//===- ConvergenceRegionAnalysis.h -----------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis determines the convergence region for each basic block of
// the module, and provides a tree-like structure describing the region
// hierarchy.
//
//===----------------------------------------------------------------------===//
#include "SPIRVConvergenceRegionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include <optional>
#include <queue>
#define DEBUG_TYPE "spirv-convergence-region-analysis"
using namespace llvm;
namespace llvm {
void initializeSPIRVConvergenceRegionAnalysisWrapperPassPass(PassRegistry &);
} // namespace llvm
INITIALIZE_PASS_BEGIN(SPIRVConvergenceRegionAnalysisWrapperPass,
"convergence-region",
"SPIRV convergence regions analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(SPIRVConvergenceRegionAnalysisWrapperPass,
"convergence-region", "SPIRV convergence regions analysis",
true, true)
namespace llvm {
namespace SPIRV {
namespace {
template <typename BasicBlockType, typename IntrinsicInstType>
std::optional<IntrinsicInstType *>
getConvergenceTokenInternal(BasicBlockType *BB) {
static_assert(std::is_const_v<IntrinsicInstType> ==
std::is_const_v<BasicBlockType>,
"Constness must match between input and output.");
static_assert(std::is_same_v<BasicBlock, std::remove_const_t<BasicBlockType>>,
"Input must be a basic block.");
static_assert(
std::is_same_v<IntrinsicInst, std::remove_const_t<IntrinsicInstType>>,
"Output type must be an intrinsic instruction.");
for (auto &I : *BB) {
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::experimental_convergence_entry:
case Intrinsic::experimental_convergence_loop:
return II;
case Intrinsic::experimental_convergence_anchor: {
auto Bundle = II->getOperandBundle(LLVMContext::OB_convergencectrl);
assert(Bundle->Inputs.size() == 1 &&
Bundle->Inputs[0]->getType()->isTokenTy());
auto TII = dyn_cast<IntrinsicInst>(Bundle->Inputs[0].get());
assert(TII != nullptr);
return TII;
}
}
}
if (auto *CI = dyn_cast<CallInst>(&I)) {
auto OB = CI->getOperandBundle(LLVMContext::OB_convergencectrl);
if (!OB.has_value())
continue;
return dyn_cast<IntrinsicInst>(OB.value().Inputs[0]);
}
}
return std::nullopt;
}
// Given a ConvergenceRegion tree with |Start| as its root, finds the smallest
// region |Entry| belongs to. If |Entry| does not belong to the region defined
// by |Start|, this function returns |nullptr|.
ConvergenceRegion *findParentRegion(ConvergenceRegion *Start,
BasicBlock *Entry) {
ConvergenceRegion *Candidate = nullptr;
ConvergenceRegion *NextCandidate = Start;
while (Candidate != NextCandidate && NextCandidate != nullptr) {
Candidate = NextCandidate;
NextCandidate = nullptr;
// End of the search, we can return.
if (Candidate->Children.size() == 0)
return Candidate;
for (auto *Child : Candidate->Children) {
if (Child->Blocks.count(Entry) != 0) {
NextCandidate = Child;
break;
}
}
}
return Candidate;
}
} // anonymous namespace
std::optional<IntrinsicInst *> getConvergenceToken(BasicBlock *BB) {
return getConvergenceTokenInternal<BasicBlock, IntrinsicInst>(BB);
}
std::optional<const IntrinsicInst *> getConvergenceToken(const BasicBlock *BB) {
return getConvergenceTokenInternal<const BasicBlock, const IntrinsicInst>(BB);
}
ConvergenceRegion::ConvergenceRegion(DominatorTree &DT, LoopInfo &LI,
Function &F)
: DT(DT), LI(LI), Parent(nullptr) {
Entry = &F.getEntryBlock();
ConvergenceToken = getConvergenceToken(Entry);
for (auto &B : F) {
Blocks.insert(&B);
if (isa<ReturnInst>(B.getTerminator()))
Exits.insert(&B);
}
}
ConvergenceRegion::ConvergenceRegion(
DominatorTree &DT, LoopInfo &LI,
std::optional<IntrinsicInst *> ConvergenceToken, BasicBlock *Entry,
SmallPtrSet<BasicBlock *, 8> &&Blocks, SmallPtrSet<BasicBlock *, 2> &&Exits)
: DT(DT), LI(LI), ConvergenceToken(ConvergenceToken), Entry(Entry),
Exits(std::move(Exits)), Blocks(std::move(Blocks)) {
for ([[maybe_unused]] auto *BB : this->Exits)
assert(this->Blocks.count(BB) != 0);
assert(this->Blocks.count(this->Entry) != 0);
}
void ConvergenceRegion::releaseMemory() {
// Parent memory is owned by the parent.
