//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces which should be
// implemented by each target which is using a TableGen based code generator.
//
//===----------------------------------------------------------------------===//
// Include all information about LLVM intrinsics.
include "llvm/IR/Intrinsics.td"
class Predicate; // Forward def
//===----------------------------------------------------------------------===//
// Register file description - These classes are used to fill in the target
// description classes.
class HwMode<string FS, list<Predicate> Ps> {
// A string representing subtarget features that turn on this HW mode.
// For example, "+feat1,-feat2" will indicate that the mode is active
// when "feat1" is enabled and "feat2" is disabled at the same time.
// Any other features are not checked.
// When multiple modes are used, they should be mutually exclusive,
// otherwise the results are unpredictable.
string Features = FS;
// A list of predicates that turn on this HW mode.
list<Predicate> Predicates = Ps;
}
// A special mode recognized by tablegen. This mode is considered active
// when no other mode is active. For targets that do not use specific hw
// modes, this is the only mode.
def DefaultMode : HwMode<"", []>;
// A class used to associate objects with HW modes. It is only intended to
// be used as a base class, where the derived class should contain a member
// "Objects", which is a list of the same length as the list of modes.
// The n-th element on the Objects list will be associated with the n-th
// element on the Modes list.
class HwModeSelect<list<HwMode> Ms> {
list<HwMode> Modes = Ms;
}
// A common class that implements a counterpart of ValueType, which is
// dependent on a HW mode. This class inherits from ValueType itself,
// which makes it possible to use objects of this class where ValueType
// objects could be used. This is specifically applicable to selection
// patterns.
class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
: HwModeSelect<Ms>, ValueType<0, 0> {
// The length of this list must be the same as the length of Ms.
list<ValueType> Objects = Ts;
}
// A class that implements a counterpart of PtrValueType, which is
// dependent on a HW mode. This class inherits from PtrValueType itself,
// which makes it possible to use objects of this class where PtrValueType
// or ValueType could be used. This is specifically applicable to selection
// patterns.
class PtrValueTypeByHwMode<ValueTypeByHwMode scalar, int addrspace>
: HwModeSelect<scalar.Modes>, PtrValueType<ValueType<0, 0>, addrspace> {
list<ValueType> Objects = scalar.Objects;
}
// A class representing the register size, spill size and spill alignment
// in bits of a register.
class RegInfo<int RS, int SS, int SA> {
int RegSize = RS; // Register size in bits.
int SpillSize = SS; // Spill slot size in bits.
int SpillAlignment = SA; // Spill slot alignment in bits.
}
// The register size/alignment information, parameterized by a HW mode.
class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
: HwModeSelect<Ms> {
// The length of this list must be the same as the length of Ms.
list<RegInfo> Objects = Ts;
}
class SubRegRange<int size, int offset = 0> {
int Size = size; // Sub register size in bits.
int Offset = offset; // Offset of the first bit of the sub-reg index.
}
class SubRegRangeByHwMode<list<HwMode> Ms = [], list<SubRegRange> Ts = []>
: HwModeSelect<Ms> {
// The length of this list must be the same as the length of Ms.
list<SubRegRange> Objects = Ts;
}
// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
class SubRegIndex<int size, int offset = 0> {
string Namespace = "";
// The size/offset information, parameterized by a HW mode.
// If the HwModes provided for SubRegRanges does not include the DefaultMode,
// the/ Size and Offset fields below will be used for the default. Otherwise,
// the Size and Offset fields are ignored.
SubRegRangeByHwMode SubRegRanges;
// Size - Size (in bits) of the sub-registers represented by this index.
int Size = size;
// Offset - Offset of the first bit that is part of this sub-register index.
// Set it to -1 if the same index is used to represent sub-registers that can
// be at different offsets (for example when using an index to access an
// element in a register tuple).
int Offset = offset;
// ComposedOf - A list of two SubRegIndex instances, [A, B].
// This indicates that this SubRegIndex is the result of composing A and B.
// See ComposedSubRegIndex.
list<SubRegIndex> ComposedOf = [];
// CoveringSubRegIndices - A list of two or more sub-register indexes that
// cover this sub-register.
//
// This field should normally be left blank as TableGen can infer it.
//
// TableGen automatically detects sub-registers that straddle the registers
// in the SubRegs field of a Register definition. For example:
//
// Q0 = dsub_0 -> D0, dsub_1 -> D1
// Q1 = dsub_0 -> D2, dsub_1 -> D3
// D1_D2 = dsub_0 -> D1, dsub_1 -> D2
// QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
//
// TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
// the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
// CoveringSubRegIndices = [dsub_1, dsub_2].
list<SubRegIndex> CoveringSubRegIndices = [];
}
// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
: SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
!eq(B.Offset, -1): -1,
true: !add(A.Offset, B.Offset))> {
// See SubRegIndex.
let ComposedOf = [A, B];
}
// RegAltNameIndex - The alternate name set to use for register operands of
// this register class when printing.
class RegAltNameIndex {
string Namespace = "";
// A set to be used if the name for a register is not defined in this set.
// This allows creating name sets with only a few alternative names.
RegAltNameIndex FallbackRegAltNameIndex = ?;
}
def NoRegAltName : RegAltNameIndex;
// Register - You should define one instance of this class for each register
// in the target machine. String n will become the "name" of the register.
class Register<string n, list<string> altNames = []> {
string Namespace = "";
string AsmName = n;
list<string> AltNames = altNames;
// Aliases - A list of registers that this register overlaps with. A read or
// modification of this register can potentially read or modify the aliased
// registers.
list<Register> Aliases = [];
// SubRegs - A list of registers that are parts of this register. Note these
// are "immediate" sub-registers and the registers within the list do not
// themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
// not [AX, AH, AL].
list<Register> SubRegs = [];
// SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
// to address it. Sub-sub-register indices are automatically inherited from
// SubRegs.
list<SubRegIndex> SubRegIndices = [];
// RegAltNameIndices - The alternate name indices which are valid for this
// register.
list<RegAltNameIndex> RegAltNameIndices = [];
// DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
// These values can be determined by locating the <target>.h file in the
// directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
// order of these names correspond to the enumeration used by gcc. A value of
// -1 indicates that the gcc number is undefined and -2 that register number
// is invalid for this mode/flavour.
list<int> DwarfNumbers = [];
// CostPerUse - Additional cost of instructions using this register compared
// to other registers in its class. The register allocator will try to
// minimize the number of instructions using a register with a CostPerUse.
// This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
// some registers require larger instruction encodings, by the RISC-V target,
// where some registers preclude using some C instructions. By making it a
// list, targets can have multiple cost models associated with each register
// and can choose one specific cost model per Machine Function by overriding
// TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
// finally have an equal number of cost values which is the max of costPerUse
// values specified. Any mismatch in the cost values for a register will be
// filled with zeros. Restricted the cost type to uint8_t in the
// generated table. It will considerably reduce the table size.
list<int> CostPerUse = [0];
// CoveredBySubRegs - When this bit is set, the value of this register is
// completely determined by the value of its sub-registers. For example, the
// x86 register AX is covered by its sub-registers AL and AH, but EAX is not
// covered by its sub-register AX.
bit CoveredBySubRegs = false;
// HWEncoding - The target specific hardware encoding for this register.
bits<16> HWEncoding = 0;
bit isArtificial = false;
// isConstant - This register always holds a constant value (e.g. the zero
// register in architectures such as MIPS)
bit isConstant = false;
/// PositionOrder - Indicate tablegen to place the newly added register at a later
/// position to avoid iterations on them on unsupported target.
int PositionOrder = 0;
}
// RegisterWithSubRegs - This can be used to define instances of Register which
// need to specify sub-registers.
