = 1;
let Uses = [M0, EXEC];
let Defs = [M0];
}
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
(outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
let VALU = 1;
let Uses = [M0, EXEC];
let Defs = [M0];
}
def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
let UseNamedOperandTable = 1, Spill = 1, SALU = 1, Uses = [EXEC] in {
def _SAVE : PseudoInstSI <
(outs),
(ins sgpr_class:$data, i32imm:$addr)> {
let mayStore = 1;
let mayLoad = 0;
}
def _RESTORE : PseudoInstSI <
(outs sgpr_class:$data),
(ins i32imm:$addr)> {
let mayStore = 0;
let mayLoad = 1;
}
} // End UseNamedOperandTable = 1
}
// You cannot use M0 as the output of v_readlane_b32 instructions or
// use it in the sdata operand of SMEM instructions. We still need to
// be able to spill the physical register m0, so allow it for
// SI_SPILL_32_* instructions.
defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>;
defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>;
defm SI_SPILL_S96 : SI_SPILL_SGPR <SReg_96>;
defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
let Spill = 1, VALU = 1, isConvergent = 1 in {
def SI_SPILL_S32_TO_VGPR : PseudoInstSI <(outs VGPR_32:$vdst),
(ins SReg_32:$src0, i32imm:$src1, VGPR_32:$vdst_in)> {
let Size = 4;
let FixedSize = 1;
let IsNeverUniform = 1;
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
let hasExtraDefRegAllocReq = 1;
let Constraints = "$vdst = $vdst_in";
}
def SI_RESTORE_S32_FROM_VGPR : PseudoInstSI <(outs SReg_32:$sdst),
(ins VGPR_32:$src0, i32imm:$src1)> {
let Size = 4;
let FixedSize = 1;
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
let hasExtraSrcRegAllocReq = 1;
}
} // End Spill = 1, VALU = 1, isConvergent = 1
// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
// needs to be used and an extra instruction to move between VGPR and AGPR.
// UsesTmp adds to the total size of an expanded spill in this case.
multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
let UseNamedOperandTable = 1, Spill = 1, VALU = 1,
SchedRW = [WriteVMEM] in {
def _SAVE : VPseudoInstSI <
(outs),
(ins vgpr_class:$vdata, i32imm:$vaddr,
SReg_32:$soffset, i32imm:$offset)> {
let mayStore = 1;
let mayLoad = 0;
// (2 * 4) + (8 * num_subregs) bytes maximum
int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
// Size field is unsigned char and cannot fit more.
let Size = !if(!le(MaxSize, 256), MaxSize, 252);
}
def _RESTORE : VPseudoInstSI <
(outs vgpr_class:$vdata),
(ins i32imm:$vaddr,
SReg_32:$soffset, i32imm:$offset)> {
let mayStore = 0;
let mayLoad = 1;
// (2 * 4) + (8 * num_subregs) bytes maximum
int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
// Size field is unsigned char and cannot fit more.
let Size = !if(!le(MaxSize, 256), MaxSize, 252);
}
} // End UseNamedOperandTable = 1, Spill = 1, VALU = 1, SchedRW = [WriteVMEM]
}
defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>;
defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>;
defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>;
defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
defm SI_SPILL_A32 : SI_SPILL_VGPR <AGPR_32, 1>;
defm SI_SPILL_A64 : SI_SPILL_VGPR <AReg_64, 1>;
defm SI_SPILL_A96 : SI_SPILL_VGPR <AReg_96, 1>;
defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
defm SI_SPILL_AV32 : SI_SPILL_VGPR <AV_32, 1>;
defm SI_SPILL_AV64 : SI_SPILL_VGPR <AV_64, 1>;
defm SI_SPILL_AV96 : SI_SPILL_VGPR <AV_96, 1>;
defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
let isConvergent = 1 in {
defm SI_SPILL_WWM_V32 : SI_SPILL_VGPR <VGPR_32>;
defm SI_SPILL_WWM_AV32 : SI_SPILL_VGPR <AV_32, 1>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
(outs SReg_64:$dst),
(ins si_ga:$ptr_lo, si_ga:$ptr_hi),
[(set SReg_64:$dst,
(i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
let Defs = [SCC];
}
def : GCNPat <
(SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
(SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
>;
def : GCNPat<
(AMDGPUtrap timm:$trapid),
(S_TRAP $trapid)
>;
def : GCNPat<
(AMDGPUelse i1:$src, bb:$target),
(SI_ELSE $src, $target)
>;
def : Pat <
(int_amdgcn_kill i1:$src),
(SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
>;
def : Pat <
(int_amdgcn_kill (i1 (not i1:$src))),
(SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
>;
def : Pat <
(int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
(SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
>;
def : Pat <
(int_amdgcn_wqm_demote i1:$src),
(SI_DEMOTE_I1 SCSrc_i1:$src, 0)
>;
def : Pat <
(int_amdgcn_wqm_demote (i1 (not i1:$src))),
(SI_DEMOTE_I1 SCSrc_i1:$src, -1)
>;
// TODO: we could add more variants for other types of conditionals
def : Pat <
(i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
(COPY $src) // Return the SGPRs representing i1 src
>;
def : Pat <
(i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
(COPY $src) // Return the SGPRs representing i1 src
>;
//===----------------------------------------------------------------------===//
// VOP1 Patterns
//===----------------------------------------------------------------------===//
multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
// f16_to_fp patterns
def : GCNPat <
(f32 (any_f16_to_fp i32:$src0)),
(cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
>;
def : GCNPat <
(f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
(cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
>;
def : GCNPat <
(f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
(cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
>;
def : GCNPat <
(f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
(cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
>;
def : GCNPat <
(f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
(cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
>;
def : GCNPat <
(f64 (any_fpextend f16:$src)),
(V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
>;
// fp_to_fp16 patterns
def : GCNPat <
(i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
(cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
>;
def : GCNPat <
(i32 (fp_to_sint f16:$src)),
(V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
>;
def : GCNPat <
(i32 (fp_to_uint f16:$src)),
(V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
>;
def : GCNPat <
(f16 (sint_to_fp i32:$src)),
(cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
>;
def : GCNPat <
(f16 (uint_to_fp i32:$src)),
(cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
>;
// This is only used on targets without half support
// TODO: Introduce strict variant of AMDGPUfp_to_f16 and share custom lowering
def : GCNPat <
(i32 (strict_fp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
(cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
>;
}
let True16Predicate = NotHasTrue16BitInsts in
defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
let True16Predicate = UseFakeTrue16Insts in
defm : f16_fp_Pats<V_CVT_F16_F32_fake16_e64, V_CVT_F32_F16_fake16_e64>;
//===----------------------------------------------------------------------===//
// VOP2 Patterns
//===----------------------------------------------------------------------===//
// NoMods pattern used for mac. If there are any source modifiers then it's
// better to select mad instead of mac.
class FMADPat <ValueType vt, Instruction inst>
: GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
(vt (VOP3NoMods vt:$src1)),
(vt (VOP3NoMods vt:$src2)))),
(inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
// Prefer mac form when there are no modifiers.
let AddedComplexity = 9 in {
let OtherPredicates = [HasMadMacF32Insts] in
def : FMADPat <f32, V_MAC_F32_e64>;
// Don't allow source modifiers. If there are any source modifiers then it's
// better to select mad instead of mac.
let SubtargetPredicate = isGFX6GFX7GFX10,
OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
def : GCNPat <
(f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
(VOP3NoMods f32:$src1)),
(VOP3NoMods f32:$src2))),
(V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
// Don't allow source modifiers. If there are any source modifiers then it's
// better to select fma instead of fmac.
let SubtargetPredicate = HasFmaLegacy32 in
def : GCNPat <
(f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
(VOP3NoMods f32:$src1),
(VOP3NoMods f32:$src2))),
(V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
let SubtargetPredicate = Has16BitInsts in
def : FMADPat <f16, V_MAC_F16_e64>;
} // AddedComplexity = 9
let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
def : GCNPat <
(f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
(VOP3Mods f32:$src1, i32:$src1_mod)),
(VOP3Mods f32:$src2, i32:$src2_mod))),
(V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
$src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
class VOPSelectModsPat <ValueType vt> : GCNPat <
(vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods),
(VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))),
(V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
>;
class VOPSelectPat <ValueType vt> : GCNPat <
(vt (select i1:$src0, vt:$src1, vt:$src2)),
(V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
>;
def : VOPSelectModsPat <i32>;
def : VOPSelectModsPat <f32>;
def : VOPSelectPat <f16>;
def : VOPSelectPat <i16>;
let AddedComplexity = 1 in {
def : GCNPat <
(i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
(V_BCNT_U32_B32_e64 $popcnt, $val)
>;
}
def : GCNPat <
(i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
(V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
>;
def : GCNPat <
(i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
(V_BCNT_U32_B32_e64 $popcnt, $val)
>;
def : GCNPat <
(i64 (DivergentUnaryFrag<ctpop> i64:$src)),
(REG_SEQUENCE VReg_64,
(V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
(i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
(i32 (V_MOV_B32_e32 (i32 0))), sub1)
>;
/********** ============================================ **********/
/********** Extraction, Insertion, Building and Casting **********/
/********** ============================================ **********/
// Special case for 2 element vectors. REQ_SEQUENCE produces better code
// than an INSERT_SUBREG.
multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
def : GCNPat <
(insertelt vec_type:$vec, elem_type:$elem, 0),
(REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
>;
def : GCNPat <
(insertelt vec_type:$vec, elem_type:$elem, 1),
(REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
>;
}
foreach Index = 0-1 in {
def Extract_Element_v2i32_#Index : Extract_Element <
i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v2f32_#Index : Extract_Element <
f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
foreach Index = 0-2 in {
def Extract_Element_v3i32_#Index : Extract_Element <
i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v3i32_#Index : Insert_Element <
i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v3f32_#Index : Extract_Element <
f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v3f32_#Index : Insert_Element <
f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-3 in {
def Extract_Element_v4i32_#Index : Extract_Element <
i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v4i32_#Index : Insert_Element <
i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v4f32_#Index : Extract_Element <
f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v4f32_#Index : Insert_Element <
f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-4 in {
def Extract_Element_v5i32_#Index : Extract_Element <
i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v5i32_#Index : Insert_Element <
i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v5f32_#Index : Extract_Element <
f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v5f32_#Index : Insert_Element <
f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-5 in {
def Extract_Element_v6i32_#Index : Extract_Element <
i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v6i32_#Index : Insert_Element <
i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v6f32_#Index : Extract_Element <
f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v6f32_#Index : Insert_Element <
f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-6 in {
def Extract_Element_v7i32_#Index : Extract_Element <
i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v7i32_#Index : Insert_Element <
i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v7f32_#Index : Extract_Element <
f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v7f32_#Index : Insert_Element <
f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-7 in {
def Extract_Element_v8i32_#Index : Extract_Element <
i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v8i32_#Index : Insert_Element <
i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v8f32_#Index : Extract_Element <
f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v8f32_#Index : Insert_Element <
f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-8 in {
def Extract_Element_v9i32_#Index : Extract_Element <
i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v9i32_#Index : Insert_Element <
i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v9f32_#Index : Extract_Element <
f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v9f32_#Index : Insert_Element <
f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-9 in {
def Extract_Element_v10i32_#Index : Extract_Element <
i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v10i32_#Index : Insert_Element <
i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v10f32_#Index : Extract_Element <
f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v10f32_#Index : Insert_Element <
f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-10 in {
def Extract_Element_v11i32_#Index : Extract_Element <
i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v11i32_#Index : Insert_Element <
i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v11f32_#Index : Extract_Element <
f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v11f32_#Index : Insert_Element <
f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-11 in {
def Extract_Element_v12i32_#Index : Extract_Element <
i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v12i32_#Index : Insert_Element <
i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v12f32_#Index : Extract_Element <
f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v12f32_#Index : Insert_Element <
f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-15 in {
def Extract_Element_v16i32_#Index : Extract_Element <
i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v16i32_#Index : Insert_Element <
i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v16f32_#Index : Extract_Element <
f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v16f32_#Index : Insert_Element <
f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-31 in {
def Extract_Element_v32i32_#Index : Extract_Element <
i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v32i32_#Index : Insert_Element <
i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v32f32_#Index : Extract_Element <
f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v32f32_#Index : Insert_Element <
f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
// FIXME: Why do only some of these type combinations for SReg and
// VReg?
// 16-bit bitcast
def : BitConvert <i16, f16, VGPR_32>;
def : BitConvert <f16, i16, VGPR_32>;
def : BitConvert <f16, bf16, VGPR_32>;
def : BitConvert <bf16, f16, VGPR_32>;
def : BitConvert <i16, f16, SReg_32>;
def : BitConvert <f16, i16, SReg_32>;
def : BitConvert <f16, bf16, SReg_32>;
def : BitConvert <bf16, f16, SReg_32>;
def : BitConvert <i16, bf16, VGPR_32>;
def : BitConvert <bf16, i16, VGPR_32>;
def : BitConvert <i16, bf16, SReg_32>;
def : BitConvert <bf16, i16, SReg_32>;
// 32-bit bitcast
def : BitConvert <i32, f32, VGPR_32>;
def : BitConvert <f32, i32, VGPR_32>;
def : BitConvert <i32, f32, SReg_32>;
def : BitConvert <f32, i32, SReg_32>;
def : BitConvert <v2i16, i32, SReg_32>;
def : BitConvert <i32, v2i16, SReg_32>;
def : BitConvert <v2f16, i32, SReg_32>;
def : BitConvert <i32, v2f16, SReg_32>;
def : BitConvert <v2i16, v2f16, SReg_32>;
def : BitConvert <v2f16, v2i16, SReg_32>;
def : BitConvert <v2f16, f32, SReg_32>;
def : BitConvert <f32, v2f16, SReg_32>;
def : BitConvert <v2i16, f32, SReg_32>;
def : BitConvert <f32, v2i16, SReg_32>;
def : BitConvert <v2bf16, i32, SReg_32>;
def : BitConvert <i32, v2bf16, SReg_32>;
def : BitConvert <v2bf16, i32, VGPR_32>;
def : BitConvert <i32, v2bf16, VGPR_32>;
def : BitConvert <v2bf16, v2i16, SReg_32>;
def : BitConvert <v2i16, v2bf16, SReg_32>;
def : BitConvert <v2bf16, v2i16, VGPR_32>;
def : BitConvert <v2i16, v2bf16, VGPR_32>;
def : BitConvert <v2bf16, v2f16, SReg_32>;
def : BitConvert <v2f16, v2bf16, SReg_32>;
def : BitConvert <v2bf16, v2f16, VGPR_32>;
def : BitConvert <v2f16, v2bf16, VGPR_32>;
def : BitConvert <f32, v2bf16, VGPR_32>;
def : BitConvert <v2bf16, f32, VGPR_32>;
def : BitConvert <f32, v2bf16, SReg_32>;
def : BitConvert <v2bf16, f32, SReg_32>;
// 64-bit bitcast
def : BitConvert <i64, f64, VReg_64>;
def : BitConvert <f64, i64, VReg_64>;
def : BitConvert <v2i32, v2f32, VReg_64>;
def : BitConvert <v2f32, v2i32, VReg_64>;
def : BitConvert <i64, v2i32, VReg_64>;
def : BitConvert <v2i32, i64, VReg_64>;
def : BitConvert <i64, v2f32, VReg_64>;
def : BitConvert <v2f32, i64, VReg_64>;
def : BitConvert <f64, v2f32, VReg_64>;
def : BitConvert <v2f32, f64, VReg_64>;
def : BitConvert <f64, v2i32, VReg_64>;
def : BitConvert <v2i32, f64, VReg_64>;
def : BitConvert <v4i16, v4f16, VReg_64>;
def : BitConvert <v4f16, v4i16, VReg_64>;
def : BitConvert <v4bf16, v2i32, VReg_64>;
def : BitConvert <v2i32, v4bf16, VReg_64>;
def : BitConvert <v4bf16, i64, VReg_64>;
def : BitConvert <i64, v4bf16, VReg_64>;
def : BitConvert <v4bf16, v4i16, VReg_64>;
def : BitConvert <v4i16, v4bf16, VReg_64>;
def : BitConvert <v4bf16, v4f16, VReg_64>;
def : BitConvert <v4f16, v4bf16, VReg_64>;
def : BitConvert <v4bf16, v2f32, VReg_64>;
def : BitConvert <v2f32, v4bf16, VReg_64>;
def : BitConvert <v4bf16, f64, VReg_64>;
def : BitConvert <f64, v4bf16, VReg_64>;
// FIXME: Make SGPR
def : BitConvert <v2i32, v4f16, VReg_64>;
def : BitConvert <v4f16, v2i32, VReg_64>;
def : BitConvert <v2i32, v4f16, VReg_64>;
def : BitConvert <v2i32, v4i16, VReg_64>;
def : BitConvert <v4i16, v2i32, VReg_64>;
def : BitConvert <v2f32, v4f16, VReg_64>;
def : BitConvert <v4f16, v2f32, VReg_64>;
def : BitConvert <v2f32, v4i16, VReg_64>;
def : BitConvert <v4i16, v2f32, VReg_64>;
def : BitConvert <v4i16, f64, VReg_64>;
def : BitConvert <v4f16, f64, VReg_64>;
def : BitConvert <f64, v4i16, VReg_64>;
def : BitConvert <f64, v4f16, VReg_64>;
def : BitConvert <v4i16, i64, VReg_64>;
def : BitConvert <v4f16, i64, VReg_64>;
def : BitConvert <i64, v4i16, VReg_64>;
def : BitConvert <i64, v4f16, VReg_64>;
def : BitConvert <v4i32, v4f32, VReg_128>;
def : BitConvert <v4f32, v4i32, VReg_128>;
// 96-bit bitcast
def : BitConvert <v3i32, v3f32, SGPR_96>;
def : BitConvert <v3f32, v3i32, SGPR_96>;
// 128-bit bitcast
def : BitConvert <v2i64, v4i32, SReg_128>;
def : BitConvert <v4i32, v2i64, SReg_128>;
def : BitConvert <v2f64, v4f32, VReg_128>;
def : BitConvert <v2f64, v4i32, VReg_128>;
def : BitConvert <v4f32, v2f64, VReg_128>;
