//=- ARMScheduleM85.td - ARM Cortex-M85 Scheduling Definitions -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for the ARM Cortex-M85 processor.
//
// All timing is referred to EX2. Thus, operands which are needed at EX1 are
// stated to have a ReadAdvance of -1. The FP/MVE pipe actually begins at EX3
// but is described as if it were in EX2 to avoid having unnaturally long latencies
// with delayed inputs on every instruction. Instead, whenever an FP instruction
// must access a GP register or a non-FP instruction (which includes loads/stores)
// must access an FP register, the operand timing is adjusted:
// FP accessing GPR: read one cycle later, write one cycle later
// NOTE: absolute spec timing already includes this if
// referenced to EX2
// non-FP accessing FPR: read one cycle earlier, write one cycle earlier
//===----------------------------------------------------------------------===//
def CortexM85Model : SchedMachineModel {
let IssueWidth = 2; // Dual issue for most instructions.
let MicroOpBufferSize = 0; // M85 is in-order.
let LoadLatency = 2; // Best case for load-use case.
let MispredictPenalty = 4; // Mispredict cost for forward branches is 7,
// but 4 works better
let CompleteModel = 0;
}
let SchedModel = CortexM85Model in {
//===--------------------------------------------------------------------===//
// CortexM85 has two ALU, two LOAD, two STORE, a MAC, a BRANCH and two VFP
// pipes (with three units). There are three shifters available: one per
// stage.
def M85UnitLoadL : ProcResource<1> { let BufferSize = 0; }
def M85UnitLoadH : ProcResource<1> { let BufferSize = 0; }
def M85UnitLoad : ProcResGroup<[M85UnitLoadL,M85UnitLoadH]> { let BufferSize = 0; }
def M85UnitStoreL : ProcResource<1> { let BufferSize = 0; }
def M85UnitStoreH : ProcResource<1> { let BufferSize = 0; }
def M85UnitStore : ProcResGroup<[M85UnitStoreL,M85UnitStoreH]> { let BufferSize = 0; }
def M85UnitALU : ProcResource<2> { let BufferSize = 0; }
def M85UnitShift1 : ProcResource<1> { let BufferSize = 0; }
def M85UnitShift2 : ProcResource<1> { let BufferSize = 0; }
def M85UnitMAC : ProcResource<1> { let BufferSize = 0; }
def M85UnitBranch : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPAL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPAH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPA : ProcResGroup<[M85UnitVFPAL,M85UnitVFPAH]> { let BufferSize = 0; }
def M85UnitVFPBL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPBH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPB : ProcResGroup<[M85UnitVFPBL,M85UnitVFPBH]> { let BufferSize = 0; }
def M85UnitVFPCL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPCH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPC : ProcResGroup<[M85UnitVFPCL,M85UnitVFPCH]> { let BufferSize = 0; }
def M85UnitVFPD : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPortL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPortH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPort : ProcResGroup<[M85UnitVPortL,M85UnitVPortH]> { let BufferSize = 0; }
def M85UnitSIMD : ProcResource<1> { let BufferSize = 0; }
def M85UnitLShift : ProcResource<1> { let BufferSize = 0; }
def M85UnitDiv : ProcResource<1> { let BufferSize = 0; }
def M85UnitSlot0 : ProcResource<1> { let BufferSize = 0; }
//===---------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types with map ProcResources and set latency.
def : WriteRes<WriteALU, [M85UnitALU]> { let Latency = 1; }
// Basic ALU with shifts.
let Latency = 1 in {
def : WriteRes<WriteALUsi, [M85UnitALU, M85UnitShift1]>;
def : WriteRes<WriteALUsr, [M85UnitALU, M85UnitShift1]>;
def : WriteRes<WriteALUSsr, [M85UnitALU, M85UnitShift1]>;
}
// Compares.
def : WriteRes<WriteCMP, [M85UnitALU]> { let Latency = 1; }
def : WriteRes<WriteCMPsi, [M85UnitALU, M85UnitShift1]> { let Latency = 2; }
def : WriteRes<WriteCMPsr, [M85UnitALU, M85UnitShift1]> { let Latency = 2; }
// Multiplies.
let Latency = 2 in {
def : WriteRes<WriteMUL16, [M85UnitMAC]>;
def : WriteRes<WriteMUL32, [M85UnitMAC]>;
def : WriteRes<WriteMUL64Lo, [M85UnitMAC]>;
def : WriteRes<WriteMUL64Hi, []> { let NumMicroOps = 0; }
}
// Multiply-accumulates.
let Latency = 2 in {
def : WriteRes<WriteMAC16, [M85UnitMAC]>;
def : WriteRes<WriteMAC32, [M85UnitMAC]>;
def : WriteRes<WriteMAC64Lo, [M85UnitMAC]>;
def : WriteRes<WriteMAC64Hi, []> { let NumMicroOps = 0; }
}
// Divisions.