// List "subregs" specifies which registers are sub-registers to this one. This
// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
// This allows the code generator to be careful not to put two values with
// overlapping live ranges into registers which alias.
class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
let SubRegs = subregs;
}
// DAGOperand - An empty base class that unifies RegisterClass's and other forms
// of Operand's that are legal as type qualifiers in DAG patterns. This should
// only ever be used for defining multiclasses that are polymorphic over both
// RegisterClass's and other Operand's.
class DAGOperand {
string OperandNamespace = "MCOI";
string DecoderMethod = "";
}
// RegisterClass - Now that all of the registers are defined, and aliases
// between registers are defined, specify which registers belong to which
// register classes. This also defines the default allocation order of
// registers by register allocators.
//
class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
dag regList, RegAltNameIndex idx = NoRegAltName>
: DAGOperand {
string Namespace = namespace;
// The register size/alignment information, parameterized by a HW mode.
RegInfoByHwMode RegInfos;
// RegType - Specify the list ValueType of the registers in this register
// class. Note that all registers in a register class must have the same
// ValueTypes. This is a list because some targets permit storing different
// types in same register, for example vector values with 128-bit total size,
// but different count/size of items, like SSE on x86.
//
list<ValueType> RegTypes = regTypes;
// Size - Specify the spill size in bits of the registers. A default value of
// zero lets tablegen pick an appropriate size.
int Size = 0;
// Alignment - Specify the alignment required of the registers when they are
// stored or loaded to memory.
//
int Alignment = alignment;
// CopyCost - This value is used to specify the cost of copying a value
// between two registers in this register class. The default value is one
// meaning it takes a single instruction to perform the copying. A negative
// value means copying is extremely expensive or impossible.
int CopyCost = 1;
// MemberList - Specify which registers are in this class. If the
// allocation_order_* method are not specified, this also defines the order of
// allocation used by the register allocator.
//
dag MemberList = regList;
// AltNameIndex - The alternate register name to use when printing operands
// of this register class. Every register in the register class must have
// a valid alternate name for the given index.
RegAltNameIndex altNameIndex = idx;
// isAllocatable - Specify that the register class can be used for virtual
// registers and register allocation. Some register classes are only used to
// model instruction operand constraints, and should have isAllocatable = 0.
bit isAllocatable = true;
// AltOrders - List of alternative allocation orders. The default order is
// MemberList itself, and that is good enough for most targets since the
// register allocators automatically remove reserved registers and move
// callee-saved registers to the end.
list<dag> AltOrders = [];
// AltOrderSelect - The body of a function that selects the allocation order
// to use in a given machine function. The code will be inserted in a
// function like this:
//
// static inline unsigned f(const MachineFunction &MF) { ... }
//
// The function should return 0 to select the default order defined by
// MemberList, 1 to select the first AltOrders entry and so on.
code AltOrderSelect = [{}];
// Specify allocation priority for register allocators using a greedy
// heuristic. Classes with higher priority values are assigned first. This is
// useful as it is sometimes beneficial to assign registers to highly
// constrained classes first. The value has to be in the range [0,31].
int AllocationPriority = 0;
// Force register class to use greedy's global heuristic for all
// registers in this class. This should more aggressively try to
// avoid spilling in pathological cases.
bit GlobalPriority = false;
// Generate register pressure set for this register class and any class
// synthesized from it. Set to 0 to inhibit unneeded pressure sets.
bit GeneratePressureSet = true;
// Weight override for register pressure calculation. This is the value
// TargetRegisterClass::getRegClassWeight() will return. The weight is in
// units of pressure for this register class. If unset tablegen will
// calculate a weight based on a number of register units in this register
// class registers. The weight is per register.
int Weight = ?;
// The diagnostic type to present when referencing this operand in a match
// failure error message. If this is empty, the default Match_InvalidOperand
// diagnostic type will be used. If this is "<name>", a Match_<name> enum
// value will be generated and used for this operand type. The target
// assembly parser is responsible for converting this into a user-facing
// diagnostic message.
string DiagnosticType = "";
// A diagnostic message to emit when an invalid value is provided for this
// register class when it is being used as an assembly operand. If this is
// non-empty, an anonymous diagnostic type enum value will be generated, and
// the assembly matcher will provide a function to map from diagnostic types
// to message strings.
string DiagnosticString = "";
// Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
bits<8> TSFlags = 0;
// If set then consider this register class to be the base class for registers in
// its MemberList. The base class for registers present in multiple base register
// classes will be resolved in the order defined by this value, with lower values
// taking precedence over higher ones. Ties are resolved by enumeration order.
int BaseClassOrder = ?;
}
// The memberList in a RegisterClass is a dag of set operations. TableGen
// evaluates these set operations and expand them into register lists. These
// are the most common operation, see test/TableGen/SetTheory.td for more
// examples of what is possible:
//
// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
// register class, or a sub-expression. This is also the way to simply list
// registers.
//
// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
//
// (and GPR, CSR) - Set intersection. All registers from the first set that are
// also in the second set.
//
// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
// numbered registers. Takes an optional 4th operand which is a stride to use
// when generating the sequence.
//
// (shl GPR, 4) - Remove the first N elements.
//
// (trunc GPR, 4) - Truncate after the first N elements.
//
// (rotl GPR, 1) - Rotate N places to the left.
//
// (rotr GPR, 1) - Rotate N places to the right.
//
// (decimate GPR, 2) - Pick every N'th element, starting with the first.
//
// (interleave A, B, ...) - Interleave the elements from each argument list.
//
// All of these operators work on ordered sets, not lists. That means
// duplicates are removed from sub-expressions.
// Set operators. The rest is defined in TargetSelectionDAG.td.
def sequence;
def decimate;
def interleave;
// RegisterTuples - Automatically generate super-registers by forming tuples of
// sub-registers. This is useful for modeling register sequence constraints
// with pseudo-registers that are larger than the architectural registers.
//
// The sub-register lists are zipped together:
//
// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
//
// Generates the same registers as:
//
// let SubRegIndices = [sube, subo] in {
// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
// }
//
// The generated pseudo-registers inherit super-classes and fields from their
// first sub-register. Most fields from the Register class are inferred, and
// the AsmName and Dwarf numbers are cleared.
//
// RegisterTuples instances can be used in other set operations to form
// register classes and so on. This is the only way of using the generated
// registers.
//
// RegNames may be specified to supply asm names for the generated tuples.
// If used must have the same size as the list of produced registers.
class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
list<string> RegNames = []> {
// SubRegs - N lists of registers to be zipped up. Super-registers are
// synthesized from the first element of each SubRegs list, the second
// element and so on.
list<dag> SubRegs = Regs;
// SubRegIndices - N SubRegIndex instances. This provides the names of the
// sub-registers in the synthesized super-registers.
list<SubRegIndex> SubRegIndices = Indices;
// List of asm names for the generated tuple registers.
list<string> RegAsmNames = RegNames;
// PositionOrder - Indicate tablegen to place the newly added register at a later
// position to avoid iterations on them on unsupported target.
int PositionOrder = 0;
}
// RegisterCategory - This class is a list of RegisterClasses that belong to a
// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
// useful for identifying registers in a generic way instead of having
// information about a specific target's registers.
class RegisterCategory<list<RegisterClass> classes> {
// Classes - A list of register classes that fall within the category.
list<RegisterClass> Classes = classes;
}
//===----------------------------------------------------------------------===//
// DwarfRegNum - This class provides a mapping of the llvm register enumeration
// to the register numbering used by gcc and gdb. These values are used by a
// debug information writer to describe where values may be located during
// execution.
class DwarfRegNum<list<int> Numbers> {
// DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
// These values can be determined by locating the <target>.h file in the
// directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
// order of these names correspond to the enumeration used by gcc. A value of
// -1 indicates that the gcc number is undefined and -2 that register number
// is invalid for this mode/flavour.
list<int> DwarfNumbers = Numbers;
}
// DwarfRegAlias - This class declares that a given register uses the same dwarf
// numbers as another one. This is useful for making it clear that the two
// registers do have the same number. It also lets us build a mapping
// from dwarf register number to llvm register.
class DwarfRegAlias<Register reg> {
Register DwarfAlias = reg;
}
//===----------------------------------------------------------------------===//
// SubtargetFeature - A characteristic of the chip set.