def : BitConvert <v4i32, v2f64, VReg_128>;
def : BitConvert <v2i64, v2f64, VReg_128>;
def : BitConvert <v2f64, v2i64, VReg_128>;
def : BitConvert <v4f32, v2i64, VReg_128>;
def : BitConvert <v2i64, v4f32, VReg_128>;
def : BitConvert <v8i16, v4i32, SReg_128>;
def : BitConvert <v4i32, v8i16, SReg_128>;
def : BitConvert <v8f16, v4f32, VReg_128>;
def : BitConvert <v8f16, v4i32, VReg_128>;
def : BitConvert <v4f32, v8f16, VReg_128>;
def : BitConvert <v4i32, v8f16, VReg_128>;
def : BitConvert <v8i16, v8f16, VReg_128>;
def : BitConvert <v8f16, v8i16, VReg_128>;
def : BitConvert <v4f32, v8i16, VReg_128>;
def : BitConvert <v8i16, v4f32, VReg_128>;
def : BitConvert <v8i16, v8f16, SReg_128>;
def : BitConvert <v8i16, v2i64, SReg_128>;
def : BitConvert <v8i16, v2f64, SReg_128>;
def : BitConvert <v8f16, v2i64, SReg_128>;
def : BitConvert <v8f16, v2f64, SReg_128>;
def : BitConvert <v8f16, v8i16, SReg_128>;
def : BitConvert <v2i64, v8i16, SReg_128>;
def : BitConvert <v2f64, v8i16, SReg_128>;
def : BitConvert <v2i64, v8f16, SReg_128>;
def : BitConvert <v2f64, v8f16, SReg_128>;
def : BitConvert <v4i32, v8bf16, SReg_128>;
def : BitConvert <v8bf16, v4i32, SReg_128>;
def : BitConvert <v4i32, v8bf16, VReg_128>;
def : BitConvert <v8bf16, v4i32, VReg_128>;
def : BitConvert <v4f32, v8bf16, SReg_128>;
def : BitConvert <v8bf16, v4f32, SReg_128>;
def : BitConvert <v4f32, v8bf16, VReg_128>;
def : BitConvert <v8bf16, v4f32, VReg_128>;
def : BitConvert <v8i16, v8bf16, SReg_128>;
def : BitConvert <v8bf16, v8i16, SReg_128>;
def : BitConvert <v8i16, v8bf16, VReg_128>;
def : BitConvert <v8bf16, v8i16, VReg_128>;
def : BitConvert <v8f16, v8bf16, SReg_128>;
def : BitConvert <v8bf16, v8f16, SReg_128>;
def : BitConvert <v8f16, v8bf16, VReg_128>;
def : BitConvert <v8bf16, v8f16, VReg_128>;
def : BitConvert <v2f64, v8bf16, SReg_128>;
def : BitConvert <v8bf16, v2f64, SReg_128>;
def : BitConvert <v2f64, v8bf16, VReg_128>;
def : BitConvert <v8bf16, v2f64, VReg_128>;
def : BitConvert <v2i64, v8bf16, SReg_128>;
def : BitConvert <v8bf16, v2i64, SReg_128>;
def : BitConvert <v2i64, v8bf16, VReg_128>;
def : BitConvert <v8bf16, v2i64, VReg_128>;
// 160-bit bitcast
def : BitConvert <v5i32, v5f32, SReg_160>;
def : BitConvert <v5f32, v5i32, SReg_160>;
def : BitConvert <v5i32, v5f32, VReg_160>;
def : BitConvert <v5f32, v5i32, VReg_160>;
// 192-bit bitcast
def : BitConvert <v6i32, v6f32, SReg_192>;
def : BitConvert <v6f32, v6i32, SReg_192>;
def : BitConvert <v6i32, v6f32, VReg_192>;
def : BitConvert <v6f32, v6i32, VReg_192>;
def : BitConvert <v3i64, v3f64, VReg_192>;
def : BitConvert <v3f64, v3i64, VReg_192>;
def : BitConvert <v3i64, v6i32, VReg_192>;
def : BitConvert <v3i64, v6f32, VReg_192>;
def : BitConvert <v3f64, v6i32, VReg_192>;
def : BitConvert <v3f64, v6f32, VReg_192>;
def : BitConvert <v6i32, v3i64, VReg_192>;
def : BitConvert <v6f32, v3i64, VReg_192>;
def : BitConvert <v6i32, v3f64, VReg_192>;
def : BitConvert <v6f32, v3f64, VReg_192>;
// 224-bit bitcast
def : BitConvert <v7i32, v7f32, SReg_224>;
def : BitConvert <v7f32, v7i32, SReg_224>;
def : BitConvert <v7i32, v7f32, VReg_224>;
def : BitConvert <v7f32, v7i32, VReg_224>;
// 256-bit bitcast
def : BitConvert <v8i32, v8f32, SReg_256>;
def : BitConvert <v8f32, v8i32, SReg_256>;
def : BitConvert <v8i32, v8f32, VReg_256>;
def : BitConvert <v8f32, v8i32, VReg_256>;
def : BitConvert <v4i64, v4f64, VReg_256>;
def : BitConvert <v4f64, v4i64, VReg_256>;
def : BitConvert <v4i64, v8i32, VReg_256>;
def : BitConvert <v4i64, v8f32, VReg_256>;
def : BitConvert <v4f64, v8i32, VReg_256>;
def : BitConvert <v4f64, v8f32, VReg_256>;
def : BitConvert <v8i32, v4i64, VReg_256>;
def : BitConvert <v8f32, v4i64, VReg_256>;
def : BitConvert <v8i32, v4f64, VReg_256>;
def : BitConvert <v8f32, v4f64, VReg_256>;
def : BitConvert <v16i16, v16f16, SReg_256>;
def : BitConvert <v16f16, v16i16, SReg_256>;
def : BitConvert <v16i16, v16f16, VReg_256>;
def : BitConvert <v16f16, v16i16, VReg_256>;
def : BitConvert <v16f16, v8i32, VReg_256>;
def : BitConvert <v16i16, v8i32, VReg_256>;
def : BitConvert <v16f16, v8f32, VReg_256>;
def : BitConvert <v16i16, v8f32, VReg_256>;
def : BitConvert <v8i32, v16f16, VReg_256>;
def : BitConvert <v8i32, v16i16, VReg_256>;
def : BitConvert <v8f32, v16f16, VReg_256>;
def : BitConvert <v8f32, v16i16, VReg_256>;
def : BitConvert <v16f16, v4i64, VReg_256>;
def : BitConvert <v16i16, v4i64, VReg_256>;
def : BitConvert <v16f16, v4f64, VReg_256>;
def : BitConvert <v16i16, v4f64, VReg_256>;
def : BitConvert <v4i64, v16f16, VReg_256>;
def : BitConvert <v4i64, v16i16, VReg_256>;
def : BitConvert <v4f64, v16f16, VReg_256>;
def : BitConvert <v4f64, v16i16, VReg_256>;
def : BitConvert <v8i32, v16bf16, VReg_256>;
def : BitConvert <v16bf16, v8i32, VReg_256>;
def : BitConvert <v8f32, v16bf16, VReg_256>;
def : BitConvert <v16bf16, v8f32, VReg_256>;
def : BitConvert <v4i64, v16bf16, VReg_256>;
def : BitConvert <v16bf16, v4i64, VReg_256>;
def : BitConvert <v4f64, v16bf16, VReg_256>;
def : BitConvert <v16bf16, v4f64, VReg_256>;
def : BitConvert <v16i16, v16bf16, SReg_256>;
def : BitConvert <v16bf16, v16i16, SReg_256>;
def : BitConvert <v16i16, v16bf16, VReg_256>;
def : BitConvert <v16bf16, v16i16, VReg_256>;
def : BitConvert <v16f16, v16bf16, SReg_256>;
def : BitConvert <v16bf16, v16f16, SReg_256>;
def : BitConvert <v16f16, v16bf16, VReg_256>;
def : BitConvert <v16bf16, v16f16, VReg_256>;
// 288-bit bitcast
def : BitConvert <v9i32, v9f32, SReg_288>;
def : BitConvert <v9f32, v9i32, SReg_288>;
def : BitConvert <v9i32, v9f32, VReg_288>;
def : BitConvert <v9f32, v9i32, VReg_288>;
// 320-bit bitcast
def : BitConvert <v10i32, v10f32, SReg_320>;
def : BitConvert <v10f32, v10i32, SReg_320>;
def : BitConvert <v10i32, v10f32, VReg_320>;
def : BitConvert <v10f32, v10i32, VReg_320>;
// 320-bit bitcast
def : BitConvert <v11i32, v11f32, SReg_352>;
def : BitConvert <v11f32, v11i32, SReg_352>;
def : BitConvert <v11i32, v11f32, VReg_352>;
def : BitConvert <v11f32, v11i32, VReg_352>;
// 384-bit bitcast
def : BitConvert <v12i32, v12f32, SReg_384>;
def : BitConvert <v12f32, v12i32, SReg_384>;
def : BitConvert <v12i32, v12f32, VReg_384>;
def : BitConvert <v12f32, v12i32, VReg_384>;
// 512-bit bitcast
def : BitConvert <v32f16, v32i16, VReg_512>;
def : BitConvert <v32i16, v32f16, VReg_512>;
def : BitConvert <v32f16, v16i32, VReg_512>;
def : BitConvert <v32f16, v16f32, VReg_512>;
def : BitConvert <v16f32, v32f16, VReg_512>;
def : BitConvert <v16i32, v32f16, VReg_512>;
def : BitConvert <v32i16, v16i32, VReg_512>;
def : BitConvert <v32i16, v16f32, VReg_512>;
def : BitConvert <v16f32, v32i16, VReg_512>;
def : BitConvert <v16i32, v32i16, VReg_512>;
def : BitConvert <v16i32, v16f32, VReg_512>;
def : BitConvert <v16f32, v16i32, VReg_512>;
def : BitConvert <v8i64, v8f64, VReg_512>;
def : BitConvert <v8f64, v8i64, VReg_512>;
def : BitConvert <v8i64, v16i32, VReg_512>;
def : BitConvert <v8f64, v16i32, VReg_512>;
def : BitConvert <v16i32, v8i64, VReg_512>;
def : BitConvert <v16i32, v8f64, VReg_512>;
def : BitConvert <v8i64, v16f32, VReg_512>;
def : BitConvert <v8f64, v16f32, VReg_512>;
def : BitConvert <v16f32, v8i64, VReg_512>;
def : BitConvert <v16f32, v8f64, VReg_512>;
def : BitConvert <v32bf16, v32i16, VReg_512>;
def : BitConvert <v32i16, v32bf16, VReg_512>;
def : BitConvert <v32bf16, v32i16, SReg_512>;
def : BitConvert <v32i16, v32bf16, SReg_512>;
def : BitConvert <v32bf16, v32f16, VReg_512>;
def : BitConvert <v32f16, v32bf16, VReg_512>;
def : BitConvert <v32bf16, v32f16, SReg_512>;
def : BitConvert <v32f16, v32bf16, SReg_512>;
def : BitConvert <v32bf16, v16i32, VReg_512>;
def : BitConvert <v16i32, v32bf16, VReg_512>;
def : BitConvert <v32bf16, v16i32, SReg_512>;
def : BitConvert <v16i32, v32bf16, SReg_512>;
def : BitConvert <v32bf16, v16f32, VReg_512>;
def : BitConvert <v16f32, v32bf16, VReg_512>;
def : BitConvert <v32bf16, v16f32, SReg_512>;
def : BitConvert <v16f32, v32bf16, SReg_512>;
def : BitConvert <v32bf16, v8f64, VReg_512>;
def : BitConvert <v8f64, v32bf16, VReg_512>;
def : BitConvert <v32bf16, v8f64, SReg_512>;
def : BitConvert <v8f64, v32bf16, SReg_512>;
def : BitConvert <v32bf16, v8i64, VReg_512>;
def : BitConvert <v8i64, v32bf16, VReg_512>;
def : BitConvert <v32bf16, v8i64, SReg_512>;
def : BitConvert <v8i64, v32bf16, SReg_512>;
// 1024-bit bitcast
def : BitConvert <v32i32, v32f32, VReg_1024>;
def : BitConvert <v32f32, v32i32, VReg_1024>;
def : BitConvert <v16i64, v16f64, VReg_1024>;
def : BitConvert <v16f64, v16i64, VReg_1024>;
def : BitConvert <v16i64, v32i32, VReg_1024>;
def : BitConvert <v32i32, v16i64, VReg_1024>;
def : BitConvert <v16f64, v32f32, VReg_1024>;
def : BitConvert <v32f32, v16f64, VReg_1024>;
def : BitConvert <v16i64, v32f32, VReg_1024>;
def : BitConvert <v32i32, v16f64, VReg_1024>;
def : BitConvert <v16f64, v32i32, VReg_1024>;
def : BitConvert <v32f32, v16i64, VReg_1024>;
/********** =================== **********/
/********** Src & Dst modifiers **********/
/********** =================== **********/
// If denormals are not enabled, it only impacts the compare of the
// inputs. The output result is not flushed.