def : WriteRes<WriteDIV, [M85UnitDiv]> {
let Latency = 7;
}
// Loads/Stores.
def : WriteRes<WriteLd, [M85UnitLoad]> { let Latency = 1; }
def : WriteRes<WritePreLd, [M85UnitLoad]> { let Latency = 2; }
def : WriteRes<WriteST, [M85UnitStore]> { let Latency = 2; }
def M85WriteLdWide : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH]> { let Latency = 1; }
def M85WriteStWide : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH]> { let Latency = 2; }
// Branches.
def : WriteRes<WriteBr, [M85UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrL, [M85UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrTbl, [M85UnitBranch]> { let Latency = 2; }
// Noop.
def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
//===---------------------------------------------------------------------===//
// Sched definitions for floating-point instructions
//
// Floating point conversions.
def : WriteRes<WriteFPCVT, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 2;
}
def : WriteRes<WriteFPMOV, [M85UnitVPort, M85UnitSlot0]> { let Latency = 1; }
def M85WriteFPMOV64 : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let Latency = 1; }
// ALU operations (32/64-bit). These go down the FP pipeline.
def : WriteRes<WriteFPALU32, [M85UnitVFPA, M85UnitVPort, M85UnitSlot0]> {
let Latency = 2;
}
def : WriteRes<WriteFPALU64, [M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 6;
}
// Multiplication
def : WriteRes<WriteFPMUL32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 3;
}
def : WriteRes<WriteFPMUL64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 8;
}
// Multiply-accumulate. FPMAC goes down the FP Pipeline.
def : WriteRes<WriteFPMAC32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 5;
}
def : WriteRes<WriteFPMAC64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 14;
}
// Division. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPDIV32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 14;
}
def : WriteRes<WriteFPDIV64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 29;
}
// Square-root. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPSQRT32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 14;
}
def : WriteRes<WriteFPSQRT64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 29;
}
let NumMicroOps = 0 in {
def M85SingleIssue : SchedWriteRes<[]> { let SingleIssue = 1; }
def M85Slot0Only : SchedWriteRes<[M85UnitSlot0]> { }
}
// What pipeline stage operands need to be ready for depending on
// where they come from.
def : ReadAdvance<ReadALUsr, 0>;
def : ReadAdvance<ReadMUL, 0>;
def : ReadAdvance<ReadMAC, 1>;
def : ReadAdvance<ReadALU, 0>;
def : ReadAdvance<ReadFPMUL, 0>;
def : ReadAdvance<ReadFPMAC, 3>;
def M85Read_ISSm1 : SchedReadAdvance<-2>; // operands needed at ISS
def M85Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1
def M85Read_EX1 : SchedReadAdvance<0>; // operands needed at EX2
def M85Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3
def M85Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4
def M85Read_EX4 : SchedReadAdvance<3>; // operands needed at EX5
def M85Write1 : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def M85Write2 : SchedWriteRes<[]> {
let Latency = 2;
let NumMicroOps = 0;
}
def M85WriteShift2 : SchedWriteRes<[M85UnitALU, M85UnitShift2]> {}
// Non general purpose instructions may not be dual issued. These
// use both issue units.
def M85NonGeneralPurpose : SchedWriteRes<[]> {
// Assume that these will go down the main ALU pipeline.
// In reality, many look likely to stall the whole pipeline.
let Latency = 3;
let SingleIssue = 1;
}
// List the non general purpose instructions.
def : InstRW<[M85NonGeneralPurpose],
(instregex "t2MRS", "tSVC", "tBKPT", "t2MSR", "t2DMB", "t2DSB",
"t2ISB", "t2HVC", "t2SMC", "t2UDF", "ERET", "tHINT",
"t2HINT", "t2CLREX", "t2CLRM", "BUNDLE")>;
//===---------------------------------------------------------------------===//
// Sched definitions for load/store
//
// Mark whether the loads/stores must be single-issue
// Address operands are needed earlier
// Data operands are needed later
let NumMicroOps = 0 in {
def M85BaseUpdate : SchedWriteRes<[]> {
// Update is bypassable out of EX1
let Latency = 0;
}
def M85MVERBaseUpdate : SchedWriteRes<[]> { let Latency = 1; }
// Q register base update is available in EX3 to bypass into EX2/ISS.
// Latency=2 matches what we want for ISS, Latency=1 for EX2. Going
// with 2, as base update into another load/store is most likely. Could
// change later in an override.
def M85MVEQBaseUpdate : SchedWriteRes<[]> { let Latency = 2; }
def M85LoadLatency1 : SchedWriteRes<[]> { let Latency = 1; }
}
def M85SlowLoad : SchedWriteRes<[M85UnitLoad]> { let Latency = 2; }
// Byte and half-word loads should have greater latency than other loads.
