//===-- M68kAsmParser.cpp - Parse M68k assembly to MCInst instructions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "M68kInstrInfo.h"
#include "M68kRegisterInfo.h"
#include "TargetInfo/M68kTargetInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/TargetRegistry.h"
#include <sstream>
#define DEBUG_TYPE "m68k-asm-parser"
using namespace llvm;
static cl::opt<bool> RegisterPrefixOptional(
"m68k-register-prefix-optional", cl::Hidden,
cl::desc("Enable specifying registers without the % prefix"),
cl::init(false));
namespace {
/// Parses M68k assembly from a stream.
class M68kAsmParser : public MCTargetAsmParser {
const MCSubtargetInfo &STI;
MCAsmParser &Parser;
const MCRegisterInfo *MRI;
#define GET_ASSEMBLER_HEADER
#include "M68kGenAsmMatcher.inc"
// Helpers for Match&Emit.
bool invalidOperand(const SMLoc &Loc, const OperandVector &Operands,
const uint64_t &ErrorInfo);
bool missingFeature(const SMLoc &Loc, const uint64_t &ErrorInfo);
bool emit(MCInst &Inst, SMLoc const &Loc, MCStreamer &Out) const;
bool parseRegisterName(MCRegister &RegNo, SMLoc Loc, StringRef RegisterName);
ParseStatus parseRegister(MCRegister &RegNo);
// Parser functions.
void eatComma();
bool isExpr();
ParseStatus parseImm(OperandVector &Operands);
ParseStatus parseMemOp(OperandVector &Operands);
ParseStatus parseRegOrMoveMask(OperandVector &Operands);
public:
M68kAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII), STI(STI), Parser(Parser) {
MCAsmParserExtension::Initialize(Parser);
MRI = getContext().getRegisterInfo();
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool parseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
};
struct M68kMemOp {
enum class Kind {
Addr,
RegMask,
Reg,
RegIndirect,
RegPostIncrement,
RegPreDecrement,
RegIndirectDisplacement,
RegIndirectDisplacementIndex,
};
// These variables are used for the following forms:
// Addr: (OuterDisp)
// RegMask: RegMask (as register mask)
// Reg: %OuterReg
// RegIndirect: (%OuterReg)
// RegPostIncrement: (%OuterReg)+
// RegPreDecrement: -(%OuterReg)
// RegIndirectDisplacement: OuterDisp(%OuterReg)
// RegIndirectDisplacementIndex:
// OuterDisp(%OuterReg, %InnerReg.Size * Scale, InnerDisp)
Kind Op;
MCRegister OuterReg;
MCRegister InnerReg;
const MCExpr *OuterDisp;
const MCExpr *InnerDisp;
uint8_t Size : 4;
uint8_t Scale : 4;
const MCExpr *Expr;
uint16_t RegMask;
M68kMemOp() {}
M68kMemOp(Kind Op) : Op(Op) {}
void print(raw_ostream &OS) const;
};
/// An parsed M68k assembly operand.