//
class SubtargetFeature<string n, string f, string v, string d,
list<SubtargetFeature> i = []> {
// Name - Feature name. Used by command line (-mattr=) to determine the
// appropriate target chip.
//
string Name = n;
// FieldName - Field in XXXSubtarget to be set by feature.
//
string FieldName = f;
// Value - Value the XXXSubtarget field to be set to by feature.
//
// A value of "true" or "false" implies the field is a bool. Otherwise,
// it is assumed to be an integer. the integer value may be the name of an
// enum constant. If multiple features use the same integer field, the
// field will be set to the maximum value of all enabled features that
// share the field.
//
string Value = v;
// Desc - Feature description. Used by command line (-mattr=) to display help
// information.
//
string Desc = d;
// Implies - Features that this feature implies are present. If one of those
// features isn't set, then this one shouldn't be set either.
//
list<SubtargetFeature> Implies = i;
}
/// Specifies a Subtarget feature that this instruction is deprecated on.
class Deprecated<SubtargetFeature dep> {
SubtargetFeature DeprecatedFeatureMask = dep;
}
/// A custom predicate used to determine if an instruction is
/// deprecated or not.
class ComplexDeprecationPredicate<string dep> {
string ComplexDeprecationPredicate = dep;
}
//===----------------------------------------------------------------------===//
// Pull in the common support for MCPredicate (portable scheduling predicates).
//
include "llvm/Target/TargetInstrPredicate.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for scheduling
//
include "llvm/Target/TargetSchedule.td"
class InstructionEncoding {
// Size of encoded instruction.
int Size;
// The "namespace" in which this instruction exists, on targets like ARM
// which multiple ISA namespaces exist.
string DecoderNamespace = "";
// List of predicates which will be turned into isel matching code.
list<Predicate> Predicates = [];
string DecoderMethod = "";
// Is the instruction decoder method able to completely determine if the
// given instruction is valid or not. If the TableGen definition of the
// instruction specifies bitpattern A??B where A and B are static bits, the
// hasCompleteDecoder flag says whether the decoder method fully handles the
// ?? space, i.e. if it is a final arbiter for the instruction validity.
// If not then the decoder attempts to continue decoding when the decoder
// method fails.
//
// This allows to handle situations where the encoding is not fully
// orthogonal. Example:
// * InstA with bitpattern 0b0000????,
// * InstB with bitpattern 0b000000?? but the associated decoder method
// DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
//
// The decoder tries to decode a bitpattern that matches both InstA and
// InstB bitpatterns first as InstB (because it is the most specific
// encoding). In the default case (hasCompleteDecoder = 1), when
// DecodeInstB() returns Fail the bitpattern gets rejected. By setting
// hasCompleteDecoder = 0 in InstB, the decoder is informed that
// DecodeInstB() is not able to determine if all possible values of ?? are
// valid or not. If DecodeInstB() returns Fail the decoder will attempt to
// decode the bitpattern as InstA too.
bit hasCompleteDecoder = true;
}
// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
// to encode and decode based on HwMode.
class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
: HwModeSelect<Ms> {
// The length of this list must be the same as the length of Ms.
list<InstructionEncoding> Objects = Ts;
}
//===----------------------------------------------------------------------===//
// Instruction set description - These classes correspond to the C++ classes in
// the Target/TargetInstrInfo.h file.
//
class Instruction : InstructionEncoding {
string Namespace = "";
dag OutOperandList; // An dag containing the MI def operand list.
dag InOperandList; // An dag containing the MI use operand list.
string AsmString = ""; // The .s format to print the instruction with.
// Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
// the Inst member of this Instruction is ignored.
EncodingByHwMode EncodingInfos;
// Pattern - Set to the DAG pattern for this instruction, if we know of one,
// otherwise, uninitialized.
list<dag> Pattern;
// The follow state will eventually be inferred automatically from the
// instruction pattern.
list<Register> Uses = []; // Default to using no non-operand registers
list<Register> Defs = []; // Default to modifying no non-operand registers
// Predicates - List of predicates which will be turned into isel matching
// code.
list<Predicate> Predicates = [];
// Size - Size of encoded instruction, or zero if the size cannot be determined
// from the opcode.
int Size = 0;
// Code size, for instruction selection.
// FIXME: What does this actually mean?
int CodeSize = 0;
// Added complexity passed onto matching pattern.
int AddedComplexity = 0;
// Indicates if this is a pre-isel opcode that should be
// legalized/regbankselected/selected.
bit isPreISelOpcode = false;
// These bits capture information about the high-level semantics of the
// instruction.
bit isReturn = false; // Is this instruction a return instruction?
bit isBranch = false; // Is this instruction a branch instruction?
bit isEHScopeReturn = false; // Does this instruction end an EH scope?
bit isIndirectBranch = false; // Is this instruction an indirect branch?
bit isCompare = false; // Is this instruction a comparison instruction?
bit isMoveImm = false; // Is this instruction a move immediate instruction?
bit isMoveReg = false; // Is this instruction a move register instruction?
bit isBitcast = false; // Is this instruction a bitcast instruction?
bit isSelect = false; // Is this instruction a select instruction?
bit isBarrier = false; // Can control flow fall through this instruction?
bit isCall = false; // Is this instruction a call instruction?
bit isAdd = false; // Is this instruction an add instruction?
bit isTrap = false; // Is this instruction a trap instruction?
bit canFoldAsLoad = false; // Can this be folded as a simple memory operand?
bit mayLoad = ?; // Is it possible for this inst to read memory?
bit mayStore = ?; // Is it possible for this inst to write memory?
bit mayRaiseFPException = false; // Can this raise a floating-point exception?
bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote?
bit isCommutable = false; // Is this 3 operand instruction commutable?
bit isTerminator = false; // Is this part of the terminator for a basic block?
bit isReMaterializable = false; // Is this instruction re-materializable?
bit isPredicable = false; // 1 means this instruction is predicable
// even if it does not have any operand
// tablegen can identify as a predicate
bit isUnpredicable = false; // 1 means this instruction is not predicable
// even if it _does_ have a predicate operand
bit hasDelaySlot = false; // Does this instruction have an delay slot?
bit usesCustomInserter = false; // Pseudo instr needing special help.
bit hasPostISelHook = false; // To be *adjusted* after isel by target hook.
bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains?
bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction?
bit isConvergent = false; // Is this instruction convergent?
bit isAuthenticated = false; // Does this instruction authenticate a pointer?
bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
bit isRegSequence = false; // Is this instruction a kind of reg sequence?