// So should load exclusive?
def : InstRW<[M85SlowLoad],
(instregex "t2LDR(B|H|SB|SH)pc")>;
def : InstRW<[M85SlowLoad, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i",
"tLDRspi", "tLDR(B|H)i")>;
def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)s")>;
def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS],
(instregex "tLDR(B|H)r", "tLDR(SB|SH)")>;
def : InstRW<[M85SlowLoad, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>;
// Exclusive/acquire/release loads/stores cannot be dual-issued
def : InstRW<[WriteLd, M85SingleIssue, M85Read_ISS],
(instregex "t2LDREX$", "t2LDA(EX)?$")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85SingleIssue, M85Read_ISS],
(instregex "t2LDAEXD$")>;
def : InstRW<[M85SlowLoad, M85SingleIssue, M85Read_ISS],
(instregex "t2LDREX(B|H)", "t2LDA(EX)?(B|H)$")>;
def : InstRW<[WriteST, M85SingleIssue, M85Read_EX2, M85Read_ISS],
(instregex "t2STREX(B|H)?$", "t2STL(EX)?(B|H)?$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STLEXD$")>;
// Load/store multiples end issue groups.
def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)LDM(DB|IA)$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)STM(DB|IA)$")>;
def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>;
def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>;
// Load/store doubles
def : InstRW<[M85BaseUpdate, M85WriteStWide,
M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STRD_(PRE|POST)")>;
def : InstRW<[M85WriteStWide, M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STRDi")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDRD_(PRE|POST)")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85Read_ISS],
(instregex "t2LDRDi")>;
// Word load / preload
def : InstRW<[WriteLd],
(instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>;
def : InstRW<[WriteLd, M85Read_ISS],
(instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi")>;
def : InstRW<[WriteLd, M85Read_ISS, M85Read_ISS],
(instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>;
def : InstRW<[WriteLd, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDR_(POST|PRE)")>;
// Stores
def : InstRW<[M85BaseUpdate, WriteST, M85Read_EX2, M85Read_ISS],
(instregex "t2STR(B|H)?_(POST|PRE)")>;
def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS, M85Read_ISS],
(instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>;
def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS],
(instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>;
// TBB/TBH - single-issue only
def M85TableLoad : SchedWriteRes<[M85UnitLoad]> { let SingleIssue = 1; }
def : InstRW<[M85TableLoad, M85Read_ISS, M85Read_ISS],
(instregex "t2TB")>;
// VFP/MVE loads and stores
// Note: timing for VLDR/VSTR special has not been broken out
// Note 2: see notes at top of file for the reason load latency is 1 and
// store data is in EX3.
def M85LoadSP : SchedWriteRes<[M85UnitLoad, M85UnitVPort]>;
def M85LoadDP : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]>;
def M85LoadSys : SchedWriteRes<[M85UnitLoad, M85UnitVPort,
M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]> {
let Latency = 4;
}
def M85StoreSP : SchedWriteRes<[M85UnitStore, M85UnitVPort]>;
def M85StoreDP : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH,
M85UnitVPortL, M85UnitVPortH]>;
def M85StoreSys : SchedWriteRes<[M85UnitStore, M85UnitVPort,
M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]>;
let ReleaseAtCycles = [2,2,1,1], EndGroup = 1 in {
def M85LoadMVE : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]>;
def M85LoadMVELate : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]> {
let Latency = 4; // 3 cycles later
}
def M85StoreMVE : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH,
M85UnitVPortL, M85UnitVPortH]>;
}
def : InstRW<[M85LoadSP, M85Read_ISS], (instregex "VLDR(S|H)$")>;
def : InstRW<[M85LoadSys, M85Read_ISS], (instregex "VLDR_")>;
def : InstRW<[M85LoadDP, M85Read_ISS], (instregex "VLDRD$")>;
def : InstRW<[M85StoreSP, M85Read_EX3, M85Read_ISS], (instregex "VSTR(S|H)$")>;
def : InstRW<[M85StoreSys, M85Read_EX1, M85Read_ISS], (instregex "VSTR_")>;
def : InstRW<[M85StoreDP, M85Read_EX3, M85Read_ISS], (instregex "VSTRD$")>;
def : InstRW<[M85LoadMVELate, M85Read_ISS],
(instregex "MVE_VLD[24]._[0-9]+$")>;
def : InstRW<[M85LoadMVELate, M85MVERBaseUpdate, M85Read_ISS],
(instregex "MVE_VLD[24].*wb")>;
def : InstRW<[M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(8|16|32|64)$")>;
def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS, M85Read_ISS],
(instregex "MVE_VLDR.*(_rq|_rq|_rq_u)$")>;
def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS],
(instregex "MVE_VLDR.*_qi$")>;
def : InstRW<[M85MVERBaseUpdate, M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(_post|[^i]_pre)$")>;
def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(qi_pre)$")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VST[24]._[0-9]+$")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85MVERBaseUpdate, M85Read_ISS],
(instregex "MVE_VST[24].*wb")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(8|16|32|64)$")>;
def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS, M85Read_ISS],
(instregex "MVE_VSTR.*(_rq|_rq|_rq_u)$")>;
def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*_qi$")>;
def : InstRW<[M85MVERBaseUpdate, M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(_post|[^i]_pre)$")>;
def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85StoreMVE,
M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(qi_pre)$")>;
// Load/store multiples end issue groups.
