//===--- SPIRVUtils.h ---- SPIR-V Utility Functions -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/TypedPointerType.h"
#include <string>
#include <unordered_set>
namespace llvm {
class MCInst;
class MachineFunction;
class MachineInstr;
class MachineInstrBuilder;
class MachineIRBuilder;
class MachineRegisterInfo;
class Register;
class StringRef;
class SPIRVInstrInfo;
class SPIRVSubtarget;
// This class implements a partial ordering visitor, which visits a cyclic graph
// in natural topological-like ordering. Topological ordering is not defined for
// directed graphs with cycles, so this assumes cycles are a single node, and
// ignores back-edges. The cycle is visited from the entry in the same
// topological-like ordering.
//
// This means once we visit a node, we know all the possible ancestors have been
// visited.
//
// clang-format off
//
// Given this graph:
//
// ,-> B -\
// A -+ +---> D ----> E -> F -> G -> H
// `-> C -/ ^ |
// +-----------------+
//
// Visit order is:
// A, [B, C in any order], D, E, F, G, H
//
// clang-format on
//
// Changing the function CFG between the construction of the visitor and
// visiting is undefined. The visitor can be reused, but if the CFG is updated,
// the visitor must be rebuilt.
class PartialOrderingVisitor {
DomTreeBuilder::BBDomTree DT;
LoopInfo LI;
std::unordered_set<BasicBlock *> Visited = {};
struct OrderInfo {
size_t Rank;
size_t TraversalIndex;
};
using BlockToOrderInfoMap = std::unordered_map<BasicBlock *, OrderInfo>;
BlockToOrderInfoMap BlockToOrder;
std::vector<BasicBlock *> Order = {};
// Get all basic-blocks reachable from Start.
std::unordered_set<BasicBlock *> getReachableFrom(BasicBlock *Start);
// Internal function used to determine the partial ordering.
// Visits |BB| with the current rank being |Rank|.
size_t visit(BasicBlock *BB, size_t Rank);
public:
// Build the visitor to operate on the function F.
PartialOrderingVisitor(Function &F);
// Returns true is |LHS| comes before |RHS| in the partial ordering.
// If |LHS| and |RHS| have the same rank, the traversal order determines the
// order (order is stable).
bool compare(const BasicBlock *LHS, const BasicBlock *RHS) const;
// Visit the function starting from the basic block |Start|, and calling |Op|
// on each visited BB. This traversal ignores back-edges, meaning this won't
// visit a node to which |Start| is not an ancestor.
// If Op returns |true|, the visitor continues. If |Op| returns false, the
// visitor will stop at that rank. This means if 2 nodes share the same rank,
// and Op returns false when visiting the first, the second will be visited
// afterwards. But none of their successors will.
void partialOrderVisit(BasicBlock &Start,
std::function<bool(BasicBlock *)> Op);
};
// Add the given string as a series of integer operand, inserting null
// terminators and padding to make sure the operands all have 32-bit
// little-endian words.
void addStringImm(const StringRef &Str, MCInst &Inst);
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB);
void addStringImm(const StringRef &Str, IRBuilder<> &B,
std::vector<Value *> &Args);
// Read the series of integer operands back as a null-terminated string using
// the reverse of the logic in addStringImm.
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex);
// Add the given numerical immediate to MIB.
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB);
// Add an OpName instruction for the given target register.
void buildOpName(Register Target, const StringRef &Name,
MachineIRBuilder &MIRBuilder);
// Add an OpDecorate instruction for the given Reg.
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm = "");
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm = "");
// Add an OpDecorate instruction by "spirv.Decorations" metadata node.
void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
const MDNode *GVarMD);
// Convert a SPIR-V storage class to the corresponding LLVM IR address space.
// TODO: maybe the following two functions should be handled in the subtarget
// to allow for different OpenCL vs Vulkan handling.
constexpr unsigned
storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::Function:
return 0;
case SPIRV::StorageClass::CrossWorkgroup:
return 1;
case SPIRV::StorageClass::UniformConstant:
return 2;
case SPIRV::StorageClass::Workgroup:
return 3;
case SPIRV::StorageClass::Generic:
return 4;
case SPIRV::StorageClass::DeviceOnlyINTEL:
return 5;
case SPIRV::StorageClass::HostOnlyINTEL:
return 6;
case SPIRV::StorageClass::Input:
return 7;
default:
report_fatal_error("Unable to get address space id");
}
}
// Convert an LLVM IR address space to a SPIR-V storage class.
SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI);
SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC);
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord);
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id);
// Find def instruction for the given ConstReg, walking through
// spv_track_constant and ASSIGN_TYPE instructions. Updates ConstReg by def
// of OpConstant instruction.
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
const MachineRegisterInfo *MRI);
// Get constant integer value of the given ConstReg.
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI);
// Check if MI is a SPIR-V specific intrinsic call.
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID);
// Get type of i-th operand of the metadata node.
Type *getMDOperandAsType(const MDNode *N, unsigned I);
// If OpenCL or SPIR-V builtin function name is recognized, return a demangled
// name, otherwise return an empty string.
std::string getOclOrSpirvBuiltinDemangledName(StringRef Name);
// Check if a string contains a builtin prefix.
bool hasBuiltinTypePrefix(StringRef Name);
// Check if given LLVM type is a special opaque builtin type.
bool isSpecialOpaqueType(const Type *Ty);
// Check if the function is an SPIR-V entry point
bool isEntryPoint(const Function &F);
// Parse basic scalar type name, substring TypeName, and return LLVM type.
Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx);
// Sort blocks in a partial ordering, so each block is after all its
// dominators. This should match both the SPIR-V and the MIR requirements.