// If so, make sure to override
// TargetInstrInfo::getRegSequenceLikeInputs.
bit isPseudo = false; // Is this instruction a pseudo-instruction?
// If so, won't have encoding information for
// the [MC]CodeEmitter stuff.
bit isMeta = false; // Is this instruction a meta-instruction?
// If so, won't produce any output in the form of
// executable instructions
bit isExtractSubreg = false; // Is this instruction a kind of extract subreg?
// If so, make sure to override
// TargetInstrInfo::getExtractSubregLikeInputs.
bit isInsertSubreg = false; // Is this instruction a kind of insert subreg?
// If so, make sure to override
// TargetInstrInfo::getInsertSubregLikeInputs.
bit variadicOpsAreDefs = false; // Are variadic operands definitions?
// Does the instruction have side effects that are not captured by any
// operands of the instruction or other flags?
bit hasSideEffects = ?;
// Is this instruction a "real" instruction (with a distinct machine
// encoding), or is it a pseudo instruction used for codegen modeling
// purposes.
// FIXME: For now this is distinct from isPseudo, above, as code-gen-only
// instructions can (and often do) still have encoding information
// associated with them. Once we've migrated all of them over to true
// pseudo-instructions that are lowered to real instructions prior to
// the printer/emitter, we can remove this attribute and just use isPseudo.
//
// The intended use is:
// isPseudo: Does not have encoding information and should be expanded,
// at the latest, during lowering to MCInst.
//
// isCodeGenOnly: Does have encoding information and can go through to the
// CodeEmitter unchanged, but duplicates a canonical instruction
// definition's encoding and should be ignored when constructing the
// assembler match tables.
bit isCodeGenOnly = false;
// Is this instruction a pseudo instruction for use by the assembler parser.
bit isAsmParserOnly = false;
// This instruction is not expected to be queried for scheduling latencies
// and therefore needs no scheduling information even for a complete
// scheduling model.
bit hasNoSchedulingInfo = false;
InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
// Scheduling information from TargetSchedule.td.
list<SchedReadWrite> SchedRW;
/// Support for operand constraints. There are currently two kinds:
/// "$src = $dst"
/// Ensures that the operands are allocated to the same register.
///
/// "@earlyclobber $rd"
/// Ensures that LLVM will not use the same register for any inputs (other
/// than an input tied to this output).
///
/// See also:
/// - MC/MCInstrDesc.h:OperandConstraint::{TIED_TO, EARLY_CLOBBER}.
/// - CodeGen/MachineOperand.h:MachineOperand::{TiedTo, IsEarlyClobber}.
/// - The LLVM IR specification: Section `Output constraints` in the
/// discussion of inline assembly constraint strings.
string Constraints = "";
/// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
/// be encoded into the output machineinstr.
string DisableEncoding = "";
string PostEncoderMethod = "";
/// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
bits<64> TSFlags = 0;
///@name Assembler Parser Support
///@{
string AsmMatchConverter = "";
/// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
/// two-operand matcher inst-alias for a three operand instruction.
/// For example, the arm instruction "add r3, r3, r5" can be written
/// as "add r3, r5". The constraint is of the same form as a tied-operand
/// constraint. For example, "$Rn = $Rd".
string TwoOperandAliasConstraint = "";
/// Assembler variant name to use for this instruction. If specified then
/// instruction will be presented only in MatchTable for this variant. If
/// not specified then assembler variants will be determined based on
/// AsmString
string AsmVariantName = "";
///@}
/// UseNamedOperandTable - If set, the operand indices of this instruction
/// can be queried via the getNamedOperandIdx() function which is generated
/// by TableGen.
bit UseNamedOperandTable = false;
/// Should generate helper functions that help you to map a logical operand's
/// index to the underlying MIOperand's index.
/// In most architectures logical operand indices are equal to
/// MIOperand indices, but for some CISC architectures, a logical operand
/// might be consist of multiple MIOperand (e.g. a logical operand that
/// uses complex address mode).
bit UseLogicalOperandMappings = false;
/// Should FastISel ignore this instruction. For certain ISAs, they have
/// instructions which map to the same ISD Opcode, value type operands and
/// instruction selection predicates. FastISel cannot handle such cases, but
/// SelectionDAG can.
bit FastISelShouldIgnore = false;
/// HasPositionOrder: Indicate tablegen to sort the instructions by record
/// ID, so that instruction that is defined earlier can be sorted earlier
/// in the assembly matching table.
bit HasPositionOrder = false;
}
/// Defines a Pat match between compressed and uncompressed instruction.
/// The relationship and helper function generation are handled by
/// CompressInstEmitter backend.
class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
/// Uncompressed instruction description.
dag Input = input;
/// Compressed instruction description.
dag Output = output;
/// Predicates that must be true for this to match.
list<Predicate> Predicates = predicates;
/// Duplicate match when tied operand is just different.
bit isCompressOnly = false;
}
/// Defines an additional encoding that disassembles to the given instruction
/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
// to specify their size.
class AdditionalEncoding<Instruction I> : InstructionEncoding {
Instruction AliasOf = I;
}
/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
/// Which instruction it expands to and how the operands map from the
/// pseudo.
class PseudoInstExpansion<dag Result> {
dag ResultInst = Result; // The instruction to generate.
bit isPseudo = true;
}
/// Predicates - These are extra conditionals which are turned into instruction
/// selector matching code. Currently each predicate is just a string.
class Predicate<string cond> {
string CondString = cond;
/// AssemblerMatcherPredicate - If this feature can be used by the assembler
/// matcher, this is true. Targets should set this by inheriting their
/// feature from the AssemblerPredicate class in addition to Predicate.
bit AssemblerMatcherPredicate = false;
/// AssemblerCondDag - Set of subtarget features being tested used
/// as alternative condition string used for assembler matcher. Must be used
/// with (all_of) to indicate that all features must be present, or (any_of)
/// to indicate that at least one must be. The required lack of presence of
/// a feature can be tested using a (not) node including the feature.
/// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
/// "(all_of (not ModeThumb))" is translated to
/// "(Bits & ModeThumb) == 0".
/// "(all_of ModeThumb, FeatureThumb2)" is translated to
/// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
/// "(any_of ModeTumb, FeatureThumb2)" is translated to
/// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
/// all_of and any_of cannot be combined in a single dag, instead multiple
/// predicates can be placed onto Instruction definitions.
dag AssemblerCondDag;
/// PredicateName - User-level name to use for the predicate. Mainly for use
/// in diagnostics such as missing feature errors in the asm matcher.
string PredicateName = "";
/// Setting this to '1' indicates that the predicate must be recomputed on
/// every function change. Most predicates can leave this at '0'.
///
/// Ignored by SelectionDAG, it always recomputes the predicate on every use.
bit RecomputePerFunction = false;
}
/// NoHonorSignDependentRounding - This predicate is true if support for
/// sign-dependent-rounding is not enabled.
def NoHonorSignDependentRounding
: Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
class Requires<list<Predicate> preds> {
list<Predicate> Predicates = preds;
}
/// ops definition - This is just a simple marker used to identify the operand
/// list for an instruction. outs and ins are identical both syntactically and
/// semantically; they are used to define def operands and use operands to
/// improve readability. This should be used like this:
/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
def ops;
def outs;
def ins;
/// variable_ops definition - Mark this instruction as taking a variable number
/// of operands.
def variable_ops;
/// variable-length instruction encoding utilities.
/// The `ascend` operator should be used like this:
/// (ascend 0b0010, 0b1101)
/// Which represent a seqence of encoding fragments placing from LSB to MSB.