class M68kOperand : public MCParsedAsmOperand {
typedef MCParsedAsmOperand Base;
enum class KindTy {
Invalid,
Token,
Imm,
MemOp,
};
KindTy Kind;
SMLoc Start, End;
union {
StringRef Token;
const MCExpr *Expr;
M68kMemOp MemOp;
};
template <unsigned N> bool isAddrN() const;
public:
M68kOperand(KindTy Kind, SMLoc Start, SMLoc End)
: Base(), Kind(Kind), Start(Start), End(End) {}
SMLoc getStartLoc() const override { return Start; }
SMLoc getEndLoc() const override { return End; }
void print(raw_ostream &OS) const override;
bool isMem() const override { return false; }
bool isMemOp() const { return Kind == KindTy::MemOp; }
static void addExpr(MCInst &Inst, const MCExpr *Expr);
// Reg
bool isReg() const override;
bool isAReg() const;
bool isDReg() const;
bool isFPDReg() const;
bool isFPCReg() const;
MCRegister getReg() const override;
void addRegOperands(MCInst &Inst, unsigned N) const;
static std::unique_ptr<M68kOperand> createMemOp(M68kMemOp MemOp, SMLoc Start,
SMLoc End);
// Token
bool isToken() const override;
StringRef getToken() const;
static std::unique_ptr<M68kOperand> createToken(StringRef Token, SMLoc Start,
SMLoc End);
// Imm
bool isImm() const override;
void addImmOperands(MCInst &Inst, unsigned N) const;
static std::unique_ptr<M68kOperand> createImm(const MCExpr *Expr, SMLoc Start,
SMLoc End);
// Imm for TRAP instruction
bool isTrapImm() const;
// Imm for BKPT instruction
bool isBkptImm() const;
// MoveMask
bool isMoveMask() const;
void addMoveMaskOperands(MCInst &Inst, unsigned N) const;
// Addr
bool isAddr() const;
bool isAddr8() const { return isAddrN<8>(); }
bool isAddr16() const { return isAddrN<16>(); }
bool isAddr32() const { return isAddrN<32>(); }
void addAddrOperands(MCInst &Inst, unsigned N) const;
// ARI
bool isARI() const;
void addARIOperands(MCInst &Inst, unsigned N) const;
// ARID
bool isARID() const;
void addARIDOperands(MCInst &Inst, unsigned N) const;
// ARII
bool isARII() const;
void addARIIOperands(MCInst &Inst, unsigned N) const;
// ARIPD
bool isARIPD() const;
void addARIPDOperands(MCInst &Inst, unsigned N) const;
// ARIPI
bool isARIPI() const;
void addARIPIOperands(MCInst &Inst, unsigned N) const;
// PCD
bool isPCD() const;
void addPCDOperands(MCInst &Inst, unsigned N) const;
// PCI
bool isPCI() const;
void addPCIOperands(MCInst &Inst, unsigned N) const;
};
} // end anonymous namespace.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeM68kAsmParser() {
RegisterMCAsmParser<M68kAsmParser> X(getTheM68kTarget());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "M68kGenAsmMatcher.inc"
static inline unsigned getRegisterByIndex(unsigned RegisterIndex) {
static unsigned RegistersByIndex[] = {
M68k::D0, M68k::D1, M68k::D2, M68k::D3, M68k::D4, M68k::D5,
M68k::D6, M68k::D7, M68k::A0, M68k::A1, M68k::A2, M68k::A3,
M68k::A4, M68k::A5, M68k::A6, M68k::SP, M68k::FP0, M68k::FP1,
M68k::FP2, M68k::FP3, M68k::FP4, M68k::FP5, M68k::FP6, M68k::FP7};
assert(RegisterIndex <=
sizeof(RegistersByIndex) / sizeof(RegistersByIndex[0]));
return RegistersByIndex[RegisterIndex];
}
static inline unsigned getRegisterIndex(unsigned Register) {
if (Register >= M68k::D0 && Register <= M68k::D7)
return Register - M68k::D0;
if (Register >= M68k::A0 && Register <= M68k::A6)
return Register - M68k::A0 + 8;
if (Register >= M68k::FP0 && Register <= M68k::FP7)
return Register - M68k::FP0 + 16;
switch (Register) {
case M68k::SP:
// SP is sadly not contiguous with the rest of the An registers
return 15;
// We don't care about the indices of these registers.
