//===-- M68kMCCodeEmitter.cpp - Convert M68k code emitter -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains defintions for M68k code emitter.
///
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/M68kMCCodeEmitter.h"
#include "MCTargetDesc/M68kBaseInfo.h"
#include "MCTargetDesc/M68kFixupKinds.h"
#include "MCTargetDesc/M68kMCTargetDesc.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
using namespace llvm;
#define DEBUG_TYPE "m68k-mccodeemitter"
namespace {
class M68kMCCodeEmitter : public MCCodeEmitter {
M68kMCCodeEmitter(const M68kMCCodeEmitter &) = delete;
void operator=(const M68kMCCodeEmitter &) = delete;
const MCInstrInfo &MCII;
MCContext &Ctx;
void getBinaryCodeForInstr(const MCInst &MI, SmallVectorImpl<MCFixup> &Fixups,
APInt &Inst, APInt &Scratch,
const MCSubtargetInfo &STI) const;
void getMachineOpValue(const MCInst &MI, const MCOperand &Op,
unsigned InsertPos, APInt &Value,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
template <unsigned Size>
void encodeRelocImm(const MCInst &MI, unsigned OpIdx, unsigned InsertPos,
APInt &Value, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
template <unsigned Size>
void encodePCRelImm(const MCInst &MI, unsigned OpIdx, unsigned InsertPos,
APInt &Value, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
void encodeFPSYSSelect(const MCInst &MI, unsigned OpIdx, unsigned InsertPos,
APInt &Value, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
public:
M68kMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
: MCII(mcii), Ctx(ctx) {}
~M68kMCCodeEmitter() override {}
void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
};
} // end anonymous namespace
#include "M68kGenMCCodeEmitter.inc"
// Select the proper unsigned integer type from a bit size.
template <unsigned Size> struct select_uint_t {
using type = typename std::conditional<
Size == 8, uint8_t,
typename std::conditional<
Size == 16, uint16_t,
typename std::conditional<Size == 32, uint32_t,
uint64_t>::type>::type>::type;
};
// Figure out which byte we're at in big endian mode.
template <unsigned Size> static unsigned getBytePosition(unsigned BitPos) {
if (Size % 16) {
return static_cast<unsigned>(BitPos / 8 + ((BitPos & 0b1111) < 8 ? 1 : -1));
} else {
assert(!(BitPos & 0b1111) && "Not aligned to word boundary?");
return BitPos / 8;
}
}
// We need special handlings for relocatable & pc-relative operands that are
// larger than a word.
// A M68k instruction is aligned by word (16 bits). That means, 32-bit
// (& 64-bit) immediate values are separated into hi & lo words and placed
// at lower & higher addresses, respectively. For immediate values that can
// be easily expressed in TG, we explicitly rotate the word ordering like
// this:
// ```
// (ascend (slice "$imm", 31, 16), (slice "$imm", 15, 0))
// ```
// For operands that call into encoder functions, we need to use the `swapWord`
// function to assure the correct word ordering on LE host. Note that
// M68kMCCodeEmitter does massage _byte_ ordering of the final encoded
// instruction but it assumes everything aligns on word boundaries. So things
// will go wrong if we don't take care of the _word_ ordering here.