/// Thus, in this case the final encoding will be 0b1101_0010.
/// The arguments for `ascend` can either be `bits` or another DAG.
def ascend;
/// In addition, we can use `descend` to describe an encoding that places
/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
/// (descend 0b0010, 0b1101)
/// This results in an encoding of 0b0010_1101.
def descend;
/// The `operand` operator should be used like this:
/// (operand "$src", 4)
/// Which represents a 4-bit encoding for an instruction operand named `$src`.
def operand;
/// Similar to `operand`, we can reference only part of the operand's encoding:
/// (slice "$src", 6, 8)
/// (slice "$src", 8, 6)
/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
/// `$src`.
def slice;
/// You can use `encoder` or `decoder` to specify a custom encoder or decoder
/// function for a specific `operand` or `slice` directive. For example:
/// (operand "$src", 4, (encoder "encodeMyImm"))
/// (slice "$src", 8, 6, (encoder "encodeMyReg"))
/// (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))
/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`
/// doesn't matter.
/// Note that currently we cannot assign different decoders in the same
/// (instruction) operand.
def encoder;
def decoder;
/// PointerLikeRegClass - Values that are designed to have pointer width are
/// derived from this. TableGen treats the register class as having a symbolic
/// type that it doesn't know, and resolves the actual regclass to use by using
/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
class PointerLikeRegClass<int Kind> {
int RegClassKind = Kind;
}
/// ptr_rc definition - Mark this operand as being a pointer value whose
/// register class is resolved dynamically via a callback to TargetInstrInfo.
/// FIXME: We should probably change this to a class which contain a list of
/// flags. But currently we have but one flag.
def ptr_rc : PointerLikeRegClass<0>;
/// unknown definition - Mark this operand as being of unknown type, causing
/// it to be resolved by inference in the context it is used.
class unknown_class;
def unknown : unknown_class;
/// AsmOperandClass - Representation for the kinds of operands which the target
/// specific parser can create and the assembly matcher may need to distinguish.
///
/// Operand classes are used to define the order in which instructions are
/// matched, to ensure that the instruction which gets matched for any
/// particular list of operands is deterministic.
///
/// The target specific parser must be able to classify a parsed operand into a
/// unique class which does not partially overlap with any other classes. It can
/// match a subset of some other class, in which case the super class field
/// should be defined.
class AsmOperandClass {
/// The name to use for this class, which should be usable as an enum value.
string Name = ?;
/// The super classes of this operand.
list<AsmOperandClass> SuperClasses = [];
/// The name of the method on the target specific operand to call to test
/// whether the operand is an instance of this class. If not set, this will
/// default to "isFoo", where Foo is the AsmOperandClass name. The method
/// signature should be:
/// bool isFoo() const;
string PredicateMethod = ?;
/// The name of the method on the target specific operand to call to add the
/// target specific operand to an MCInst. If not set, this will default to
/// "addFooOperands", where Foo is the AsmOperandClass name. The method
/// signature should be:
/// void addFooOperands(MCInst &Inst, unsigned N) const;
string RenderMethod = ?;
/// The name of the method on the target specific operand to call to custom
/// handle the operand parsing. This is useful when the operands do not relate
/// to immediates or registers and are very instruction specific (as flags to
/// set in a processor register, coprocessor number, ...).
string ParserMethod = ?;
// The diagnostic type to present when referencing this operand in a
// match failure error message. By default, use a generic "invalid operand"
// diagnostic. The target AsmParser maps these codes to text.
string DiagnosticType = "";
/// A diagnostic message to emit when an invalid value is provided for this
/// operand.
string DiagnosticString = "";
/// Set to 1 if this operand is optional and not always required. Typically,
/// the AsmParser will emit an error when it finishes parsing an
/// instruction if it hasn't matched all the operands yet. However, this
/// error will be suppressed if all of the remaining unmatched operands are
/// marked as IsOptional.
bit IsOptional = false;
/// The name of the method on the target specific asm parser that returns the
/// default operand for this optional operand. This method is only used if
/// IsOptional == 1. If not set, this will default to "defaultFooOperands",
/// where Foo is the AsmOperandClass name. The method signature should be:
/// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
string DefaultMethod = ?;
}
def ImmAsmOperand : AsmOperandClass {
let Name = "Imm";
}
/// Operand Types - These provide the built-in operand types that may be used
/// by a target. Targets can optionally provide their own operand types as
/// needed, though this should not be needed for RISC targets.
class Operand<ValueType ty> : DAGOperand {
ValueType Type = ty;
string PrintMethod = "printOperand";
string EncoderMethod = "";
bit hasCompleteDecoder = true;
string OperandType = "OPERAND_UNKNOWN";
dag MIOperandInfo = (ops);
// MCOperandPredicate - Optionally, a code fragment operating on
// const MCOperand &MCOp, and returning a bool, to indicate if
// the value of MCOp is valid for the specific subclass of Operand
code MCOperandPredicate;
// ParserMatchClass - The "match class" that operands of this type fit
// in. Match classes are used to define the order in which instructions are
// match, to ensure that which instructions gets matched is deterministic.
//
// The target specific parser must be able to classify an parsed operand into
// a unique class, which does not partially overlap with any other classes. It
// can match a subset of some other class, in which case the AsmOperandClass
// should declare the other operand as one of its super classes.
AsmOperandClass ParserMatchClass = ImmAsmOperand;
}
class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
: DAGOperand {
// RegClass - The register class of the operand.
RegisterClass RegClass = regclass;
// PrintMethod - The target method to call to print register operands of
// this type. The method normally will just use an alt-name index to look
// up the name to print. Default to the generic printOperand().
string PrintMethod = pm;
// EncoderMethod - The target method name to call to encode this register
// operand.
string EncoderMethod = "";
// ParserMatchClass - The "match class" that operands of this type fit
// in. Match classes are used to define the order in which instructions are
// match, to ensure that which instructions gets matched is deterministic.
//
// The target specific parser must be able to classify an parsed operand into
// a unique class, which does not partially overlap with any other classes. It
// can match a subset of some other class, in which case the AsmOperandClass
// should declare the other operand as one of its super classes.
AsmOperandClass ParserMatchClass;
string OperandType = "OPERAND_REGISTER";
// When referenced in the result of a CodeGen pattern, GlobalISel will
// normally copy the matched operand to the result. When this is set, it will
// emit a special copy that will replace zero-immediates with the specified
// zero-register.
Register GIZeroRegister = ?;
}
let OperandType = "OPERAND_IMMEDIATE" in {
def i1imm : Operand<i1>;
def i8imm : Operand<i8>;
def i16imm : Operand<i16>;
def i32imm : Operand<i32>;
def i64imm : Operand<i64>;
def f32imm : Operand<f32>;
def f64imm : Operand<f64>;
}
// Register operands for generic instructions don't have an MVT, but do have
// constraints linking the operands (e.g. all operands of a G_ADD must
// have the same LLT).
class TypedOperand<string Ty> : Operand<untyped> {
let OperandType = Ty;
bit IsPointer = false;
bit IsImmediate = false;
}
def type0 : TypedOperand<"OPERAND_GENERIC_0">;
def type1 : TypedOperand<"OPERAND_GENERIC_1">;
def type2 : TypedOperand<"OPERAND_GENERIC_2">;
def type3 : TypedOperand<"OPERAND_GENERIC_3">;
def type4 : TypedOperand<"OPERAND_GENERIC_4">;
def type5 : TypedOperand<"OPERAND_GENERIC_5">;
let IsPointer = true in {
def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
}
// untyped_imm is for operands where isImm() will be true. It currently has no
// special behaviour and is only used for clarity.
def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
let IsImmediate = true;
}
/// zero_reg definition - Special node to stand for the zero register.