class ClampPat<Instruction inst, ValueType vt> : GCNPat <
(vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
(inst i32:$src0_modifiers, vt:$src0,
i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
>;
def : ClampPat<V_MAX_F32_e64, f32>;
let SubtargetPredicate = isNotGFX12Plus in
def : ClampPat<V_MAX_F64_e64, f64>;
let SubtargetPredicate = isGFX12Plus in
def : ClampPat<V_MAX_NUM_F64_e64, f64>;
let SubtargetPredicate = NotHasTrue16BitInsts in
def : ClampPat<V_MAX_F16_e64, f16>;
let SubtargetPredicate = UseRealTrue16Insts in
def : ClampPat<V_MAX_F16_t16_e64, f16>;
let SubtargetPredicate = UseFakeTrue16Insts in
def : ClampPat<V_MAX_F16_fake16_e64, f16>;
let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat <
(v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
(V_PK_MAX_F16 $src0_modifiers, $src0,
$src0_modifiers, $src0, DSTCLAMP.ENABLE)
>;
}
/********** ================================ **********/
/********** Floating point absolute/negative **********/
/********** ================================ **********/
def : GCNPat <
(UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
>;
def : GCNPat <
(UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
(S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
>;
def : GCNPat <
(UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
(S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
>;
foreach fp16vt = [f16, bf16] in {
def : GCNPat <
(UniformUnaryFrag<fneg> (fp16vt SReg_32:$src)),
(S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
>;
def : GCNPat <
(UniformUnaryFrag<fabs> (fp16vt SReg_32:$src)),
(S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
>;
def : GCNPat <
(UniformUnaryFrag<fneg> (fabs (fp16vt SReg_32:$src))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
>;
} // End foreach fp16vt = ...
def : GCNPat <
(UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
(S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
>;
def : GCNPat <
(UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
(S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
>;
// This is really (fneg (fabs v2f16:$src))
//
// fabs is not reported as free because there is modifier for it in
// VOP3P instructions, so it is turned into the bit op.
def : GCNPat <
(UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
>;
def : GCNPat <
(UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
>;
// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
// of the real value.
def : GCNPat <
(UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
(v2f32 (REG_SEQUENCE SReg_64,
(f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
(i32 (S_MOV_B32 (i32 0x80000000)))),
SReg_32)), sub0,
(f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
(i32 (S_MOV_B32 (i32 0x80000000)))),
SReg_32)), sub1))
>;
def : GCNPat <
(UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
(v2f32 (REG_SEQUENCE SReg_64,
(f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
(i32 (S_MOV_B32 (i32 0x7fffffff)))),
SReg_32)), sub0,
(f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
(i32 (S_MOV_B32 (i32 0x7fffffff)))),
SReg_32)), sub1))
>;
def : GCNPat <
(UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
(v2f32 (REG_SEQUENCE SReg_64,
(f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
(i32 (S_MOV_B32 (i32 0x80000000)))),
SReg_32)), sub0,
(f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
(i32 (S_MOV_B32 (i32 0x80000000)))),
SReg_32)), sub1))
>;
// FIXME: Use S_BITSET0_B32/B64?
def : GCNPat <
(UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
sub0,
(i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
(S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
sub1)
>;
def : GCNPat <
(UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
sub0,
(i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
(i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
sub1)
>;
def : GCNPat <
(UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
sub0,
(i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
(S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
sub1)
>;
def : GCNPat <
(fneg (fabs (f32 VGPR_32:$src))),
(V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
>;
def : GCNPat <
(fabs (f32 VGPR_32:$src)),
(V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (f32 VGPR_32:$src)),
(V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
>;
foreach fp16vt = [f16, bf16] in {
foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in
let SubtargetPredicate = p in {
def : GCNPat <
(fabs (fp16vt VGPR_32:$src)),
(V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (fp16vt VGPR_32:$src)),
(V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (fabs (fp16vt VGPR_32:$src))),
(V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
>;
}
let SubtargetPredicate = UseRealTrue16Insts in {
def : GCNPat <
(fabs (fp16vt VGPR_16:$src)),
(V_AND_B16_t16_e64 (i32 0), (i16 0x7fff), (i32 0), VGPR_16:$src)
>;
def : GCNPat <
(fneg (fp16vt VGPR_16:$src)),
(V_XOR_B16_t16_e64 (i32 0), (i16 0x8000), (i32 0), VGPR_16:$src)
>;
def : GCNPat <
(fneg (fabs (fp16vt VGPR_16:$src))),
(V_OR_B16_t16_e64 (i32 0), (i16 0x8000), (i32 0), VGPR_16:$src) // Set sign bit
>;
} // End SubtargetPredicate = UseRealTrue16Insts
} // End foreach fp16vt = ...
def : GCNPat <
(fneg (v2f16 VGPR_32:$src)),
(V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
>;
def : GCNPat <
(fabs (v2f16 VGPR_32:$src)),
(V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (v2f16 (fabs VGPR_32:$src))),
(V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
>;
def : GCNPat <
(fabs (f64 VReg_64:$src)),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
sub0,
(V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
(i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
sub1)
>;
def : GCNPat <
(fneg (f64 VReg_64:$src)),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
sub0,
(V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
(i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
sub1)
>;
def : GCNPat <
(fneg (fabs (f64 VReg_64:$src))),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
sub0,
(V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
(i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
sub1)
>;
def : GCNPat <
(DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
(V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
11 /* OP_SEL_1 | NEG_LO | HEG_HI */, (i64 0),
0, 0, 0, 0, 0)
> {
let SubtargetPredicate = HasPackedFP32Ops;
}
foreach fp16vt = [f16, bf16] in {
def : GCNPat <
(fcopysign fp16vt:$src0, fp16vt:$src1),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
>;
def : GCNPat <
(fcopysign f32:$src0, fp16vt:$src1),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
(V_LSHLREV_B32_e64 (i32 16), $src1))
>;
def : GCNPat <
(fcopysign f64:$src0, fp16vt:$src1),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
(V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
>;
def : GCNPat <
(fcopysign fp16vt:$src0, f32:$src1),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
(V_LSHRREV_B32_e64 (i32 16), $src1))
>;
def : GCNPat <
(fcopysign fp16vt:$src0, f64:$src1),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
(V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
>;
} // End foreach fp16vt = [f16, bf16]
/********** ================== **********/
/********** Immediate Patterns **********/
/********** ================== **********/
// FIXME: Remove VGPRImm. Should be inferrable from register bank.
foreach vt = [i32, p3, p5, p6, p2] in {
def : GCNPat <
(VGPRImm<(vt imm)>:$imm),
(V_MOV_B32_e32 imm:$imm)
>;
def : GCNPat <
(vt imm:$imm),
(S_MOV_B32 imm:$imm)
>;
}
def : GCNPat <
(p5 frameindex:$fi),
(V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
>;
def : GCNPat <
(p5 frameindex:$fi),
(S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
>;
def : GCNPat <
(VGPRImm<(SIlds tglobaladdr:$ga)>),
(V_MOV_B32_e32 $ga)
>;
def : GCNPat <
(SIlds tglobaladdr:$ga),
(S_MOV_B32 $ga)
>;
foreach pred = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in {
let True16Predicate = pred in {
def : GCNPat <
(VGPRImm<(i16 imm)>:$imm),
(V_MOV_B32_e32 imm:$imm)
>;
}
// FIXME: Workaround for ordering issue with peephole optimizer where
// a register class copy interferes with immediate folding. Should
// use s_mov_b32, which can be shrunk to s_movk_i32
foreach vt = [f16, bf16] in {
def : GCNPat <
(VGPRImm<(f16 fpimm)>:$imm),
(V_MOV_B32_e32 (vt (bitcast_fpimm_to_i32 $imm)))
>;
}
}
let True16Predicate = UseRealTrue16Insts in {
def : GCNPat <
(VGPRImm<(i16 imm)>:$imm),
(V_MOV_B16_t16_e64 0, imm:$imm, 0)
>;
foreach vt = [f16, bf16] in {
def : GCNPat <
(VGPRImm<(vt fpimm)>:$imm),
(V_MOV_B16_t16_e64 0, $imm, 0)
>;
}
}
// V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit
// immediate and wil be expanded as needed, but we will only use these patterns
// for values which can be encoded.