def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS, M85Read_EX3],
(instregex "VSTM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)_UPD$", "VLLDM")>;
def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue,
M85Read_ISS, M85Read_EX3],
(instregex "VSTM(S|D|Q)(DB|IA)_UPD$", "VLSTM")>;
//===---------------------------------------------------------------------===//
// Sched definitions for ALU
//
// Non-small shifted ALU operands are read a cycle early; small LSLs
// aren't, as they don't require the shifter.
def M85NonsmallShiftWrite : SchedWriteRes<[M85UnitALU,M85UnitShift1]> {
let Latency = 1;
}
def M85WriteALUsi : SchedWriteVariant<[
SchedVar<NoSchedPred, [M85NonsmallShiftWrite]>
]>;
def M85Ex1ReadNoFastBypass : SchedReadAdvance<-1,
[WriteLd, M85WriteLdWide, M85LoadLatency1]>;
def M85ReadALUsi : SchedReadVariant<[
SchedVar<NoSchedPred, [M85Read_ISS]>
]>;
def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi],
(instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|"
"SUBS|CMP|CMNz|TEQ|TST)rs$")>;
def : InstRW<[M85WriteALUsi, M85ReadALUsi],
(instregex "t2MVNs")>;
// CortexM85 treats LSL #0 as needing a shifter. In practice the throughput
// seems to reliably be 2 when run on a cyclemodel, so we don't require a
// shift resource.
def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi],
(instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|"
"SUBS|CMP|CMNz|TEQ|TST)rr$")>;
def : InstRW<[M85WriteALUsi, M85ReadALUsi],
(instregex "t2MVNr")>;
// Shift instructions: most pure shifts (i.e. MOV w/ shift) will use whichever
// shifter is free, thus it is possible to dual-issue them freely with anything
// else. As a result, they are not modeled as needing a shifter.
// RRX is odd because it must use the EX2 shifter, so it cannot dual-issue with
// itself.
//
// Note that pure shifts which use the EX1 shifter would need their operands
// a cycle earlier. However, they are only forced to use the EX1 shifter
// when issuing against an RRX instructions, which should be rare.
def : InstRW<[M85WriteShift2],
(instregex "t2RRX$")>;
def : InstRW<[WriteALU],
(instregex "(t|t2)(LSL|LSR|ASR|ROR|SBFX|UBFX)", "t2MOVsr(a|l)")>;
// Instructions that use the shifter, but have normal timing
def : InstRW<[WriteALUsi,M85Slot0Only], (instregex "t2(BFC|BFI)$")>;
// Stack pointer add/sub happens in EX1 with checks in EX2
def M85WritesToSPPred : MCSchedPredicate<CheckRegOperand<0, SP>>;
def M85ReadForSP : SchedReadVariant<[
SchedVar<M85WritesToSPPred, [M85Read_ISS]>,
SchedVar<NoSchedPred, [M85Read_EX1]>
]>;
def M85ReadForSPShift : SchedReadVariant<[
SchedVar<M85WritesToSPPred, [M85Read_ISS]>,
SchedVar<NoSchedPred, [M85Read_ISS]>
]>;
def : InstRW<[WriteALU, M85Read_ISS],
(instregex "tADDspi", "tSUBspi")>;
def : InstRW<[WriteALU, M85ReadForSP],
(instregex "t2(ADD|SUB)ri", "t2MOVr", "tMOVr")>;
def : InstRW<[WriteALU, M85ReadForSP, M85ReadForSP],
(instregex "tADDrSP", "tADDspr", "tADDhirr")>;
def : InstRW<[M85WriteALUsi, M85ReadForSP, M85ReadForSPShift],
(instregex "t2(ADD|SUB)rs")>;
def : InstRW<[WriteALU, M85Slot0Only], (instregex "t2CLZ")>;
// MAC operations that don't have SchedRW set
def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>;
// Divides are special because they stall for their latency, and so look like
// two cycles as far as scheduling opportunities go. By putting M85Write2
// first, we make the operand latency 2, but keep the instruction latency 7.