///
def zero_reg;
/// undef_tied_input - Special node to indicate an input register tied
/// to an output which defaults to IMPLICIT_DEF.
def undef_tied_input;
/// All operands which the MC layer classifies as predicates should inherit from
/// this class in some manner. This is already handled for the most commonly
/// used PredicateOperand, but may be useful in other circumstances.
class PredicateOp;
/// OperandWithDefaultOps - This Operand class can be used as the parent class
/// for an Operand that needs to be initialized with a default value if
/// no value is supplied in a pattern. This class can be used to simplify the
/// pattern definitions for instructions that have target specific flags
/// encoded as immediate operands.
class OperandWithDefaultOps<ValueType ty, dag defaultops>
: Operand<ty> {
dag DefaultOps = defaultops;
}
/// PredicateOperand - This can be used to define a predicate operand for an
/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
/// AlwaysVal specifies the value of this predicate when set to "always
/// execute".
class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
: OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
let MIOperandInfo = OpTypes;
}
/// OptionalDefOperand - This is used to define a optional definition operand
/// for an instruction. DefaultOps is the register the operand represents if
/// none is supplied, e.g. zero_reg.
class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
: OperandWithDefaultOps<ty, defaultops> {
let MIOperandInfo = OpTypes;
}
// InstrInfo - This class should only be instantiated once to provide parameters
// which are global to the target machine.
//
class InstrInfo {
// Target can specify its instructions in either big or little-endian formats.
// For instance, while both Sparc and PowerPC are big-endian platforms, the
// Sparc manual specifies its instructions in the format [31..0] (big), while
// PowerPC specifies them using the format [0..31] (little).
bit isLittleEndianEncoding = false;
// The instruction properties mayLoad, mayStore, and hasSideEffects are unset
// by default, and TableGen will infer their value from the instruction
// pattern when possible.
//
// Normally, TableGen will issue an error if it can't infer the value of a
// property that hasn't been set explicitly. When guessInstructionProperties
// is set, it will guess a safe value instead.
//
// This option is a temporary migration help. It will go away.
bit guessInstructionProperties = true;
}
// Standard Pseudo Instructions.
// This list must match TargetOpcodes.def.
// Only these instructions are allowed in the TargetOpcode namespace.
// Ensure mayLoad and mayStore have a default value, so as not to break
// targets that set guessInstructionProperties=0. Any local definition of
// mayLoad/mayStore takes precedence over these default values.
class StandardPseudoInstruction : Instruction {
let mayLoad = false;
let mayStore = false;
let isCodeGenOnly = true;
let isPseudo = true;
let hasNoSchedulingInfo = true;
let Namespace = "TargetOpcode";
}
def PHI : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins variable_ops);
let AsmString = "PHINODE";
let hasSideEffects = false;
}
def INLINEASM : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "";
let hasSideEffects = false; // Note side effect is encoded in an operand.
}
def INLINEASM_BR : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "";
// Unlike INLINEASM, this is always treated as having side-effects.
let hasSideEffects = true;
// Despite potentially branching, this instruction is intentionally _not_
// marked as a terminator or a branch.
}
def CFI_INSTRUCTION : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = true;
let hasSideEffects = false;
let isNotDuplicable = true;
let isMeta = true;
}
def EH_LABEL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = true;
let hasSideEffects = false;
let isNotDuplicable = true;
let isMeta = true;
}
def GC_LABEL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = true;
let hasSideEffects = false;
let isNotDuplicable = true;
let isMeta = true;
}
def ANNOTATION_LABEL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = true;
let hasSideEffects = false;
let isNotDuplicable = true;
}
def KILL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "";
let hasSideEffects = false;
let isMeta = true;
}
def EXTRACT_SUBREG : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
let AsmString = "";
let hasSideEffects = false;
}
def INSERT_SUBREG : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
let AsmString = "";
let hasSideEffects = false;
let Constraints = "$supersrc = $dst";
}
def IMPLICIT_DEF : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins);
let AsmString = "";
let hasSideEffects = false;
let isReMaterializable = true;
let isAsCheapAsAMove = true;
let isMeta = true;
}
def INIT_UNDEF : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins);
let AsmString = "";
let hasSideEffects = false;
let Size = 0;
}
def SUBREG_TO_REG : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
let AsmString = "";
let hasSideEffects = false;
}
def COPY_TO_REGCLASS : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$src, i32imm:$regclass);
let AsmString = "";
let hasSideEffects = false;
let isAsCheapAsAMove = true;
}
def DBG_VALUE : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "DBG_VALUE";
let hasSideEffects = false;
let isMeta = true;
}
def DBG_VALUE_LIST : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "DBG_VALUE_LIST";
let hasSideEffects = 0;
let isMeta = true;
}
def DBG_INSTR_REF : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "DBG_INSTR_REF";
let hasSideEffects = false;
let isMeta = true;
}
def DBG_PHI : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "DBG_PHI";
let hasSideEffects = 0;
let isMeta = true;
}
def DBG_LABEL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$label);
let AsmString = "DBG_LABEL";
let hasSideEffects = false;
let isMeta = true;
}
def REG_SEQUENCE : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$supersrc, variable_ops);
let AsmString = "";
let hasSideEffects = false;
let isAsCheapAsAMove = true;
}
def COPY : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$src);
let AsmString = "";
let hasSideEffects = false;
let isAsCheapAsAMove = true;
let hasNoSchedulingInfo = false;
}
def BUNDLE : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "BUNDLE";
let hasSideEffects = false;
}
def LIFETIME_START : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "LIFETIME_START";
let hasSideEffects = false;
let isMeta = true;
}
def LIFETIME_END : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "LIFETIME_END";
let hasSideEffects = false;
let isMeta = true;
}
def PSEUDO_PROBE : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
let AsmString = "PSEUDO_PROBE";
let hasSideEffects = 1;
let isMeta = true;
}
def ARITH_FENCE : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$src);
let AsmString = "";
let hasSideEffects = false;
let Constraints = "$src = $dst";
let isMeta = true;
}
def STACKMAP : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
let hasSideEffects = true;
let isCall = true;
let mayLoad = true;
let usesCustomInserter = true;
}
def PATCHPOINT : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
i32imm:$nargs, i32imm:$cc, variable_ops);
let hasSideEffects = true;
let isCall = true;
let mayLoad = true;
let usesCustomInserter = true;
}
def STATEPOINT : StandardPseudoInstruction {
let OutOperandList = (outs variable_ops);
let InOperandList = (ins variable_ops);
let usesCustomInserter = true;
let mayLoad = true;
let mayStore = true;
let hasSideEffects = true;
let isCall = true;
}
def LOAD_STACK_GUARD : StandardPseudoInstruction {
let OutOperandList = (outs ptr_rc:$dst);
let InOperandList = (ins);
let mayLoad = true;
bit isReMaterializable = true;
let hasSideEffects = false;
bit isPseudo = true;
}
def PREALLOCATED_SETUP : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$a);
let usesCustomInserter = true;
let hasSideEffects = true;
}
def PREALLOCATED_ARG : StandardPseudoInstruction {
let OutOperandList = (outs ptr_rc:$loc);
let InOperandList = (ins i32imm:$a, i32imm:$b);
let usesCustomInserter = true;
let hasSideEffects = true;
}
def LOCAL_ESCAPE : StandardPseudoInstruction {
// This instruction is really just a label. It has to be part of the chain so
// that it doesn't get dropped from the DAG, but it produces nothing and has
// no side effects.
let OutOperandList = (outs);
let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
let hasSideEffects = false;
let hasCtrlDep = true;
}
def FAULTING_OP : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins variable_ops);
let usesCustomInserter = true;
let hasSideEffects = true;
let mayLoad = true;
let mayStore = true;
let isTerminator = true;
let isBranch = true;
}
def FAKE_USE : StandardPseudoInstruction {
// An instruction that uses its operands but does nothing; this instruction
// will be treated specially by CodeGen passes, distinguishing it from any
// otherwise equivalent instructions.