// Returns true if the function was changed.
bool sortBlocks(Function &F);
// True if this is an instance of TypedPointerType.
inline bool isTypedPointerTy(const Type *T) {
return T && T->getTypeID() == Type::TypedPointerTyID;
}
// True if this is an instance of PointerType.
inline bool isUntypedPointerTy(const Type *T) {
return T && T->getTypeID() == Type::PointerTyID;
}
// True if this is an instance of PointerType or TypedPointerType.
inline bool isPointerTy(const Type *T) {
return isUntypedPointerTy(T) || isTypedPointerTy(T);
}
// Get the address space of this pointer or pointer vector type for instances of
// PointerType or TypedPointerType.
inline unsigned getPointerAddressSpace(const Type *T) {
Type *SubT = T->getScalarType();
return SubT->getTypeID() == Type::PointerTyID
? cast<PointerType>(SubT)->getAddressSpace()
: cast<TypedPointerType>(SubT)->getAddressSpace();
}
// Return true if the Argument is decorated with a pointee type
inline bool hasPointeeTypeAttr(Argument *Arg) {
return Arg->hasByValAttr() || Arg->hasByRefAttr() || Arg->hasStructRetAttr();
}
// Return the pointee type of the argument or nullptr otherwise
inline Type *getPointeeTypeByAttr(Argument *Arg) {
if (Arg->hasByValAttr())
return Arg->getParamByValType();
if (Arg->hasStructRetAttr())
return Arg->getParamStructRetType();
if (Arg->hasByRefAttr())
return Arg->getParamByRefType();
return nullptr;
}
inline Type *reconstructFunctionType(Function *F) {
SmallVector<Type *> ArgTys;
for (unsigned i = 0; i < F->arg_size(); ++i)
ArgTys.push_back(F->getArg(i)->getType());
return FunctionType::get(F->getReturnType(), ArgTys, F->isVarArg());
}
#define TYPED_PTR_TARGET_EXT_NAME "spirv.$TypedPointerType"
inline Type *getTypedPointerWrapper(Type *ElemTy, unsigned AS) {
return TargetExtType::get(ElemTy->getContext(), TYPED_PTR_TARGET_EXT_NAME,
{ElemTy}, {AS});
}
inline bool isTypedPointerWrapper(TargetExtType *ExtTy) {
return ExtTy->getName() == TYPED_PTR_TARGET_EXT_NAME &&
ExtTy->getNumIntParameters() == 1 &&
ExtTy->getNumTypeParameters() == 1;
}
inline Type *applyWrappers(Type *Ty) {
if (auto *ExtTy = dyn_cast<TargetExtType>(Ty)) {
if (isTypedPointerWrapper(ExtTy))
return TypedPointerType::get(applyWrappers(ExtTy->getTypeParameter(0)),
ExtTy->getIntParameter(0));
} else if (auto *VecTy = dyn_cast<VectorType>(Ty)) {
Type *ElemTy = VecTy->getElementType();
Type *NewElemTy = ElemTy->isTargetExtTy() ? applyWrappers(ElemTy) : ElemTy;
if (NewElemTy != ElemTy)
return VectorType::get(NewElemTy, VecTy->getElementCount());
}
return Ty;
}
inline Type *getPointeeType(Type *Ty) {
if (auto PType = dyn_cast<TypedPointerType>(Ty))
return PType->getElementType();
else if (auto *ExtTy = dyn_cast<TargetExtType>(Ty))
if (isTypedPointerWrapper(ExtTy))
return applyWrappers(ExtTy->getTypeParameter(0));
return nullptr;
}
inline bool isUntypedEquivalentToTyExt(Type *Ty1, Type *Ty2) {
if (!isUntypedPointerTy(Ty1) || !Ty2)
return false;
if (auto *ExtTy = dyn_cast<TargetExtType>(Ty2))
if (isTypedPointerWrapper(ExtTy) &&
ExtTy->getTypeParameter(0) ==
IntegerType::getInt8Ty(Ty1->getContext()) &&
ExtTy->getIntParameter(0) == cast<PointerType>(Ty1)->getAddressSpace())
return true;
return false;
}
inline bool isEquivalentTypes(Type *Ty1, Type *Ty2) {
return isUntypedEquivalentToTyExt(Ty1, Ty2) ||
isUntypedEquivalentToTyExt(Ty2, Ty1);
}
inline Type *toTypedPointer(Type *Ty) {
if (Type *NewTy = applyWrappers(Ty); NewTy != Ty)
return NewTy;
return isUntypedPointerTy(Ty)
? TypedPointerType::get(IntegerType::getInt8Ty(Ty->getContext()),
getPointerAddressSpace(Ty))
: Ty;
}
inline Type *toTypedFunPointer(FunctionType *FTy) {
Type *OrigRetTy = FTy->getReturnType();
Type *RetTy = toTypedPointer(OrigRetTy);
bool IsUntypedPtr = false;
for (Type *PTy : FTy->params()) {
if (isUntypedPointerTy(PTy)) {
IsUntypedPtr = true;
break;
}
}
if (!IsUntypedPtr && RetTy == OrigRetTy)
return FTy;
SmallVector<Type *> ParamTys;
for (Type *PTy : FTy->params())
ParamTys.push_back(toTypedPointer(PTy));
return FunctionType::get(RetTy, ParamTys, FTy->isVarArg());
}
inline const Type *unifyPtrType(const Type *Ty) {
if (auto FTy = dyn_cast<FunctionType>(Ty))
return toTypedFunPointer(const_cast<FunctionType *>(FTy));
return toTypedPointer(const_cast<Type *>(Ty));
}
MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg);
} // namespace llvm
#endif // LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H