def : GCNPat <
(VGPRImm<(i64 imm)>:$imm),
(V_MOV_B64_PSEUDO imm:$imm)
>;
def : GCNPat <
(VGPRImm<(f64 fpimm)>:$imm),
(V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm)))
>;
def : GCNPat <
(i64 imm:$imm),
(S_MOV_B64_IMM_PSEUDO imm:$imm)
>;
def : GCNPat <
(f64 fpimm:$imm),
(S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm)))
>;
def : GCNPat <
(f32 fpimm:$imm),
(S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(f16 fpimm:$imm),
(S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(VGPRImm<(bf16 fpimm)>:$imm),
(V_MOV_B32_e32 (bf16 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(bf16 fpimm:$imm),
(S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(VGPRImm<(f32 fpimm)>:$imm),
(V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(f32 fpimm:$imm),
(S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
foreach vt = [i64, p1, p0, p4] in { // FIXME: Should accept arbitrary addrspace
def : GCNPat <
(VGPRImm<(vt imm)>:$imm),
(V_MOV_B64_PSEUDO imm:$imm)
>;
def : GCNPat <
(vt InlineImm64:$imm),
(S_MOV_B64 InlineImm64:$imm)
>;
def : GCNPat <
(vt imm:$imm),
(S_MOV_B64_IMM_PSEUDO imm:$imm)
>;
}
def : GCNPat <
(VGPRImm<(f64 fpimm)>:$imm),
(V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm)))
>;
// V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit
// immediate and wil be expanded as needed, but we will only use these patterns
// for values which can be encoded.
def : GCNPat <
(f64 InlineImmFP64:$imm),
(S_MOV_B64 (i64 (bitcast_fpimm_to_i64 $imm)))
>;
def : GCNPat <
(f64 fpimm:$imm),
(S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm)))
>;
// Set to sign-extended 64-bit value (true = -1, false = 0)
def : GCNPat <(i1 imm:$imm),
(S_MOV_B64 imm:$imm)> {
let WaveSizePredicate = isWave64;
}
def : GCNPat <(i1 imm:$imm),
(S_MOV_B32 imm:$imm)> {
let WaveSizePredicate = isWave32;
}
/********** ================== **********/
/********** Intrinsic Patterns **********/
/********** ================== **********/
def : GCNPat <
(f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
(V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
>;
def : GCNPat <
(i32 (sext i1:$src0)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0)
>;
class Ext32Pat <SDNode ext> : GCNPat <
(i32 (ext i1:$src0)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0)
>;
def : Ext32Pat <zext>;
def : Ext32Pat <anyext>;
// The multiplication scales from [0,1) to the unsigned integer range,
// rounding down a bit to avoid unwanted overflow.
def : GCNPat <
(AMDGPUurecip i32:$src0),
(V_CVT_U32_F32_e32
(V_MUL_F32_e32 (i32 CONST.FP_4294966784),
(V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
>;
//===----------------------------------------------------------------------===//
// VOP3 Patterns
//===----------------------------------------------------------------------===//
def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
// BFI patterns
def BFIImm32 : PatFrag<
(ops node:$x, node:$y, node:$z),
(i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
[{
auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
return X && NotX &&
~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
}]
>;
// Definition from ISA doc:
// (y & x) | (z & ~x)
def : AMDGPUPatIgnoreCopies <
(DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
(V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
(COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
(COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
>;
// (y & C) | (z & ~C)
def : AMDGPUPatIgnoreCopies <
(BFIImm32 i32:$x, i32:$y, i32:$z),
(V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
>;
// 64-bit version
def : AMDGPUPatIgnoreCopies <
(DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
(REG_SEQUENCE VReg_64,
(V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
(V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
>;
// SHA-256 Ch function
// z ^ (x & (y ^ z))
def : AMDGPUPatIgnoreCopies <
(DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
(V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
(COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
(COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
>;
// 64-bit version
def : AMDGPUPatIgnoreCopies <
(DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
(REG_SEQUENCE VReg_64,
(V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
(V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
>;
def : AMDGPUPat <
(fcopysign f32:$src0, f32:$src1),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
>;
def : AMDGPUPat <
(fcopysign f32:$src0, f64:$src1),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
(i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
>;
def : AMDGPUPat <
(fcopysign f64:$src0, f64:$src1),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
(i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
(i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
>;
def : AMDGPUPat <
(fcopysign f64:$src0, f32:$src1),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
(i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
$src1), sub1)
>;
def : ROTRPattern <V_ALIGNBIT_B32_e64>;
def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
(V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
(i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
(V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
(i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
/********** ====================== **********/
/********** Indirect addressing **********/
/********** ====================== **********/
multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
// Extract with offset
def : GCNPat<
(eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
(!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
>;
// Insert with offset
def : GCNPat<
(insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
(!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
>;
}
defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
//===----------------------------------------------------------------------===//
// SAD Patterns
//===----------------------------------------------------------------------===//
def : GCNPat <
(add (sub_oneuse (umax i32:$src0, i32:$src1),
(umin i32:$src0, i32:$src1)),
i32:$src2),
(V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
>;
def : GCNPat <
(add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
(sub i32:$src0, i32:$src1),
(sub i32:$src1, i32:$src0)),
i32:$src2),
(V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
>;
//===----------------------------------------------------------------------===//
// Conversion Patterns
//===----------------------------------------------------------------------===//
def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
(S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
// Handle sext_inreg in i64
def : GCNPat <
(i64 (UniformSextInreg<i1> i64:$src)),
(S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
>;
def : GCNPat <
(i16 (UniformSextInreg<i1> i16:$src)),
(S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
>;
def : GCNPat <
(i16 (UniformSextInreg<i8> i16:$src)),
(S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
>;
def : GCNPat <
(i64 (UniformSextInreg<i8> i64:$src)),
(S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
>;
def : GCNPat <
(i64 (UniformSextInreg<i16> i64:$src)),
(S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
>;
def : GCNPat <
(i64 (UniformSextInreg<i32> i64:$src)),
(S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
>;
def : GCNPat<
(i32 (DivergentSextInreg<i1> i32:$src)),
(V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
def : GCNPat <
(i16 (DivergentSextInreg<i1> i16:$src)),
(V_BFE_I32_e64 $src, (i32 0), (i32 1))
>;
def : GCNPat <
(i16 (DivergentSextInreg<i8> i16:$src)),
(V_BFE_I32_e64 $src, (i32 0), (i32 8))
>;
def : GCNPat<
(i32 (DivergentSextInreg<i8> i32:$src)),
(V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
>;
def : GCNPat <
(i32 (DivergentSextInreg<i16> i32:$src)),
(V_BFE_I32_e64 $src, (i32 0), (i32 16))
>;
def : GCNPat <
(i64 (DivergentSextInreg<i1> i64:$src)),
(REG_SEQUENCE VReg_64,
(V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
(V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
>;
def : GCNPat <
(i64 (DivergentSextInreg<i8> i64:$src)),
(REG_SEQUENCE VReg_64,
(V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
(V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
>;
def : GCNPat <
(i64 (DivergentSextInreg<i16> i64:$src)),
(REG_SEQUENCE VReg_64,
(V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
(V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
>;
def : GCNPat <
(i64 (DivergentSextInreg<i32> i64:$src)),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
(V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
>;
def : GCNPat <
(i64 (zext i32:$src)),
(REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
>;
def : GCNPat <
(i64 (anyext i32:$src)),
(REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
>;
class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
(i64 (ext i1:$src)),
(REG_SEQUENCE VReg_64,
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 1), $src),
sub0, (S_MOV_B32 (i32 0)), sub1)
>;
def : ZExt_i64_i1_Pat<zext>;
def : ZExt_i64_i1_Pat<anyext>;
// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
// REG_SEQUENCE patterns don't support instructions with multiple outputs.
def : GCNPat <
(i64 (UniformUnaryFrag<sext> i32:$src)),
(REG_SEQUENCE SReg_64, $src, sub0,
(i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
>;
def : GCNPat <
(i64 (DivergentUnaryFrag<sext> i32:$src)),
(REG_SEQUENCE VReg_64, $src, sub0,
(i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
>;
def : GCNPat <
(i64 (sext i1:$src)),
(REG_SEQUENCE VReg_64,
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
>;
class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
(i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
(i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
>;
let OtherPredicates = [NotHasTrue16BitInsts] in {
def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
} // end OtherPredicates = [NotHasTrue16BitInsts]
let OtherPredicates = [HasTrue16BitInsts] in {
def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
} // end OtherPredicates = [HasTrue16BitInsts]
def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
// If we need to perform a logical operation on i1 values, we need to
// use vector comparisons since there is only one SCC register. Vector
// comparisons may write to a pair of SGPRs or a single SGPR, so treat
// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
// instructions resulting in the copies from SCC to these instructions
// will be moved to the VALU.