// Divide operands are read early.
def : InstRW<[M85Write2, WriteDIV, M85Read_ISS, M85Read_ISS, WriteALU],
(instregex "t2(S|U)DIV")>;
// DSP extension operations
def M85WriteSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> {
let Latency = 1;
}
def M85WriteSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> {
let Latency = 2;
}
def M85WriteShSIMD0 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 0; // Finishes at EX1
}
def M85WriteShSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 1;
}
def M85WriteShSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 2;
}
def : InstRW<[M85WriteShSIMD2, M85Read_ISS],
(instregex "t2(S|U)SAT")>;
def : InstRW<[M85WriteSIMD1, ReadALU],
(instregex "(t|t2)(S|U)XT(B|H)")>;
def : InstRW<[M85WriteSIMD1, ReadALU, ReadALU],
(instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)",
"t2SEL")>;
def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU],
(instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>;
def : InstRW<[M85WriteShSIMD2, M85Read_ISS, M85Read_ISS],
(instregex "t2QD(ADD|SUB)")>;
def : InstRW<[M85WriteShSIMD0, M85Read_ISS],
(instregex "t2(RBIT|REV)", "tREV")>;
def : InstRW<[M85WriteShSIMD1, ReadALU, M85Read_ISS],
(instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>;
def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU, M85Read_EX2],
(instregex "t2USADA8")>;
// MSR/MRS
def : InstRW<[M85NonGeneralPurpose], (instregex "MSR", "MRS")>;
// 64-bit shift operations in EX3
def M85WriteLShift : SchedWriteRes<[M85UnitLShift, M85UnitALU]> {
let Latency = 2;
}
def M85WriteLat2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; }
def : InstRW<[M85WriteLShift, M85WriteLat2, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(ASRLi|LSLLi|LSRL|SQSHLL|SRSHRL|UQSHLL|URSHRL)$")>;
def : InstRW<[M85WriteLShift, M85WriteLat2,
M85Read_EX2, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(ASRLr|LSLLr|SQRSHRL|UQRSHLL)$")>;
def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(SQRSHR|UQRSHL)$")>;
def : InstRW<[M85WriteLShift, M85Read_EX2],
(instregex "MVE_(SQSHL|SRSHR|UQSHL|URSHR)$")>;
// Loop control/branch future instructions
def M85LE : SchedWriteRes<[]> { let NumMicroOps = 0; let Latency = -2; }
def : InstRW<[WriteALU], (instregex "t2BF(_|Lr|i|Li|r)")>;
def : InstRW<[WriteALU], (instregex "MVE_LCTP")>;
def : InstRW<[WriteALU],
(instregex "t2DLS", "t2WLS", "MVE_DLSTP", "MVE_WLSTP")>;
def : InstRW<[M85LE], (instregex "t2LE$")>;
def : InstRW<[M85LE, M85Read_ISSm1],
(instregex "t2LEUpdate", "MVE_LETP")>; // LE is executed at ISS
// Conditional selects
def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2, M85Read_EX2],
(instregex "t2(CSEL|CSINC|CSINV|CSNEG)")>;
//===---------------------------------------------------------------------===//
// Sched definitions for FP and MVE operations
let NumMicroOps = 0 in {
def M85OverrideVFPLat5 : SchedWriteRes<[]> { let Latency = 5; }
def M85OverrideVFPLat4 : SchedWriteRes<[]> { let Latency = 4; }
def M85OverrideVFPLat3 : SchedWriteRes<[]> { let Latency = 3; }
def M85OverrideVFPLat2 : SchedWriteRes<[]> { let Latency = 2; }
}
let Latency = 1 in {
def M85GroupALat1S : SchedWriteRes<[M85UnitVFPA, M85UnitVPort, M85UnitSlot0]>;
def M85GroupBLat1S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>;
def M85GroupCLat1S : SchedWriteRes<[M85UnitVFPC, M85UnitVPort, M85UnitSlot0]>;
def M85GroupALat1D : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupBLat1D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupCLat1D : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupABLat1S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>;
}
let Latency = 2 in {
def M85GroupBLat2S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>;
def M85GroupBLat2D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupABLat2S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>;
def M85GroupABLat2D : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
}
// Instructions which are missing default schedules
def : InstRW<[M85GroupALat1S], (instregex "V(FP_VMAXNM|FP_VMINNM)(H|S)$")>;
def : InstRW<[M85GroupALat1D], (instregex "V(FP_VMAXNM|FP_VMINNM)D$")>;
def : InstRW<[M85GroupCLat1S], (instregex "VCMPE?Z?(H|S)$")>;