case M68k::PC:
case M68k::CCR:
case M68k::FPC:
case M68k::FPS:
case M68k::FPIAR:
return UINT_MAX;
default:
llvm_unreachable("unexpected register number");
}
}
void M68kMemOp::print(raw_ostream &OS) const {
switch (Op) {
case Kind::Addr:
OS << OuterDisp;
break;
case Kind::RegMask:
OS << "RegMask(" << format("%04x", RegMask) << ")";
break;
case Kind::Reg:
OS << '%' << OuterReg;
break;
case Kind::RegIndirect:
OS << "(%" << OuterReg << ')';
break;
case Kind::RegPostIncrement:
OS << "(%" << OuterReg << ")+";
break;
case Kind::RegPreDecrement:
OS << "-(%" << OuterReg << ")";
break;
case Kind::RegIndirectDisplacement:
OS << OuterDisp << "(%" << OuterReg << ")";
break;
case Kind::RegIndirectDisplacementIndex:
OS << OuterDisp << "(%" << OuterReg << ", " << InnerReg << "." << Size
<< ", " << InnerDisp << ")";
break;
}
}
void M68kOperand::addExpr(MCInst &Inst, const MCExpr *Expr) {
if (auto Const = dyn_cast<MCConstantExpr>(Expr)) {
Inst.addOperand(MCOperand::createImm(Const->getValue()));
return;
}
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Reg
bool M68kOperand::isReg() const {
return Kind == KindTy::MemOp && MemOp.Op == M68kMemOp::Kind::Reg;
}
MCRegister M68kOperand::getReg() const {
assert(isReg());
return MemOp.OuterReg;
}
void M68kOperand::addRegOperands(MCInst &Inst, unsigned N) const {
assert(isReg() && "wrong operand kind");
assert((N == 1) && "can only handle one register operand");
Inst.addOperand(MCOperand::createReg(getReg()));
}
std::unique_ptr<M68kOperand> M68kOperand::createMemOp(M68kMemOp MemOp,
SMLoc Start, SMLoc End) {
auto Op = std::make_unique<M68kOperand>(KindTy::MemOp, Start, End);
Op->MemOp = MemOp;
return Op;
}
// Token
bool M68kOperand::isToken() const { return Kind == KindTy::Token; }
StringRef M68kOperand::getToken() const {
assert(isToken());
return Token;
}
std::unique_ptr<M68kOperand> M68kOperand::createToken(StringRef Token,
SMLoc Start, SMLoc End) {
auto Op = std::make_unique<M68kOperand>(KindTy::Token, Start, End);
Op->Token = Token;
return Op;
}
// Imm
bool M68kOperand::isImm() const { return Kind == KindTy::Imm; }
void M68kOperand::addImmOperands(MCInst &Inst, unsigned N) const {
assert(isImm() && "wrong operand kind");
assert((N == 1) && "can only handle one register operand");
M68kOperand::addExpr(Inst, Expr);
}
std::unique_ptr<M68kOperand> M68kOperand::createImm(const MCExpr *Expr,
SMLoc Start, SMLoc End) {
auto Op = std::make_unique<M68kOperand>(KindTy::Imm, Start, End);
Op->Expr = Expr;
return Op;
}
bool M68kOperand::isTrapImm() const {
int64_t Value;
if (!isImm() || !Expr->evaluateAsAbsolute(Value))
return false;
return isUInt<4>(Value);
}
bool M68kOperand::isBkptImm() const {
int64_t Value;
if (!isImm() || !Expr->evaluateAsAbsolute(Value))
return false;
return isUInt<3>(Value);
}
// MoveMask
bool M68kOperand::isMoveMask() const {
if (!isMemOp())
return false;
if (MemOp.Op == M68kMemOp::Kind::RegMask)
return true;
if (MemOp.Op != M68kMemOp::Kind::Reg)
return false;
// Only regular address / data registers are allowed to be used
// in register masks.
return getRegisterIndex(MemOp.OuterReg) < 16;
}
void M68kOperand::addMoveMaskOperands(MCInst &Inst, unsigned N) const {
assert(isMoveMask() && "wrong operand kind");
assert((N == 1) && "can only handle one immediate operand");
uint16_t MoveMask = MemOp.RegMask;
if (MemOp.Op == M68kMemOp::Kind::Reg)
MoveMask = 1 << getRegisterIndex(MemOp.OuterReg);
Inst.addOperand(MCOperand::createImm(MoveMask));
}
// Addr
bool M68kOperand::isAddr() const {
return isMemOp() && MemOp.Op == M68kMemOp::Kind::Addr;
}
// TODO: Maybe we can also store the size of OuterDisp
// in Size?