let WaveSizePredicate = isWave64 in {
def : GCNPat <
(i1 (and i1:$src0, i1:$src1)),
(S_AND_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (or i1:$src0, i1:$src1)),
(S_OR_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (xor i1:$src0, i1:$src1)),
(S_XOR_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (add i1:$src0, i1:$src1)),
(S_XOR_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (sub i1:$src0, i1:$src1)),
(S_XOR_B64 $src0, $src1)
>;
let AddedComplexity = 1 in {
def : GCNPat <
(i1 (add i1:$src0, (i1 -1))),
(S_NOT_B64 $src0)
>;
def : GCNPat <
(i1 (sub i1:$src0, (i1 -1))),
(S_NOT_B64 $src0)
>;
}
} // end isWave64
let WaveSizePredicate = isWave32 in {
def : GCNPat <
(i1 (and i1:$src0, i1:$src1)),
(S_AND_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (or i1:$src0, i1:$src1)),
(S_OR_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (xor i1:$src0, i1:$src1)),
(S_XOR_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (add i1:$src0, i1:$src1)),
(S_XOR_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (sub i1:$src0, i1:$src1)),
(S_XOR_B32 $src0, $src1)
>;
let AddedComplexity = 1 in {
def : GCNPat <
(i1 (add i1:$src0, (i1 -1))),
(S_NOT_B32 $src0)
>;
def : GCNPat <
(i1 (sub i1:$src0, (i1 -1))),
(S_NOT_B32 $src0)
>;
}
} // end isWave32
def : GCNPat <
(i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
(V_NOT_B32_e32 $src0)
>;
def : GCNPat <
(i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
(REG_SEQUENCE VReg_64,
(V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
(V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
)
>;
let SubtargetPredicate = NotHasTrue16BitInsts in
def : GCNPat <
(f16 (sint_to_fp i1:$src)),
(V_CVT_F16_F32_e32 (
V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
SSrc_i1:$src))
>;
let SubtargetPredicate = HasTrue16BitInsts in
def : GCNPat <
(f16 (sint_to_fp i1:$src)),
(V_CVT_F16_F32_fake16_e32 (
V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
SSrc_i1:$src))
>;
let SubtargetPredicate = NotHasTrue16BitInsts in
def : GCNPat <
(f16 (uint_to_fp i1:$src)),
(V_CVT_F16_F32_e32 (
V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
SSrc_i1:$src))
>;
let SubtargetPredicate = HasTrue16BitInsts in
def : GCNPat <
(f16 (uint_to_fp i1:$src)),
(V_CVT_F16_F32_fake16_e32 (
V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
SSrc_i1:$src))
>;
def : GCNPat <
(f32 (sint_to_fp i1:$src)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
SSrc_i1:$src)
>;
def : GCNPat <
(f32 (uint_to_fp i1:$src)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
SSrc_i1:$src)
>;
def : GCNPat <
(f64 (sint_to_fp i1:$src)),
(V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1),
SSrc_i1:$src))
>;
def : GCNPat <
(f64 (uint_to_fp i1:$src)),
(V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 1),
SSrc_i1:$src))
>;
//===----------------------------------------------------------------------===//
// Miscellaneous Patterns
//===----------------------------------------------------------------------===//
// Eliminate a zero extension from an fp16 operation if it already
// zeros the high bits of the 32-bit register.
//
// This is complicated on gfx9+. Some instructions maintain the legacy
// zeroing behavior, but others preserve the high bits. Some have a
// control bit to change the behavior. We can't simply say with
// certainty what the source behavior is without more context on how
// the src is lowered. e.g. fptrunc + fma may be lowered to a
// v_fma_mix* instruction which does not zero, or may not.
def : GCNPat<
(i32 (DivergentUnaryFrag<abs> i32:$src)),
(V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
let AddedComplexity = 1 in {
def : GCNPat<
(i32 (DivergentUnaryFrag<abs> i32:$src)),
(V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
let SubtargetPredicate = HasAddNoCarryInsts;
}
} // AddedComplexity = 1
def : GCNPat<
(i32 (DivergentUnaryFrag<zext> i16:$src)),
(V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
>;
def : GCNPat<
(i64 (DivergentUnaryFrag<zext> i16:$src)),
(REG_SEQUENCE VReg_64,
(V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
(S_MOV_B32 (i32 0)), sub1)
>;
def : GCNPat<
(i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
(COPY VSrc_b16:$src)>;
def : GCNPat <
(i32 (trunc i64:$a)),
(EXTRACT_SUBREG $a, sub0)
>;
def : GCNPat <
(i1 (UniformUnaryFrag<trunc> i32:$a)),
(S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
>;
def : GCNPat <
(i1 (UniformUnaryFrag<trunc> i16:$a)),
(S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
>;
def : GCNPat <
(i1 (UniformUnaryFrag<trunc> i64:$a)),
(S_CMP_EQ_U32 (S_AND_B32 (i32 1),
(i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
>;
def : GCNPat <
(i1 (DivergentUnaryFrag<trunc> i32:$a)),
(V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
>;
def : GCNPat <
(i1 (DivergentUnaryFrag<trunc> i16:$a)),
(V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
>;
def IMMBitSelConst : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
MVT::i32);
}]>;
// Matching separate SRL and TRUNC instructions
// with dependent operands (SRL dest is source of TRUNC)
// generates three instructions. However, by using bit shifts,
// the V_LSHRREV_B32_e64 result can be directly used in the
// operand of the V_AND_B32_e64 instruction:
// (trunc i32 (srl i32 $a, i32 $b)) ->
// v_and_b32_e64 $a, (1 << $b), $a
// v_cmp_ne_u32_e64 $a, 0, $a
// Handle the VALU case.
def : GCNPat <
(i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
(V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
(i32 0))
>;
// Handle the scalar case.
def : GCNPat <
(i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
(S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
(i32 0))
>;
def : GCNPat <
(i1 (DivergentUnaryFrag<trunc> i64:$a)),
(V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
(i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
>;
def : GCNPat <
(i32 (bswap i32:$a)),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
(V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
(V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
>;
// FIXME: This should have been narrowed to i32 during legalization.
// This pattern should also be skipped for GlobalISel
def : GCNPat <
(i64 (bswap i64:$a)),
(REG_SEQUENCE VReg_64,
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
(V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
(i32 24)),
(V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
(i32 8))),
sub0,
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
(V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
(i32 24)),
(V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
(i32 8))),
sub1)
>;
// FIXME: The AddedComplexity should not be needed, but in GlobalISel
// the BFI pattern ends up taking precedence without it.
let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
//
// My reading of the manual suggests we should be using src0 for the
// register value, but this is what seems to work.
def : GCNPat <
(i32 (bswap i32:$a)),
(V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
>;
// FIXME: This should have been narrowed to i32 during legalization.
// This pattern should also be skipped for GlobalISel
def : GCNPat <
(i64 (bswap i64:$a)),
(REG_SEQUENCE VReg_64,
(V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
(S_MOV_B32 (i32 0x00010203))),
sub0,
(V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
(S_MOV_B32 (i32 0x00010203))),
sub1)
>;
// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
// The 12s emit 0s.
def : GCNPat <
(i16 (bswap i16:$a)),
(V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
>;
def : GCNPat <
(i32 (zext (bswap i16:$a))),
(V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
>;
// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
def : GCNPat <
(v2i16 (bswap v2i16:$a)),
(V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
>;
}
def : GCNPat<
(i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
(REG_SEQUENCE VReg_64,
(V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
(V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
// If fcanonicalize's operand is implicitly canonicalized, we only need a copy.
let AddedComplexity = 1000 in {
foreach vt = [f16, v2f16, f32, v2f32, f64] in {
def : GCNPat<
(fcanonicalize (vt is_canonicalized:$src)),
(COPY vt:$src)
>;
}
}
// Prefer selecting to max when legal, but using mul is always valid.
let AddedComplexity = -5 in {
let OtherPredicates = [NotHasTrue16BitInsts] in {
def : GCNPat<
(fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
(V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
>;
def : GCNPat<
(fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
(V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
>;
} // End OtherPredicates
let OtherPredicates = [HasTrue16BitInsts] in {
def : GCNPat<
(fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
(V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
>;
def : GCNPat<
(fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
(V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
>;
} // End OtherPredicates
def : GCNPat<
(fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
(V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
>;
def : GCNPat<
(fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
(V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
>;
def : GCNPat<
(fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
(V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
>;
let SubtargetPredicate = HasPackedFP32Ops in {
def : GCNPat<
(fcanonicalize (v2f32 (VOP3PMods v2f32:$src, i32:$src_mods))),
(V_PK_MUL_F32 0, (i64 CONST.FP32_ONE), $src_mods, $src)
>;
}
// TODO: Handle fneg like other types.
let SubtargetPredicate = isNotGFX12Plus in {
def : GCNPat<
(fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
(V_MUL_F64_e64 0, (i64 CONST.FP64_ONE), $src_mods, $src)
>;
}
} // End AddedComplexity = -5
multiclass SelectCanonicalizeAsMax<
list<Predicate> f32_preds = [],
list<Predicate> f64_preds = [],
list<Predicate> f16_preds = []> {
def : GCNPat<
(fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
(V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
let OtherPredicates = f32_preds;
}
def : GCNPat<
(fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
(V_MAX_F64_e64 $src_mods, $src, $src_mods, $src)> {
let OtherPredicates = !listconcat(f64_preds, [isNotGFX12Plus]);
}
def : GCNPat<
(fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
(V_MAX_NUM_F64_e64 $src_mods, $src, $src_mods, $src)> {
let OtherPredicates = !listconcat(f64_preds, [isGFX12Plus]);
}
def : GCNPat<
(fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
(V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]);
}
def : GCNPat<
(fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
(V_MAX_F16_fake16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]);
}
def : GCNPat<
(fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
(V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
// FIXME: Should have VOP3P subtarget predicate
let OtherPredicates = f16_preds;
}
}
// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
// mode, and would never flush. For f64, it's faster to do implement
// this with a max. For f16/f32 it's a wash, but prefer max when
// valid.
//
// FIXME: Lowering f32/f16 with max is worse since we can use a
// smaller encoding if the input is fneg'd. It also adds an extra
// register use.
let SubtargetPredicate = HasMinMaxDenormModes in {
defm : SelectCanonicalizeAsMax<[], [], []>;
} // End SubtargetPredicate = HasMinMaxDenormModes
let SubtargetPredicate = NotHasMinMaxDenormModes in {
// Use the max lowering if we don't need to flush.