template <unsigned Size>
void M68kMCCodeEmitter::encodeRelocImm(const MCInst &MI, unsigned OpIdx,
unsigned InsertPos, APInt &Value,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
using value_t = typename select_uint_t<Size>::type;
const MCOperand &MCO = MI.getOperand(OpIdx);
if (MCO.isImm()) {
Value |= M68k::swapWord<value_t>(static_cast<value_t>(MCO.getImm()));
} else if (MCO.isExpr()) {
const MCExpr *Expr = MCO.getExpr();
// Absolute address
int64_t Addr;
if (Expr->evaluateAsAbsolute(Addr)) {
Value |= M68k::swapWord<value_t>(static_cast<value_t>(Addr));
return;
}
// Relocatable address
unsigned InsertByte = getBytePosition<Size>(InsertPos);
Fixups.push_back(MCFixup::create(InsertByte, Expr,
getFixupForSize(Size, /*IsPCRel=*/false),
MI.getLoc()));
}
}
template <unsigned Size>
void M68kMCCodeEmitter::encodePCRelImm(const MCInst &MI, unsigned OpIdx,
unsigned InsertPos, APInt &Value,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MCO = MI.getOperand(OpIdx);
if (MCO.isImm()) {
using value_t = typename select_uint_t<Size>::type;
Value |= M68k::swapWord<value_t>(static_cast<value_t>(MCO.getImm()));
} else if (MCO.isExpr()) {
const MCExpr *Expr = MCO.getExpr();
unsigned InsertByte = getBytePosition<Size>(InsertPos);
// Special handlings for sizes smaller than a word.
if (Size < 16) {
int LabelOffset = 0;
if (InsertPos < 16)
// If the patch point is at the first word, PC is pointing at the
// next word.
LabelOffset = InsertByte - 2;
else if (InsertByte % 2)
// Otherwise the PC is pointing at the first byte of this word.
// So we need to consider the offset between PC and the fixup byte.
LabelOffset = 1;
if (LabelOffset)
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(LabelOffset, Ctx), Ctx);
}
Fixups.push_back(MCFixup::create(InsertByte, Expr,
getFixupForSize(Size, /*IsPCRel=*/true),
MI.getLoc()));
}
}
void M68kMCCodeEmitter::encodeFPSYSSelect(const MCInst &MI, unsigned OpIdx,
unsigned InsertPos, APInt &Value,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCRegister FPSysReg = MI.getOperand(OpIdx).getReg();
switch (FPSysReg) {
case M68k::FPC:
Value = 0b100;
break;
case M68k::FPS:
Value = 0b010;
break;
case M68k::FPIAR:
Value = 0b001;
break;
default:
llvm_unreachable("Unrecognized FPSYS register");
}
}
void M68kMCCodeEmitter::getMachineOpValue(const MCInst &MI, const MCOperand &Op,
unsigned InsertPos, APInt &Value,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Register
if (Op.isReg()) {
unsigned RegNum = Op.getReg();
const auto *RI = Ctx.getRegisterInfo();
Value |= RI->getEncodingValue(RegNum);
// Setup the D/A bit
if (M68kII::isAddressRegister(RegNum))
Value |= 0b1000;
} else if (Op.isImm()) {
// Immediate
Value |= static_cast<uint64_t>(Op.getImm());
} else if (Op.isExpr()) {
// Absolute address
int64_t Addr;
if (!Op.getExpr()->evaluateAsAbsolute(Addr))
report_fatal_error("Unsupported asm expression. Only absolute address "
"can be placed here.");
Value |= static_cast<uint64_t>(Addr);
} else {
llvm_unreachable("Unsupported operand type");
}
}
void M68kMCCodeEmitter::encodeInstruction(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
LLVM_DEBUG(dbgs() << "EncodeInstruction: " << MCII.getName(MI.getOpcode())
<< "(" << MI.getOpcode() << ")\n");
(void)MCII;
// Try using the new method first.
APInt EncodedInst(16, 0U);
APInt Scratch(64, 0U); // One APInt word is enough.
getBinaryCodeForInstr(MI, Fixups, EncodedInst, Scratch, STI);
unsigned InstSize = EncodedInst.getBitWidth();
for (unsigned i = 0; i != InstSize; i += 16)
support::endian::write<uint16_t>(
CB, static_cast<uint16_t>(EncodedInst.extractBitsAsZExtValue(16, i)),
llvm::endianness::big);
}
MCCodeEmitter *llvm::createM68kMCCodeEmitter(const MCInstrInfo &MCII,
MCContext &Ctx) {
return new M68kMCCodeEmitter(MCII, Ctx);
}