template <unsigned N> bool M68kOperand::isAddrN() const {
if (isAddr()) {
int64_t Res;
if (MemOp.OuterDisp->evaluateAsAbsolute(Res))
return isInt<N>(Res);
return true;
}
return false;
}
void M68kOperand::addAddrOperands(MCInst &Inst, unsigned N) const {
M68kOperand::addExpr(Inst, MemOp.OuterDisp);
}
// ARI
bool M68kOperand::isARI() const {
return isMemOp() && MemOp.Op == M68kMemOp::Kind::RegIndirect &&
M68k::AR32RegClass.contains(MemOp.OuterReg);
}
void M68kOperand::addARIOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::createReg(MemOp.OuterReg));
}
// ARID
bool M68kOperand::isARID() const {
return isMemOp() && MemOp.Op == M68kMemOp::Kind::RegIndirectDisplacement &&
M68k::AR32RegClass.contains(MemOp.OuterReg);
}
void M68kOperand::addARIDOperands(MCInst &Inst, unsigned N) const {
M68kOperand::addExpr(Inst, MemOp.OuterDisp);
Inst.addOperand(MCOperand::createReg(MemOp.OuterReg));
}
// ARII
bool M68kOperand::isARII() const {
return isMemOp() &&
MemOp.Op == M68kMemOp::Kind::RegIndirectDisplacementIndex &&
M68k::AR32RegClass.contains(MemOp.OuterReg);
}
void M68kOperand::addARIIOperands(MCInst &Inst, unsigned N) const {
M68kOperand::addExpr(Inst, MemOp.OuterDisp);
Inst.addOperand(MCOperand::createReg(MemOp.OuterReg));
Inst.addOperand(MCOperand::createReg(MemOp.InnerReg));
}
// ARIPD
bool M68kOperand::isARIPD() const {
return isMemOp() && MemOp.Op == M68kMemOp::Kind::RegPreDecrement &&
M68k::AR32RegClass.contains(MemOp.OuterReg);
}
void M68kOperand::addARIPDOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::createReg(MemOp.OuterReg));
}
// ARIPI
bool M68kOperand::isARIPI() const {
return isMemOp() && MemOp.Op == M68kMemOp::Kind::RegPostIncrement &&
M68k::AR32RegClass.contains(MemOp.OuterReg);
}
void M68kOperand::addARIPIOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::createReg(MemOp.OuterReg));
}
// PCD
bool M68kOperand::isPCD() const {
return isMemOp() && MemOp.Op == M68kMemOp::Kind::RegIndirectDisplacement &&
MemOp.OuterReg == M68k::PC;
}
void M68kOperand::addPCDOperands(MCInst &Inst, unsigned N) const {
M68kOperand::addExpr(Inst, MemOp.OuterDisp);
}
// PCI
bool M68kOperand::isPCI() const {
return isMemOp() &&
MemOp.Op == M68kMemOp::Kind::RegIndirectDisplacementIndex &&
MemOp.OuterReg == M68k::PC;
}
void M68kOperand::addPCIOperands(MCInst &Inst, unsigned N) const {
M68kOperand::addExpr(Inst, MemOp.OuterDisp);
Inst.addOperand(MCOperand::createReg(MemOp.InnerReg));
}
static inline bool checkRegisterClass(unsigned RegNo, bool Data, bool Address,
bool SP, bool FPDR = false,
bool FPCR = false) {
switch (RegNo) {
case M68k::A0:
case M68k::A1:
case M68k::A2:
case M68k::A3:
case M68k::A4:
case M68k::A5:
case M68k::A6:
return Address;
case M68k::SP:
return SP;
case M68k::D0:
case M68k::D1:
case M68k::D2:
case M68k::D3:
case M68k::D4:
case M68k::D5:
case M68k::D6:
case M68k::D7:
return Data;
case M68k::SR:
case M68k::CCR:
return false;
case M68k::FP0:
case M68k::FP1:
case M68k::FP2:
case M68k::FP3:
case M68k::FP4:
case M68k::FP5:
case M68k::FP6:
case M68k::FP7:
return FPDR;
case M68k::FPC:
case M68k::FPS:
case M68k::FPIAR:
return FPCR;
default:
llvm_unreachable("unexpected register type");
return false;
}
}
bool M68kOperand::isAReg() const {
return isReg() && checkRegisterClass(getReg(),
/*Data=*/false,
/*Address=*/true, /*SP=*/true);
}
bool M68kOperand::isDReg() const {
return isReg() && checkRegisterClass(getReg(),
/*Data=*/true,
/*Address=*/false, /*SP=*/false);
}
bool M68kOperand::isFPDReg() const {
return isReg() && checkRegisterClass(getReg(),
/*Data=*/false,
/*Address=*/false, /*SP=*/false,
/*FPDR=*/true);
}
bool M68kOperand::isFPCReg() const {
return isReg() && checkRegisterClass(getReg(),
/*Data=*/false,
/*Address=*/false, /*SP=*/false,
/*FPDR=*/false, /*FPCR=*/true);
}
unsigned M68kAsmParser::validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) {
M68kOperand &Operand = (M68kOperand &)Op;
switch (Kind) {
case MCK_XR16:
case MCK_SPILL:
if (Operand.isReg() &&
checkRegisterClass(Operand.getReg(), true, true, true)) {
return Match_Success;
}
break;
case MCK_AR16:
case MCK_AR32:
if (Operand.isReg() &&
checkRegisterClass(Operand.getReg(), false, true, true)) {
return Match_Success;
}
break;
case MCK_AR32_NOSP:
if (Operand.isReg() &&
checkRegisterClass(Operand.getReg(), false, true, false)) {
return Match_Success;
}
break;
case MCK_DR8:
case MCK_DR16:
case MCK_DR32:
if (Operand.isReg() &&
checkRegisterClass(Operand.getReg(), true, false, false)) {
return Match_Success;
}
break;
case MCK_AR16_TC:
if (Operand.isReg() &&
((Operand.getReg() == M68k::A0) || (Operand.getReg() == M68k::A1))) {
return Match_Success;
}
break;
case MCK_DR16_TC:
if (Operand.isReg() &&
((Operand.getReg() == M68k::D0) || (Operand.getReg() == M68k::D1))) {
return Match_Success;
}
break;
case MCK_XR16_TC:
if (Operand.isReg() &&
((Operand.getReg() == M68k::D0) || (Operand.getReg() == M68k::D1) ||
(Operand.getReg() == M68k::A0) || (Operand.getReg() == M68k::A1))) {
return Match_Success;
}
break;
}
return Match_InvalidOperand;
}
bool M68kAsmParser::parseRegisterName(MCRegister &RegNo, SMLoc Loc,
StringRef RegisterName) {
auto RegisterNameLower = RegisterName.lower();
// CCR register
if (RegisterNameLower == "ccr") {
RegNo = M68k::CCR;
return true;
}
// Parse simple general-purpose registers.