def : InstRW<[M85GroupCLat1D], (instregex "VCMPE?Z?D$")>;
def : InstRW<[M85GroupBLat2S],
(instregex "VCVT(A|M|N|P|R|X|Z)(S|U)(H|S)",
"VRINT(A|M|N|P|R|X|Z)(H|S)")>;
def : InstRW<[M85GroupBLat2D],
(instregex "VCVT(B|T)(DH|HD)", "VCVT(A|M|N|P|R|X|Z)(S|U)D",
"V.*TOD", "VTO.*D", "VCVTDS", "VCVTSD",
"VRINT(A|M|N|P|R|X|Z)D")>;
def : InstRW<[M85GroupABLat1S], (instregex "VINSH")>;
def : InstRW<[M85GroupBLat1S], (instregex "V(ABS|NEG)(H|S)$")>;
def : InstRW<[M85GroupBLat1D], (instregex "V(ABS|NEG)D$")>;
// VMRS/VMSR
let SingleIssue = 1 in {
def M85VMRSEarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 2;}
def M85VMRSLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 4; }
def M85VMSREarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 1; }
def M85VMSRLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 3; }
}
def M85FPSCRFlagPred : MCSchedPredicate<
CheckAll<[CheckIsRegOperand<0>,
CheckRegOperand<0, PC>]>>;
def M85VMRSFPSCR : SchedWriteVariant<[
SchedVar<M85FPSCRFlagPred, [M85VMRSEarly]>,
SchedVar<NoSchedPred, [M85VMRSLate]>
]>;
def : InstRW<[M85VMSREarly, M85Read_EX2],
(instregex "VMSR$", "VMSR_FPSCR_NZCVQC", "VMSR_P0", "VMSR_VPR")>;
def : InstRW<[M85VMRSEarly], (instregex "VMRS_P0", "VMRS_VPR", "FMSTAT")>;
def : InstRW<[M85VMRSLate], (instregex "VMRS_FPSCR_NZCVQC")>;
def : InstRW<[M85VMRSFPSCR], (instregex "VMRS$")>;
// Not matching properly
//def : InstRW<[M85VMSRLate, M85Read_EX2], (instregex "VMSR_FPCTX(NS|S)")>;
//def : InstRW<[M85VMRSLate], (instregex "VMRS_FPCTX(NS|S)")>;
// VSEL cannot bypass in its implied $cpsr operand; model as earlier read
def : InstRW<[M85GroupBLat1S, ReadALU, ReadALU, M85Read_ISS],
(instregex "VSEL.*(S|H)$")>;
def : InstRW<[M85GroupBLat1D, ReadALU, ReadALU, M85Read_ISS],
(instregex "VSEL.*D$")>;
// VMOV
def : InstRW<[WriteFPMOV],
(instregex "VMOV(H|S)$", "FCONST(H|S)")>;
def : InstRW<[WriteFPMOV, M85Read_EX2],
(instregex "VMOVHR$", "VMOVSR$")>;
def : InstRW<[M85GroupABLat2S],
(instregex "VMOVRH$", "VMOVRS$")>;
def : InstRW<[M85WriteFPMOV64],
(instregex "VMOVD$")>;
def : InstRW<[M85WriteFPMOV64],
(instregex "FCONSTD")>;
def : InstRW<[M85WriteFPMOV64, M85Read_EX2, M85Read_EX2],
(instregex "VMOVDRR")>;
def : InstRW<[M85WriteFPMOV64, M85Write1, M85Read_EX2, M85Read_EX2],
(instregex "VMOVSRR")>;
def : InstRW<[M85GroupABLat2D, M85Write2],
(instregex "VMOV(RRD|RRS)")>;
// These shouldn't even exist, but Cortex-m55 defines them, so here they are.
def : InstRW<[WriteFPMOV, M85Read_EX2],
(instregex "VGETLNi32$")>;
def : InstRW<[M85GroupABLat2S],
(instregex "VSETLNi32")>;
// Larger-latency overrides
def M85FPDIV16 : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 8;
}
def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VDIVH")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPDIV32], (instregex "VDIVS")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPDIV64], (instregex "VDIVD")>;
def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VSQRTH")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT32], (instregex "VSQRTS")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT64], (instregex "VSQRTD")>;
def : InstRW<[M85OverrideVFPLat3, WriteFPMUL64], (instregex "V(MUL|NMUL)D")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPALU64], (instregex "V(ADD|SUB)D")>;
// Multiply-accumulate. Chained SP timing is correct; rest need overrides
// Double-precision chained MAC should also be seen as having latency of 5,
// as stalls stall everything.
def : InstRW<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL],
(instregex "VN?ML(A|S)H")>;
def : InstRW<[M85OverrideVFPLat5, WriteFPMAC64,
ReadFPMUL, ReadFPMUL, ReadFPMUL],
(instregex "VN?ML(A|S)D$")>;
// Single-precision fused MACs look like latency 4 with advance of 2.
def M85ReadFPMAC2 : SchedReadAdvance<2>;
def : InstRW<[M85OverrideVFPLat4, WriteFPMAC32,
M85ReadFPMAC2, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)(H|S)$")>;
// Double-precision fused MAC looks like latency 4.
def : InstRW<[M85OverrideVFPLat4, WriteFPMAC64,
ReadFPMUL, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)D$")>;
// MVE beatwise instructions
// NOTE: Q-register timing for the 2nd beat is off by a cycle and needs
// DAG overrides to correctly set latencies.