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "FAKE_USE";
let hasSideEffects = 0;
let isMeta = true;
}
def PATCHABLE_OP : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let usesCustomInserter = true;
let mayLoad = true;
let mayStore = true;
let hasSideEffects = true;
}
def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins);
let AsmString = "# XRay Function Enter.";
let usesCustomInserter = true;
let hasSideEffects = true;
}
def PATCHABLE_RET : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "# XRay Function Patchable RET.";
let usesCustomInserter = true;
let hasSideEffects = true;
let isTerminator = true;
let isReturn = true;
}
def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins);
let AsmString = "# XRay Function Exit.";
let usesCustomInserter = true;
let hasSideEffects = true;
let isReturn = false; // Original return instruction will follow
}
def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "# XRay Tail Call Exit.";
let usesCustomInserter = true;
let hasSideEffects = true;
let isReturn = true;
}
def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins ptr_rc:$event, unknown:$size);
let AsmString = "# XRay Custom Event Log.";
let usesCustomInserter = true;
let isCall = true;
let mayLoad = true;
let mayStore = true;
let hasSideEffects = true;
}
def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
let AsmString = "# XRay Typed Event Log.";
let usesCustomInserter = true;
let isCall = true;
let mayLoad = true;
let mayStore = true;
let hasSideEffects = true;
}
def FENTRY_CALL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins);
let AsmString = "# FEntry call";
let usesCustomInserter = true;
let isCall = true;
let mayLoad = true;
let mayStore = true;
let hasSideEffects = true;
}
def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "";
let hasSideEffects = true;
}
def MEMBARRIER : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins);
let AsmString = "";
let hasSideEffects = true;
let Size = 0;
let isMeta = true;
}
def JUMP_TABLE_DEBUG_INFO : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins i64imm:$jti);
let AsmString = "";
let hasSideEffects = false;
let Size = 0;
let isMeta = true;
}
let hasSideEffects = false, isMeta = true, isConvergent = true in {
def CONVERGENCECTRL_ANCHOR : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins);
}
def CONVERGENCECTRL_ENTRY : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins);
}
def CONVERGENCECTRL_LOOP : StandardPseudoInstruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$src);
}
def CONVERGENCECTRL_GLUE : StandardPseudoInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$src);
}
}
// Generic opcodes used in GlobalISel.
include "llvm/Target/GenericOpcodes.td"
//===----------------------------------------------------------------------===//
// AsmParser - This class can be implemented by targets that wish to implement
// .s file parsing.
//
// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
// syntax on X86 for example).
//
class AsmParser {
// AsmParserClassName - This specifies the suffix to use for the asmparser
// class. Generated AsmParser classes are always prefixed with the target
// name.
string AsmParserClassName = "AsmParser";
// AsmParserInstCleanup - If non-empty, this is the name of a custom member
// function of the AsmParser class to call on every matched instruction.
// This can be used to perform target specific instruction post-processing.
string AsmParserInstCleanup = "";
// ShouldEmitMatchRegisterName - Set to false if the target needs a hand
// written register name matcher
bit ShouldEmitMatchRegisterName = true;
// Set to true if the target needs a generated 'alternative register name'
// matcher.
//
// This generates a function which can be used to lookup registers from
// their aliases. This function will fail when called on targets where
// several registers share the same alias (i.e. not a 1:1 mapping).
bit ShouldEmitMatchRegisterAltName = false;
// Set to true if MatchRegisterName and MatchRegisterAltName functions
// should be generated even if there are duplicate register names. The
// target is responsible for coercing aliased registers as necessary
// (e.g. in validateTargetOperandClass), and there are no guarantees about
// which numeric register identifier will be returned in the case of
// multiple matches.
bit AllowDuplicateRegisterNames = false;
// HasMnemonicFirst - Set to false if target instructions don't always
// start with a mnemonic as the first token.
bit HasMnemonicFirst = true;
// ReportMultipleNearMisses -
// When 0, the assembly matcher reports an error for one encoding or operand
// that did not match the parsed instruction.
// When 1, the assembly matcher returns a list of encodings that were close
// to matching the parsed instruction, so to allow more detailed error
// messages.
bit ReportMultipleNearMisses = false;
// OperandParserMethod - If non-empty, this is the name of a custom
// member function of the AsmParser class to call for every instruction
// operand to be parsed.
string OperandParserMethod = "";
// CallCustomParserForAllOperands - Set to true if the custom parser
// method shall be called for all operands as opposed to only those
// that have their own specified custom parsers.
bit CallCustomParserForAllOperands = false;
// PreferSmallerInstructions - Should the assembly matcher prefer the smaller
// instructions.
//
// This is useful for the ARM instructions set where smaller encodings must
// be preferentially selected.
//
// The preference order is:
// Instrution size (if this option is enabled, smallest first)
// Number of Operands (least first),
// Operand Classes (lexicographically by operand),
// (Optional) Instruction id (see AsmMatcherEmitter.cpp for details),
// Number of required features (least first)
bit PreferSmallerInstructions = false;
}
def DefaultAsmParser : AsmParser;
//===----------------------------------------------------------------------===//
// AsmParserVariant - Subtargets can have multiple different assembly parsers
// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
// implemented by targets to describe such variants.
//
class AsmParserVariant {
// Variant - AsmParsers can be of multiple different variants. Variants are
// used to support targets that need to parse multiple formats for the
// assembly language.
int Variant = 0;
// Name - The AsmParser variant name (e.g., AT&T vs Intel).
string Name = "";
// CommentDelimiter - If given, the delimiter string used to recognize
// comments which are hard coded in the .td assembler strings for individual
// instructions.
string CommentDelimiter = "";
// RegisterPrefix - If given, the token prefix which indicates a register
// token. This is used by the matcher to automatically recognize hard coded
// register tokens as constrained registers, instead of tokens, for the
// purposes of matching.
string RegisterPrefix = "";
// TokenizingCharacters - Characters that are standalone tokens
string TokenizingCharacters = "[]*!";
// SeparatorCharacters - Characters that are not tokens
string SeparatorCharacters = " \t,";
// BreakCharacters - Characters that start new identifiers
string BreakCharacters = "";
}
def DefaultAsmParserVariant : AsmParserVariant;
// Operators for combining SubtargetFeatures in AssemblerPredicates
def any_of;
def all_of;
/// AssemblerPredicate - This is a Predicate that can be used when the assembler
/// matches instructions and aliases.
class AssemblerPredicate<dag cond, string name = ""> {
bit AssemblerMatcherPredicate = true;
dag AssemblerCondDag = cond;
string PredicateName = name;
}
/// TokenAlias - This class allows targets to define assembler token
/// operand aliases. That is, a token literal operand which is equivalent
/// to another, canonical, token literal. For example, ARM allows:
/// vmov.u32 s4, #0 -> vmov.i32, #0
/// 'u32' is a more specific designator for the 32-bit integer type specifier
/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
/// def : TokenAlias<".u32", ".i32">;
///
/// This works by marking the match class of 'From' as a subclass of the
/// match class of 'To'.