Parent = nullptr;
for (auto *Child : Children) {
Child->releaseMemory();
delete Child;
}
Children.resize(0);
}
void ConvergenceRegion::dump(const unsigned IndentSize) const {
const std::string Indent(IndentSize, '\t');
dbgs() << Indent << this << ": {\n";
dbgs() << Indent << " Parent: " << Parent << "\n";
if (ConvergenceToken.value_or(nullptr)) {
dbgs() << Indent
<< " ConvergenceToken: " << ConvergenceToken.value()->getName()
<< "\n";
}
if (Entry->getName() != "")
dbgs() << Indent << " Entry: " << Entry->getName() << "\n";
else
dbgs() << Indent << " Entry: " << Entry << "\n";
dbgs() << Indent << " Exits: { ";
for (const auto &Exit : Exits) {
if (Exit->getName() != "")
dbgs() << Exit->getName() << ", ";
else
dbgs() << Exit << ", ";
}
dbgs() << " }\n";
dbgs() << Indent << " Blocks: { ";
for (const auto &Block : Blocks) {
if (Block->getName() != "")
dbgs() << Block->getName() << ", ";
else
dbgs() << Block << ", ";
}
dbgs() << " }\n";
dbgs() << Indent << " Children: {\n";
for (const auto Child : Children)
Child->dump(IndentSize + 2);
dbgs() << Indent << " }\n";
dbgs() << Indent << "}\n";
}
class ConvergenceRegionAnalyzer {
public:
ConvergenceRegionAnalyzer(Function &F, DominatorTree &DT, LoopInfo &LI)
: DT(DT), LI(LI), F(F) {}
private:
bool isBackEdge(const BasicBlock *From, const BasicBlock *To) const {
if (From == To)
return true;
// We only handle loop in the simplified form. This means:
// - a single back-edge, a single latch.
// - meaning the back-edge target can only be the loop header.
// - meaning the From can only be the loop latch.
if (!LI.isLoopHeader(To))
return false;
auto *L = LI.getLoopFor(To);
if (L->contains(From) && L->isLoopLatch(From))
return true;
return false;
}
std::unordered_set<BasicBlock *>
findPathsToMatch(LoopInfo &LI, BasicBlock *From,
std::function<bool(const BasicBlock *)> isMatch) const {
std::unordered_set<BasicBlock *> Output;
if (isMatch(From))
Output.insert(From);
auto *Terminator = From->getTerminator();
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
auto *To = Terminator->getSuccessor(i);
// Ignore back edges.
if (isBackEdge(From, To))
continue;
auto ChildSet = findPathsToMatch(LI, To, isMatch);
if (ChildSet.size() == 0)
continue;
Output.insert(ChildSet.begin(), ChildSet.end());
Output.insert(From);
if (LI.isLoopHeader(From)) {
auto *L = LI.getLoopFor(From);
for (auto *BB : L->getBlocks()) {
Output.insert(BB);
}
}
}
return Output;
}
SmallPtrSet<BasicBlock *, 2>
findExitNodes(const SmallPtrSetImpl<BasicBlock *> &RegionBlocks) {
SmallPtrSet<BasicBlock *, 2> Exits;
for (auto *B : RegionBlocks) {
auto *Terminator = B->getTerminator();
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
auto *Child = Terminator->getSuccessor(i);
if (RegionBlocks.count(Child) == 0)
Exits.insert(B);
}
}
return Exits;
}
public:
ConvergenceRegionInfo analyze() {
ConvergenceRegion *TopLevelRegion = new ConvergenceRegion(DT, LI, F);
std::queue<Loop *> ToProcess;
for (auto *L : LI.getLoopsInPreorder())
ToProcess.push(L);
while (ToProcess.size() != 0) {
auto *L = ToProcess.front();
ToProcess.pop();
auto CT = getConvergenceToken(L->getHeader());
SmallPtrSet<BasicBlock *, 8> RegionBlocks(L->block_begin(),
L->block_end());
SmallVector<BasicBlock *> LoopExits;
L->getExitingBlocks(LoopExits);
if (CT.has_value()) {
for (auto *Exit : LoopExits) {
auto N = findPathsToMatch(LI, Exit, [&CT](const BasicBlock *block) {
auto Token = getConvergenceToken(block);
if (Token == std::nullopt)
return false;
return Token.value() == CT.value();
});
RegionBlocks.insert(N.begin(), N.end());
}
}
auto RegionExits = findExitNodes(RegionBlocks);
ConvergenceRegion *Region = new ConvergenceRegion(
DT, LI, CT, L->getHeader(), std::move(RegionBlocks),
std::move(RegionExits));
Region->Parent = findParentRegion(TopLevelRegion, Region->Entry);
assert(Region->Parent != nullptr && "This is impossible.");
Region->Parent->Children.push_back(Region);
}
return ConvergenceRegionInfo(TopLevelRegion);
}
private:
DominatorTree &DT;
LoopInfo &LI;
Function &F;
};
ConvergenceRegionInfo getConvergenceRegions(Function &F, DominatorTree &DT,
LoopInfo &LI) {
ConvergenceRegionAnalyzer Analyzer(F, DT, LI);
return Analyzer.analyze();
}
} // namespace SPIRV
char SPIRVConvergenceRegionAnalysisWrapperPass::ID = 0;
SPIRVConvergenceRegionAnalysisWrapperPass::
SPIRVConvergenceRegionAnalysisWrapperPass()
: FunctionPass(ID) {}
bool SPIRVConvergenceRegionAnalysisWrapperPass::runOnFunction(Function &F) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
// Nothing was modified.
return false;
}
SPIRVConvergenceRegionAnalysis::Result
SPIRVConvergenceRegionAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
Result CRI;
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
return CRI;
}
AnalysisKey SPIRVConvergenceRegionAnalysis::Key;
} // namespace llvm