if (RegisterNameLower.size() == 2) {
switch (RegisterNameLower[0]) {
case 'd':
case 'a': {
if (isdigit(RegisterNameLower[1])) {
unsigned IndexOffset = (RegisterNameLower[0] == 'a') ? 8 : 0;
unsigned RegIndex = (unsigned)(RegisterNameLower[1] - '0');
if (RegIndex < 8) {
RegNo = getRegisterByIndex(IndexOffset + RegIndex);
return true;
}
}
break;
}
case 's':
if (RegisterNameLower[1] == 'p') {
RegNo = M68k::SP;
return true;
} else if (RegisterNameLower[1] == 'r') {
RegNo = M68k::SR;
return true;
}
break;
case 'p':
if (RegisterNameLower[1] == 'c') {
RegNo = M68k::PC;
return true;
}
break;
}
} else if (StringRef(RegisterNameLower).starts_with("fp") &&
RegisterNameLower.size() > 2) {
auto RegIndex = unsigned(RegisterNameLower[2] - '0');
if (RegIndex < 8 && RegisterNameLower.size() == 3) {
// Floating point data register.
RegNo = getRegisterByIndex(16 + RegIndex);
return true;
} else {
// Floating point control register.
RegNo = StringSwitch<unsigned>(RegisterNameLower)
.Cases("fpc", "fpcr", M68k::FPC)
.Cases("fps", "fpsr", M68k::FPS)
.Cases("fpi", "fpiar", M68k::FPIAR)
.Default(M68k::NoRegister);
assert(RegNo != M68k::NoRegister &&
"Unrecognized FP control register name");
return true;
}
}
return false;
}
ParseStatus M68kAsmParser::parseRegister(MCRegister &RegNo) {
bool HasPercent = false;
AsmToken PercentToken;
LLVM_DEBUG(dbgs() << "parseRegister "; getTok().dump(dbgs()); dbgs() << "\n");
if (getTok().is(AsmToken::Percent)) {
HasPercent = true;
PercentToken = Lex();
} else if (!RegisterPrefixOptional.getValue()) {
return ParseStatus::NoMatch;
}
if (!Parser.getTok().is(AsmToken::Identifier)) {
if (HasPercent) {
getLexer().UnLex(PercentToken);
}
return ParseStatus::NoMatch;
}
auto RegisterName = Parser.getTok().getString();
if (!parseRegisterName(RegNo, Parser.getLexer().getLoc(), RegisterName)) {
if (HasPercent) {
getLexer().UnLex(PercentToken);
}
return ParseStatus::NoMatch;
}
Parser.Lex();
return ParseStatus::Success;
}
bool M68kAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
ParseStatus Result = tryParseRegister(Reg, StartLoc, EndLoc);
if (!Result.isSuccess())
return Error(StartLoc, "expected register");
return false;
}
ParseStatus M68kAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = getLexer().getLoc();
ParseStatus Result = parseRegister(Reg);
EndLoc = getLexer().getLoc();
return Result;
}
bool M68kAsmParser::isExpr() {
switch (Parser.getTok().getKind()) {
case AsmToken::Identifier:
case AsmToken::Integer:
return true;
case AsmToken::Minus:
return getLexer().peekTok().getKind() == AsmToken::Integer;
default:
return false;
}
}
ParseStatus M68kAsmParser::parseImm(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Hash))
return ParseStatus::NoMatch;
SMLoc Start = getLexer().getLoc();
Parser.Lex();
SMLoc End;
const MCExpr *Expr;
if (getParser().parseExpression(Expr, End))
return ParseStatus::Failure;
Operands.push_back(M68kOperand::createImm(Expr, Start, End));
return ParseStatus::Success;
}
ParseStatus M68kAsmParser::parseMemOp(OperandVector &Operands) {
SMLoc Start = getLexer().getLoc();
bool IsPD = false;
M68kMemOp MemOp;
// Check for a plain register or register mask.