// FIXME: We don't do use this for f32 as a workaround for the
// library being compiled with the default ieee mode, but
// potentially being called from flushing kernels. Really we should
// not be mixing code expecting different default FP modes, but mul
// works in any FP environment.
defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
} // End SubtargetPredicate = NotHasMinMaxDenormModes
let OtherPredicates = [HasDLInsts] in {
// Don't allow source modifiers. If there are any source modifiers then it's
// better to select fma instead of fmac.
def : GCNPat <
(fma (f32 (VOP3NoMods f32:$src0)),
(f32 (VOP3NoMods f32:$src1)),
(f32 (VOP3NoMods f32:$src2))),
(V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2)
>;
} // End OtherPredicates = [HasDLInsts]
let SubtargetPredicate = isGFX10Plus in {
// Don't allow source modifiers. If there are any source modifiers then it's
// better to select fma instead of fmac.
let OtherPredicates = [NotHasTrue16BitInsts] in
def : GCNPat <
(fma (f16 (VOP3NoMods f32:$src0)),
(f16 (VOP3NoMods f32:$src1)),
(f16 (VOP3NoMods f32:$src2))),
(V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2)
>;
let OtherPredicates = [HasTrue16BitInsts] in
def : GCNPat <
(fma (f16 (VOP3NoMods f32:$src0)),
(f16 (VOP3NoMods f32:$src1)),
(f16 (VOP3NoMods f32:$src2))),
(V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2)
>;
}
let OtherPredicates = [HasFmacF64Inst] in
// Don't allow source modifiers. If there are any source modifiers then it's
// better to select fma instead of fmac.
def : GCNPat <
(fma (f64 (VOP3NoMods f64:$src0)),
(f64 (VOP3NoMods f64:$src1)),
(f64 (VOP3NoMods f64:$src2))),
(V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2)
>;
// COPY is workaround tablegen bug from multiple outputs
// from S_LSHL_B32's multiple outputs from implicit scc def.
let AddedComplexity = 1 in {
def : GCNPat <
(v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
(S_LSHL_B32 SReg_32:$src1, (i16 16))
>;
def : GCNPat <
(v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
(v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
>;
def : GCNPat <
(v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
(S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
>;
def : GCNPat <
(v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
(v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
>;
def : GCNPat <
(v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
(S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
>;
def : GCNPat <
(v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
(v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
>;
foreach vecTy = [v2i16, v2f16, v2bf16] in {
defvar Ty = vecTy.ElementType;
def : GCNPat <
(vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty undef))),
(COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
>;
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$src0), (Ty undef))),
(COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
>;
def : GCNPat <
(vecTy (UniformBinFrag<build_vector> (Ty undef), (Ty SReg_32:$src1))),
(S_LSHL_B32 SReg_32:$src1, (i32 16))
>;
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector> (Ty undef), (Ty VGPR_32:$src1))),
(vecTy (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
>;
} // End foreach Ty = ...
}
let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat <
(v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
(v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
>;
// With multiple uses of the shift, this will duplicate the shift and
// increase register pressure.
def : GCNPat <
(v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
(v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
>;
def : GCNPat <
(v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
(i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
(S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;
foreach vecTy = [v2i16, v2f16, v2bf16] in {
defvar Ty = vecTy.ElementType;
defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
def : GCNPat <
(vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty SReg_32:$src1))),
(S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;
// Take the lower 16 bits from each VGPR_32 and concat them
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
(V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
>;
// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
(Ty !if(!eq(Ty, i16),
(Ty (trunc (srl VGPR_32:$b, (i32 16)))),
(Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
(V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
>;
// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
(Ty !if(!eq(Ty, i16),
(Ty (trunc (srl VGPR_32:$b, (i32 16)))),
(Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
(V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)), VGPR_32:$a, VGPR_32:$b)
>;
// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
// Special case, can use V_ALIGNBIT (always uses encoded literal)
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector>
(Ty !if(!eq(Ty, i16),
(Ty (trunc (srl VGPR_32:$a, (i32 16)))),
(Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
(Ty VGPR_32:$b))),
(V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
>;
// Take the upper 16 bits from each VGPR_32 and concat them
def : GCNPat <
(vecTy (DivergentBinFrag<build_vector>
(Ty !if(!eq(Ty, i16),
(Ty (trunc (srl VGPR_32:$a, (i32 16)))),
(Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
(Ty !if(!eq(Ty, i16),
(Ty (trunc (srl VGPR_32:$b, (i32 16)))),
(Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
(V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
>;
} // end foreach Ty
let AddedComplexity = 5 in {
def : GCNPat <
(v2f16 (is_canonicalized_2<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
(f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
(V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
>;
}
} // End SubtargetPredicate = HasVOP3PInsts
// With multiple uses of the shift, this will duplicate the shift and
// increase register pressure.
let SubtargetPredicate = isGFX11Plus in
def : GCNPat <
(v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
(v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
>;
def : GCNPat <
(v2f16 (scalar_to_vector f16:$src0)),
(COPY $src0)
>;
def : GCNPat <
(v2i16 (scalar_to_vector i16:$src0)),
(COPY $src0)
>;
def : GCNPat <
(v4i16 (scalar_to_vector i16:$src0)),
(INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
>;
def : GCNPat <
(v4f16 (scalar_to_vector f16:$src0)),
(INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
>;
def : GCNPat <
(i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
timm:$bank_mask, timm:$bound_ctrl)),
(V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
(as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
(as_i32timm $bank_mask),
(as_i1timm $bound_ctrl))
>;
foreach vt = Reg64Types.types in {
def : GCNPat <
(vt (int_amdgcn_update_dpp vt:$old, vt:$src, timm:$dpp_ctrl, timm:$row_mask,
timm:$bank_mask, timm:$bound_ctrl)),
(V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
(as_i32timm $row_mask), (as_i32timm $bank_mask),
(as_i1timm $bound_ctrl))
>;
}
//===----------------------------------------------------------------------===//
// Fract Patterns
//===----------------------------------------------------------------------===//
let SubtargetPredicate = isGFX6 in {
// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
// way to implement it is using V_FRACT_F64.
// The workaround for the V_FRACT bug is:
// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
// Convert floor(x) to (x - fract(x))
// Don't bother handling this for GlobalISel, it's handled during
// lowering.
//
// FIXME: DAG should also custom lower this.
def : GCNPat <
(f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
(V_ADD_F64_e64
$mods,
$x,
SRCMODS.NEG,
(V_CNDMASK_B64_PSEUDO
(V_MIN_F64_e64
SRCMODS.NONE,
(V_FRACT_F64_e64 $mods, $x),
SRCMODS.NONE,
(V_MOV_B64_PSEUDO (i64 0x3fefffffffffffff))),
$x,
(V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
>;
} // End SubtargetPredicates = isGFX6
//============================================================================//
// Miscellaneous Optimization Patterns
//============================================================================//
// Undo sub x, c -> add x, -c canonicalization since c is more likely
// an inline immediate than -c.
// TODO: Also do for 64-bit.
def : GCNPat<
(UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
(S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
>;
def : GCNPat<
(DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
(V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
let SubtargetPredicate = HasAddNoCarryInsts;
}
def : GCNPat<
(DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
(V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
let SubtargetPredicate = NotHasAddNoCarryInsts;
}
// Avoid pointlessly materializing a constant in VGPR.
// FIXME: Should also do this for readlane, but tablegen crashes on
// the ignored src1.