// NOTE2: MVE integer MAC->MAC accumulate latencies are set as if the
// accumulate value arrives from an unmatching MAC instruction;
// matching ones are handled via DAG mutation. These are marked as
// "limited accumulate bypass"
let Latency = 4, EndGroup = 1 in {
def M85GrpALat2MveR : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat2MveR : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat2MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat2MveR : SchedWriteRes<[]> { let NumMicroOps = 0; }
def M85GrpBLat4Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
}
let Latency = 3, EndGroup = 1 in {
def M85GrpBLat3Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpBLat1MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat1MveR : SchedWriteRes<[]> { let NumMicroOps = 0; }
}
let Latency = 2, EndGroup = 1 in {
def M85GrpALat2Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat2Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat2Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat2Mve : SchedWriteRes<[]> { let NumMicroOps = 0; }
}
let Latency = 1, EndGroup = 1 in {
def M85GrpALat1Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat1Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat1Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpCLat1Mve : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpDLat1Mve : SchedWriteRes<[M85UnitVFPD, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,1,1,1];
}
}
def : InstRW<[M85GrpABLat1Mve, M85Read_EX1, M85Read_EX2, M85Read_EX2],
(instregex "MVE_VMOV_q_rr")>;
def : InstRW<[M85GrpABLat1Mve, M85Read_EX2],
(instregex "MVE_VMOV_to_lane_(8|16|32)")>;
def : InstRW<[M85GrpABLat1Mve],
(instregex "MVE_VAND$",
"MVE_VBIC$", "MVE_VBICimm",
"MVE_VCLSs(8|16|32)",
"MVE_VCLZs(8|16|32)",
"MVE_VEOR",
"MVE_VMOVimmf32", "MVE_VMOVimmi(8|16|32|64)",
"MVE_VMVN$", "MVE_VMVNimmi(16|32)",
"MVE_VORN$",
"MVE_VORR$", "MVE_VORRimm", "MQPRCopy",
"MVE_VPSEL",
"MVE_VREV(16|32|64)_(8|16|32)"
)>;
def : InstRW<[M85GrpABLat2MveR, M85Lat2MveR],
(instregex "MVE_VMOV_rr_q")>;
def : InstRW<[M85GrpABLat2MveR],
(instregex "MVE_VMOV_from_lane_(32|u8|s8|u16|s16)")>;
def : InstRW<[M85GrpALat1Mve, M85Lat1MveR,
M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VADC$")>;
def : InstRW<[M85GrpALat1Mve, M85Lat1MveR],
(instregex "MVE_VADCI")>;
def : InstRW<[M85GrpALat1Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VADD_qr_i(8|16|32)",
"MVE_VBRSR(16|32|8)",
"MVE_VHADD_qr_[su](8|16|32)",
"MVE_VHSUB_qr_[su](8|16|32)",
"MVE_VQADD_qr_[su](8|16|32)",
"MVE_VQSUB_qr_[su](8|16|32)",
"MVE_VSHL_qr[su](8|16|32)",
"MVE_VSUB_qr_i(8|16|32)"
)>;
def : InstRW<[M85GrpALat1Mve],
(instregex "MVE_VABD(s|u)(8|16|32)",
"MVE_VABS(s|u)(8|16|32)",
"MVE_V(MAX|MIN)A?[us](8|16|32)",
"MVE_VADDi(8|16|32)",
"MVE_VCADDi(8|16|32)",
"MVE_VHCADDs(8|16|32)",
"MVE_VHSUB[su](8|16|32)",
"MVE_VMOVL[su](8|16)[tb]h",
"MVE_VMOVNi(16|32)[tb]h",
"MVE_VMULL[BT]?[p](8|16|32)(bh|th)?",
"MVE_VNEGs(8|16|32)",
"MVE_VQABSs(8|16|32)",
"MVE_VQADD[su](8|16|32)",
"MVE_VQNEGs(8|16|32)",
"MVE_VQSUB[su](8|16|32)",
"MVE_VR?HADD[su](8|16|32)",
"MVE_VSBC$", "MVE_VSBCI",
"MVE_VSHL_by_vec[su](8|16|32)",
"MVE_VSHL_immi(8|16|32)",
"MVE_VSHLL_imm[su](8|16)[bt]h",
"MVE_VSHLL_lw[su](8|16)[bt]h",
"MVE_VSHRNi(16|32)[bt]h",
"MVE_VSHR_imm[su](8|16|32)",
"MVE_VSLIimm[su]?(8|16|32)",
"MVE_VSRIimm[su]?(8|16|32)",
"MVE_VSUBi(8|16|32)"
)>;
def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2, M85Read_EX2],
(instregex "MVE_V(D|I)WDUPu(8|16|32)")>;
def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2],
(instregex "MVE_V(D|I)DUPu(8|16|32)")>;
def : InstRW<[M85GrpALat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_V(Q|R|QR)SHL_qr[su](8|16|32)",
"MVE_VADD_qr_f(16|32)",
"MVE_VSUB_qr_f(16|32)"
)>;
def : InstRW<[M85GrpALat1Mve, M85Read_EX2],