ParseStatus Result = parseRegOrMoveMask(Operands);
if (!Result.isNoMatch())
return Result;
// Check for pre-decrement & outer displacement.
bool HasDisplacement = false;
if (getLexer().is(AsmToken::Minus)) {
IsPD = true;
Parser.Lex();
} else if (isExpr()) {
if (Parser.parseExpression(MemOp.OuterDisp))
return ParseStatus::Failure;
HasDisplacement = true;
}
if (getLexer().isNot(AsmToken::LParen)) {
if (HasDisplacement) {
MemOp.Op = M68kMemOp::Kind::Addr;
Operands.push_back(
M68kOperand::createMemOp(MemOp, Start, getLexer().getLoc()));
return ParseStatus::Success;
}
if (IsPD)
return Error(getLexer().getLoc(), "expected (");
return ParseStatus::NoMatch;
}
Parser.Lex();
// Check for constant dereference & MIT-style displacement
if (!HasDisplacement && isExpr()) {
if (Parser.parseExpression(MemOp.OuterDisp))
return ParseStatus::Failure;
HasDisplacement = true;
// If we're not followed by a comma, we're a constant dereference.
if (getLexer().isNot(AsmToken::Comma)) {
MemOp.Op = M68kMemOp::Kind::Addr;
Operands.push_back(
M68kOperand::createMemOp(MemOp, Start, getLexer().getLoc()));
return ParseStatus::Success;
}
Parser.Lex();
}
Result = parseRegister(MemOp.OuterReg);
if (Result.isFailure())
return ParseStatus::Failure;
if (!Result.isSuccess())
return Error(getLexer().getLoc(), "expected register");
// Check for Index.
bool HasIndex = false;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex();
Result = parseRegister(MemOp.InnerReg);
if (Result.isFailure())
return Result;
if (Result.isNoMatch())
return Error(getLexer().getLoc(), "expected register");
// TODO: parse size, scale and inner displacement.
MemOp.Size = 4;
MemOp.Scale = 1;
MemOp.InnerDisp = MCConstantExpr::create(0, Parser.getContext(), true, 4);
HasIndex = true;
}
if (Parser.getTok().isNot(AsmToken::RParen))
return Error(getLexer().getLoc(), "expected )");
Parser.Lex();
bool IsPI = false;
if (!IsPD && Parser.getTok().is(AsmToken::Plus)) {
Parser.Lex();
IsPI = true;
}
SMLoc End = getLexer().getLoc();
unsigned OpCount = IsPD + IsPI + (HasIndex || HasDisplacement);
if (OpCount > 1)
return Error(Start, "only one of post-increment, pre-decrement or "
"displacement can be used");
if (IsPD) {
MemOp.Op = M68kMemOp::Kind::RegPreDecrement;
} else if (IsPI) {
MemOp.Op = M68kMemOp::Kind::RegPostIncrement;
} else if (HasIndex) {
MemOp.Op = M68kMemOp::Kind::RegIndirectDisplacementIndex;
} else if (HasDisplacement) {
MemOp.Op = M68kMemOp::Kind::RegIndirectDisplacement;
} else {
MemOp.Op = M68kMemOp::Kind::RegIndirect;
}
Operands.push_back(M68kOperand::createMemOp(MemOp, Start, End));
return ParseStatus::Success;
}
ParseStatus M68kAsmParser::parseRegOrMoveMask(OperandVector &Operands) {
SMLoc Start = getLexer().getLoc();
M68kMemOp MemOp(M68kMemOp::Kind::RegMask);
MemOp.RegMask = 0;
for (;;) {
bool IsFirstRegister =
(MemOp.Op == M68kMemOp::Kind::RegMask) && (MemOp.RegMask == 0);
MCRegister FirstRegister;
ParseStatus Result = parseRegister(FirstRegister);
if (IsFirstRegister && Result.isNoMatch())
return ParseStatus::NoMatch;
if (!Result.isSuccess())
return Error(getLexer().getLoc(), "expected start register");
MCRegister LastRegister = FirstRegister;
if (parseOptionalToken(AsmToken::Minus)) {
Result = parseRegister(LastRegister);
if (!Result.isSuccess())
return Error(getLexer().getLoc(), "expected end register");
}
unsigned FirstRegisterIndex = getRegisterIndex(FirstRegister);
unsigned LastRegisterIndex = getRegisterIndex(LastRegister);
uint16_t NumNewBits = LastRegisterIndex - FirstRegisterIndex + 1;
uint16_t NewMaskBits = ((1 << NumNewBits) - 1) << FirstRegisterIndex;
if (IsFirstRegister && (FirstRegister == LastRegister)) {
// First register range is a single register, simplify to just Reg
// so that it matches more operands.