def : GCNPat<
(i32 (int_amdgcn_readfirstlane (i32 imm:$src))),
(S_MOV_B32 SReg_32:$src)
>;
multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
def : GCNPat <
(vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
(BFM $a, $b)
>;
def : GCNPat <
(vt (ADD (vt (shl 1, vt:$a)), -1)),
(BFM $a, (i32 0))
>;
}
defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
// Bitfield extract patterns
def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
return isMask_32(Imm);
}]>;
def IMMPopCount : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
MVT::i32);
}]>;
def : AMDGPUPat <
(DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
IMMZeroBasedBitfieldMask:$mask),
(V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
>;
// x & ((1 << y) - 1)
def : AMDGPUPat <
(DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
(V_BFE_U32_e64 $src, (i32 0), $width)
>;
// x & ~(-1 << y)
def : AMDGPUPat <
(DivergentBinFrag<and> i32:$src,
(xor_oneuse (shl_oneuse -1, i32:$width), -1)),
(V_BFE_U32_e64 $src, (i32 0), $width)
>;
// x & (-1 >> (bitwidth - y))
def : AMDGPUPat <
(DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
(V_BFE_U32_e64 $src, (i32 0), $width)
>;
// x << (bitwidth - y) >> (bitwidth - y)
def : AMDGPUPat <
(DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
(sub 32, i32:$width)),
(V_BFE_U32_e64 $src, (i32 0), $width)
>;
def : AMDGPUPat <
(DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
(sub 32, i32:$width)),
(V_BFE_I32_e64 $src, (i32 0), $width)
>;
// SHA-256 Ma patterns
// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
def : AMDGPUPatIgnoreCopies <
(DivergentBinFrag<or> (and i32:$x, i32:$z),
(and i32:$y, (or i32:$x, i32:$z))),
(V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
(COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)),
(COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32),
(COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32))
>;
def : AMDGPUPatIgnoreCopies <
(DivergentBinFrag<or> (and i64:$x, i64:$z),
(and i64:$y, (or i64:$x, i64:$z))),
(REG_SEQUENCE VReg_64,
(V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
(i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
(V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
(i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
(i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
>;
multiclass IntMed3Pat<Instruction med3Inst,
SDPatternOperator min,
SDPatternOperator max> {
// This matches 16 permutations of
// min(max(a, b), max(min(a, b), c))
def : AMDGPUPat <
(min (max i32:$src0, i32:$src1),
(max (min i32:$src0, i32:$src1), i32:$src2)),
(med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;
// This matches 16 permutations of
// max(min(x, y), min(max(x, y), z))
def : AMDGPUPat <
(max (min i32:$src0, i32:$src1),
(min (max i32:$src0, i32:$src1), i32:$src2)),
(med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;
}
defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
multiclass FPMed3Pat<ValueType vt,
Instruction med3Inst> {
// This matches 16 permutations of max(min(x, y), min(max(x, y), z))
def : GCNPat<
(fmaxnum_like_nnan
(fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
(VOP3Mods vt:$src1, i32:$src1_mods)),
(fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
(VOP3Mods vt:$src1, i32:$src1_mods)),
(vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
(med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE, DSTOMOD.NONE)>;
// This matches 16 permutations of min(max(x, y), max(min(x, y), z))
def : GCNPat<
(fminnum_like_nnan
(fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
(VOP3Mods vt:$src1, i32:$src1_mods)),
(fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
(VOP3Mods vt:$src1, i32:$src1_mods)),
(vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
(med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE, DSTOMOD.NONE)>;
}
multiclass Int16Med3Pat<Instruction med3Inst,
SDPatternOperator min,
SDPatternOperator max> {
// This matches 16 permutations of
// max(min(x, y), min(max(x, y), z))
def : GCNPat <
(max (min i16:$src0, i16:$src1),
(min (max i16:$src0, i16:$src1), i16:$src2)),
(med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
>;
// This matches 16 permutations of
// min(max(a, b), max(min(a, b), c))
def : GCNPat <
(min (max i16:$src0, i16:$src1),
(max (min i16:$src0, i16:$src1), i16:$src2)),
(med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
>;
}
defm : FPMed3Pat<f32, V_MED3_F32_e64>;
let SubtargetPredicate = HasMed3_16 in {
defm : FPMed3Pat<f16, V_MED3_F16_e64>;
}
class
IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
(DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
i32:$src2),
(minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;
class
FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
SDPatternOperator max_or_min_oneuse> : GCNPat <
(min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
(VOP3Mods vt:$src1, i32:$src1_mods)),
(vt (VOP3Mods vt:$src2, i32:$src2_mods))),
(minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE, DSTOMOD.NONE)
>;
class
FPMinCanonMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
SDPatternOperator max_or_min_oneuse> : GCNPat <
(min_or_max (is_canonicalized_1<fcanonicalize>
(max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
(VOP3Mods vt:$src1, i32:$src1_mods))),
(vt (VOP3Mods vt:$src2, i32:$src2_mods))),
(minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
DSTCLAMP.NONE, DSTOMOD.NONE)
>;
let OtherPredicates = [isGFX11Plus] in {
def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
def : FPMinCanonMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
def : FPMinCanonMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
def : FPMinCanonMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
def : FPMinCanonMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
}
let OtherPredicates = [isGFX9Plus] in {
defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax>;
defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax>;
} // End Predicates = [isGFX9Plus]
let OtherPredicates = [isGFX12Plus] in {
def : FPMinMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
def : FPMinMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
def : FPMinMaxPat<V_MINIMUMMAXIMUM_F16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
def : FPMinMaxPat<V_MAXIMUMMINIMUM_F16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
}
// Convert a floating-point power of 2 to the integer exponent.
def FPPow2ToExponentXForm : SDNodeXForm<fpimm, [{
const auto &APF = N->getValueAPF();
int Log2 = APF.getExactLog2Abs();
assert(Log2 != INT_MIN);
return CurDAG->getTargetConstant(Log2, SDLoc(N), MVT::i32);
}]>;
// Check if a floating point value is a power of 2 floating-point
// immediate where it's preferable to emit a multiply by as an
// ldexp. We skip over 0.5 to 4.0 as those are inline immediates
// anyway.
def fpimm_pos_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
if (Imm.isNegative())
return false;
int Exp = Imm.getExactLog2Abs();
// Prefer leaving the FP inline immediates as they are.
// 0.5, 1.0, 2.0, 4.0
// For f64 ldexp is always better than materializing a 64-bit
// constant.
return Exp != INT_MIN && (Exp < -1 || Exp > 2);
}], FPPow2ToExponentXForm
>;
def fpimm_neg_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
if (!Imm.isNegative())
return false;
int Exp = Imm.getExactLog2Abs();
// Prefer leaving the FP inline immediates as they are.
// 0.5, 1.0, 2.0, 4.0
// For f64 ldexp is always better than materializing a 64-bit
// constant.
return Exp != INT_MIN && (Exp < -1 || Exp > 2);
}], FPPow2ToExponentXForm
>;
// f64 is different because we also want to handle cases that may
// require materialization of the exponent.
// TODO: If we know f64 ops are fast, prefer add (ldexp x, N), y over fma
// TODO: For f32/f16, it's not a clear win on code size to use ldexp
// in place of mul since we have to use the vop3 form. Are there power
// savings or some other reason to prefer ldexp over mul?
def : GCNPat<
(any_fmul (f64 (VOP3Mods f64:$src0, i32:$src0_mods)),
fpimm_pos_pow2_prefer_ldexp_f64:$src1),
(V_LDEXP_F64_e64 i32:$src0_mods, VSrc_b64:$src0,
0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
>;
def : GCNPat<
(any_fmul f64:$src0, fpimm_neg_pow2_prefer_ldexp_f64:$src1),
(V_LDEXP_F64_e64 SRCMODS.NEG, VSrc_b64:$src0,
0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
>;
// We want to avoid using VOP3Mods which could pull in another fneg
// which we would need to be re-negated (which should never happen in
// practice). I don't see a way to apply an SDNodeXForm that accounts
// for a second operand.
def : GCNPat<
(any_fmul (fabs f64:$src0), fpimm_neg_pow2_prefer_ldexp_f64:$src1),
(V_LDEXP_F64_e64 SRCMODS.NEG_ABS, VSrc_b64:$src0,
0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
>;
class AMDGPUGenericInstruction : GenericInstruction {
let Namespace = "AMDGPU";
}
// Convert a wave address to a swizzled vector address (i.e. this is
// for copying the stack pointer to a vector address appropriate to
// use in the offset field of mubuf instructions).
def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
// Returns -1 if the input is zero.
def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Returns -1 if the input is zero.
def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
type2:$soffset, untyped_imm_0:$offset,
untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
let hasSideEffects = 0;
let mayLoad = 1;
}
class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
let hasSideEffects = 0;
let mayLoad = 1;
}
def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_UBYTE_TFE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_SBYTE_TFE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_USHORT_TFE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_SSHORT_TFE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_TFE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
type2:$soffset, untyped_imm_0:$offset,
untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
let hasSideEffects = 0;
let mayStore = 1;
}
class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
type2:$soffset, untyped_imm_0:$offset,
untyped_imm_0:$format,
untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
let hasSideEffects = 0;
let mayStore = 1;
}
def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1);
let hasSideEffects = 0;
}
def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1);
let hasSideEffects = 0;
}
foreach N = 0-3 in {
def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0);
let hasSideEffects = 0;
}
}
def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1);
let hasSideEffects = 0;
}
def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
// Integer multiply-add: arg0 * arg1 + arg2.
//
// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
let hasSideEffects = 0;
}
def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
// operand Expects a MachineMemOperand in addition to explicit
// operands.
def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$oldval);
let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
class BufferAtomicGenericInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
type2:$soffset, untyped_imm_0:$offset,
untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
// a workaround for the intrinsic being defined as readnone, but
// really needs a memory operand.
class SBufferLoadInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 0;
}
def G_AMDGPU_S_BUFFER_LOAD : SBufferLoadInstruction;
def G_AMDGPU_S_BUFFER_LOAD_SBYTE : SBufferLoadInstruction;
def G_AMDGPU_S_BUFFER_LOAD_UBYTE : SBufferLoadInstruction;
def G_AMDGPU_S_BUFFER_LOAD_SSHORT : SBufferLoadInstruction;
def G_AMDGPU_S_BUFFER_LOAD_USHORT : SBufferLoadInstruction;
class SBufferPrefetchInstruction : AMDGPUGenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$rsrc, untyped_imm_0:$offset, type1:$len);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
def G_AMDGPU_S_BUFFER_PREFETCH : SBufferPrefetchInstruction;
def G_AMDGPU_S_MUL_U64_U32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1);
let hasSideEffects = 0;
}
def G_AMDGPU_S_MUL_I64_I32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type0:$src1);
let hasSideEffects = 0;
}
// This is equivalent to the G_INTRINSIC*, but the operands may have
// been legalized depending on the subtarget requirements.
def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
let mayLoad = 1;
// FIXME: Use separate opcode for atomics.
let mayStore = 1;
}
def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
let mayLoad = 1;
// FIXME: Use separate opcode for atomics.
let mayStore = 1;
}
def G_AMDGPU_INTRIN_IMAGE_LOAD_NORET : AMDGPUGenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
// This is equivalent to the G_INTRINSIC*, but the operands may have
// been legalized depending on the subtarget requirements.
def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
let mayStore = 1;
}
def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
let mayStore = 1;
}
def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 0;
}
// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
// if necessary.
def G_SI_CALL : AMDGPUGenericInstruction {
let OutOperandList = (outs SReg_64:$dst);
let InOperandList = (ins type0:$src0, unknown:$callee);
let Size = 4;
let isCall = 1;
let UseNamedOperandTable = 1;
let SchedRW = [WriteBranch];
// TODO: Should really base this on the call target
let isConvergent = 1;
}
//============================================================================//
// Dummy Instructions
//============================================================================//
def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
let Inst{31-0} = 0x00000000;
let FixedSize = 1;
let Size = 4;
let Uses = [EXEC];
let hasSideEffects = 1;
let SubtargetPredicate = isGFX10Plus;
}