(instregex "MVE_VDUP(8|16|32)")>;
def : InstRW<[M85GrpBLat1Mve],
(instregex "MVE_VABSf(16|32)",
"MVE_V(MAX|MIN)NMA?f(16|32)",
"MVE_VNEGf(16|32)"
)>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3],
(instregex "MVE_VADDLV[us]32acc")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR],
(instregex "MVE_VADDLV[us]32no_acc")>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX3],
(instregex "MVE_VADDV[us](8|16|32)acc"
)>;
def : InstRW<[M85GrpALat2MveR, M85Read_EX3],
(instregex "MVE_V(MAX|MIN)A?V[us](8|16|32)",
"MVE_VABAV(s|u)(8|16|32)"
)>;
def : InstRW<[M85GrpALat2MveR],
(instregex "MVE_VADDV[us](8|16|32)no_acc")>;
def : InstRW<[M85GrpALat2Mve],
(instregex "MVE_V(Q|R|QR)SHL_by_vec[su](8|16|32)",
"MVE_VABDf(16|32)",
"MVE_VADDf(16|32)",
"MVE_VCADDf(16|32)",
"MVE_VQMOVU?N[su](8|16|32)[tb]h",
"MVE_VQR?SHL(U_)?imm[su](8|16|32)",
"MVE_VQR?SHRN[bt]h[su](16|32)",
"MVE_VQR?SHRUNs(16|32)[bt]h",
"MVE_VRSHR_imm[su](8|16|32)",
"MVE_VRSHRNi(16|32)[bt]h",
"MVE_VSUBf(16|32)"
)>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX2],
(instregex "MVE_V(MAX|MIN)NMA?Vf(16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VMUL_qr_i(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VQDMULL_qr_s(16|32)[tb]h")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VQR?DMULH_qr_s(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX3],
// limited accumulate bypass
(instregex "MVE_VMLAS?_qr_i(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
// limited accumulate bypass
(instregex "MVE_VQR?DMLAS?H_qrs(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve],
// limited accumulate bypass
(instregex "MVE_VQR?DML[AS]DHX?s(8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3],
(instregex "MVE_VR?ML[AS]LDAVH?ax?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR],
(instregex "MVE_VR?ML[AS]LDAVH?x?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX3],
(instregex "MVE_VML[AS]DAVax?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR],
(instregex "MVE_VML[AS]DAVx?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve],
(instregex "MVE_VCVTf16(u|s)16", "MVE_VCVTf32(u|s)32",
"MVE_VCVT(u|s)16f16", "MVE_VCVT(u|s)32f32",
"MVE_VCVTf16f32", "MVE_VCVTf32f16",
"MVE_VMULL[BT]?[su](8|16|32)(bh|th)?",
"MVE_VMUL(t1)*i(8|16|32)",
"MVE_VQDMULLs(16|32)[tb]h",
"MVE_VQR?DMULHi(8|16|32)",
"MVE_VR?MULH[su](8|16|32)",
"MVE_VRINTf(16|32)"
)>;
def : InstRW<[M85GrpBLat3Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VMUL_qr_f(16|32)")>;
def : InstRW<[M85GrpBLat3Mve],
(instregex "MVE_VCMULf(16|32)",
"MVE_VMULf(16|32)"
)>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VFMA_qr_Sf(16|32)", // VFMAS
"MVE_VFMA_qr_f(16|32)" // VFMA
)>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3],
(instregex "MVE_VCMLAf(16|32)")>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3],
(instregex "MVE_VFM(A|S)f(16|32)")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VPTv(4|8)f(16|32)r")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VPTv(4|8|16)(i|s|u)(8|16|32)r")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VCMP[isu](8|16|32)r$", "MVE_VCMPf(16|32)r$")>;
def : InstRW<[M85GrpDLat1Mve, M85Read_EX2],
(instregex "MVE_VCTP(8|16|32|64)")>;
def : InstRW<[M85GrpCLat1Mve],
(instregex "MVE_VCMPf(16|32)$", "MVE_VCMP[isu](8|16|32)$",
"MVE_VPTv(4|8)f(16|32)$",
"MVE_VPTv(4|8|16)(i|s|u)(8|16|32)$"
)>;
def : InstRW<[M85GrpDLat1Mve],
(instregex "MVE_VPNOT",
"MVE_VPST"
)>;
def : InstRW<[M85Lat2MveR, M85GrpALat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VSHLC")>;
// VFP instructions
def : WriteRes<WriteVLD1, []>;
def : WriteRes<WriteVLD2, []>;
def : WriteRes<WriteVLD3, []>;
def : WriteRes<WriteVLD4, []>;
def : WriteRes<WriteVST1, []>;
def : WriteRes<WriteVST2, []>;
def : WriteRes<WriteVST3, []>;
def : WriteRes<WriteVST4, []>;
} // SchedModel = CortexCortexM85Model