MemOp.Op = M68kMemOp::Kind::Reg;
MemOp.OuterReg = FirstRegister;
} else {
if (MemOp.Op == M68kMemOp::Kind::Reg) {
// This is the second register being specified - expand the Reg operand
// into a mask first.
MemOp.Op = M68kMemOp::Kind::RegMask;
MemOp.RegMask = 1 << getRegisterIndex(MemOp.OuterReg);
if (MemOp.RegMask == 0)
return Error(getLexer().getLoc(),
"special registers cannot be used in register masks");
}
if ((FirstRegisterIndex >= 16) || (LastRegisterIndex >= 16))
return Error(getLexer().getLoc(),
"special registers cannot be used in register masks");
if (NewMaskBits & MemOp.RegMask)
return Error(getLexer().getLoc(), "conflicting masked registers");
MemOp.RegMask |= NewMaskBits;
}
if (!parseOptionalToken(AsmToken::Slash))
break;
}
Operands.push_back(
M68kOperand::createMemOp(MemOp, Start, getLexer().getLoc()));
return ParseStatus::Success;
}
void M68kAsmParser::eatComma() {
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex();
}
}
bool M68kAsmParser::parseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
SMLoc Start = getLexer().getLoc();
Operands.push_back(M68kOperand::createToken(Name, Start, Start));
bool First = true;
while (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
if (!First) {
eatComma();
} else {
First = false;
}
ParseStatus MatchResult = MatchOperandParserImpl(Operands, Name);
if (MatchResult.isSuccess())
continue;
// Add custom operand formats here...
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token parsing operands");
}
// Eat EndOfStatement.
Parser.Lex();
return false;
}
bool M68kAsmParser::invalidOperand(SMLoc const &Loc,
OperandVector const &Operands,
uint64_t const &ErrorInfo) {
SMLoc ErrorLoc = Loc;
char const *Diag = 0;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size()) {
Diag = "too few operands for instruction.";
} else {
auto const &Op = (M68kOperand const &)*Operands[ErrorInfo];
if (Op.getStartLoc() != SMLoc()) {
ErrorLoc = Op.getStartLoc();
}
}
}
if (!Diag) {
Diag = "invalid operand for instruction";
}
return Error(ErrorLoc, Diag);
}
bool M68kAsmParser::missingFeature(llvm::SMLoc const &Loc,
uint64_t const &ErrorInfo) {
return Error(Loc, "instruction requires a CPU feature not currently enabled");
}
bool M68kAsmParser::emit(MCInst &Inst, SMLoc const &Loc,
MCStreamer &Out) const {
Inst.setLoc(Loc);
Out.emitInstruction(Inst, STI);
return false;
}
bool M68kAsmParser::matchAndEmitInstruction(SMLoc Loc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success:
return emit(Inst, Loc, Out);
case Match_MissingFeature:
return missingFeature(Loc, ErrorInfo);
case Match_InvalidOperand:
return invalidOperand(Loc, Operands, ErrorInfo);
case Match_MnemonicFail:
return Error(Loc, "invalid instruction");
default:
return true;
}
}
void M68kOperand::print(raw_ostream &OS) const {
switch (Kind) {
case KindTy::Invalid:
OS << "invalid";
break;
case KindTy::Token:
OS << "token '" << Token << "'";
break;
case KindTy::Imm: {
int64_t Value;
Expr->evaluateAsAbsolute(Value);
OS << "immediate " << Value;
break;
}
case KindTy::MemOp:
MemOp.print(OS);
break;
}
}