class TokenAlias<string From, string To> {
string FromToken = From;
string ToToken = To;
}
/// MnemonicAlias - This class allows targets to define assembler mnemonic
/// aliases. This should be used when all forms of one mnemonic are accepted
/// with a different mnemonic. For example, X86 allows:
/// sal %al, 1 -> shl %al, 1
/// sal %ax, %cl -> shl %ax, %cl
/// sal %eax, %cl -> shl %eax, %cl
/// etc. Though "sal" is accepted with many forms, all of them are directly
/// translated to a shl, so it can be handled with (in the case of X86, it
/// actually has one for each suffix as well):
/// def : MnemonicAlias<"sal", "shl">;
///
/// Mnemonic aliases are mapped before any other translation in the match phase,
/// and do allow Requires predicates, e.g.:
///
/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
///
/// Mnemonic aliases can also be constrained to specific variants, e.g.:
///
/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
///
/// If no variant (e.g., "att" or "intel") is specified then the alias is
/// applied unconditionally.
class MnemonicAlias<string From, string To, string VariantName = ""> {
string FromMnemonic = From;
string ToMnemonic = To;
string AsmVariantName = VariantName;
// Predicates - Predicates that must be true for this remapping to happen.
list<Predicate> Predicates = [];
}
/// InstAlias - This defines an alternate assembly syntax that is allowed to
/// match an instruction that has a different (more canonical) assembly
/// representation.
class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
string AsmString = Asm; // The .s format to match the instruction with.
dag ResultInst = Result; // The MCInst to generate.
// This determines which order the InstPrinter detects aliases for
// printing. A larger value makes the alias more likely to be
// emitted. The Instruction's own definition is notionally 0.5, so 0
// disables printing and 1 enables it if there are no conflicting aliases.
int EmitPriority = Emit;
// Predicates - Predicates that must be true for this to match.
list<Predicate> Predicates = [];
// If the instruction specified in Result has defined an AsmMatchConverter
// then setting this to 1 will cause the alias to use the AsmMatchConverter
// function when converting the OperandVector into an MCInst instead of the
// function that is generated by the dag Result.
// Setting this to 0 will cause the alias to ignore the Result instruction's
// defined AsmMatchConverter and instead use the function generated by the
// dag Result.
bit UseInstAsmMatchConverter = true;
// Assembler variant name to use for this alias. If not specified then
// assembler variants will be determined based on AsmString
string AsmVariantName = VariantName;
}
//===----------------------------------------------------------------------===//
// AsmWriter - This class can be implemented by targets that need to customize
// the format of the .s file writer.
//
// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
// on X86 for example).
//
class AsmWriter {
// AsmWriterClassName - This specifies the suffix to use for the asmwriter
// class. Generated AsmWriter classes are always prefixed with the target
// name.
string AsmWriterClassName = "InstPrinter";
// PassSubtarget - Determines whether MCSubtargetInfo should be passed to
// the various print methods.
// FIXME: Remove after all ports are updated.
int PassSubtarget = 0;
// Variant - AsmWriters can be of multiple different variants. Variants are
// used to support targets that need to emit assembly code in ways that are
// mostly the same for different targets, but have minor differences in
// syntax. If the asmstring contains {|} characters in them, this integer
// will specify which alternative to use. For example "{x|y|z}" with Variant
// == 1, will expand to "y".
int Variant = 0;
}
def DefaultAsmWriter : AsmWriter;
//===----------------------------------------------------------------------===//
// Target - This class contains the "global" target information
//
class Target {
// InstructionSet - Instruction set description for this target.
InstrInfo InstructionSet;
// AssemblyParsers - The AsmParser instances available for this target.
list<AsmParser> AssemblyParsers = [DefaultAsmParser];
/// AssemblyParserVariants - The AsmParserVariant instances available for
/// this target.
list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
// AssemblyWriters - The AsmWriter instances available for this target.
list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
// AllowRegisterRenaming - Controls whether this target allows
// post-register-allocation renaming of registers. This is done by
// setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
// for all opcodes if this flag is set to 0.
int AllowRegisterRenaming = 0;
}
//===----------------------------------------------------------------------===//
// Processor chip sets - These values represent each of the chip sets supported
// by the scheduler. Each Processor definition requires corresponding
// instruction itineraries.
//
class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
list<SubtargetFeature> tunef = []> {
// Name - Chip set name. Used by command line (-mcpu=) to determine the
// appropriate target chip.
//
string Name = n;
// SchedModel - The machine model for scheduling and instruction cost.
//
SchedMachineModel SchedModel = NoSchedModel;
// ProcItin - The scheduling information for the target processor.
//
ProcessorItineraries ProcItin = pi;
// Features - list of
list<SubtargetFeature> Features = f;
// TuneFeatures - list of features for tuning for this CPU. If the target
// supports -mtune, this should contain the list of features used to make
// microarchitectural optimization decisions for a given processor. While
// Features should contain the architectural features for the processor.
list<SubtargetFeature> TuneFeatures = tunef;
}
// ProcessorModel allows subtargets to specify the more general
// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
// gradually move to this newer form.
//
// Although this class always passes NoItineraries to the Processor
// class, the SchedMachineModel may still define valid Itineraries.
class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
list<SubtargetFeature> tunef = []>
: Processor<n, NoItineraries, f, tunef> {
let SchedModel = m;
}
//===----------------------------------------------------------------------===//
// InstrMapping - This class is used to create mapping tables to relate
// instructions with each other based on the values specified in RowFields,
// ColFields, KeyCol and ValueCols.
//
class InstrMapping {
// FilterClass - Used to limit search space only to the instructions that
// define the relationship modeled by this InstrMapping record.
string FilterClass;
// RowFields - List of fields/attributes that should be same for all the
// instructions in a row of the relation table. Think of this as a set of
// properties shared by all the instructions related by this relationship
// model and is used to categorize instructions into subgroups. For instance,
// if we want to define a relation that maps 'Add' instruction to its
// predicated forms, we can define RowFields like this:
//
// let RowFields = BaseOp
// All add instruction predicated/non-predicated will have to set their BaseOp
// to the same value.
//
// def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
// def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
// def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
list<string> RowFields = [];
// List of fields/attributes that are same for all the instructions
// in a column of the relation table.
// Ex: let ColFields = 'predSense' -- It means that the columns are arranged
// based on the 'predSense' values. All the instruction in a specific
// column have the same value and it is fixed for the column according
// to the values set in 'ValueCols'.
list<string> ColFields = [];
// Values for the fields/attributes listed in 'ColFields'.
// Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
// that models this relation) should be non-predicated.
// In the example above, 'Add' is the key instruction.
list<string> KeyCol = [];
// List of values for the fields/attributes listed in 'ColFields', one for
// each column in the relation table.
//
// Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
// table. First column requires all the instructions to have predSense
// set to 'true' and second column requires it to be 'false'.
list<list<string> > ValueCols = [];
}
//===----------------------------------------------------------------------===//
// Pull in the common support for calling conventions.
//
include "llvm/Target/TargetCallingConv.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for DAG isel generation.
//
include "llvm/Target/TargetSelectionDAG.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for Global ISel register bank info generation.
//
include "llvm/Target/GlobalISel/RegisterBank.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for DAG isel generation.
//
include "llvm/Target/GlobalISel/Target.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for the Global ISel DAG-based selector generation.
//
include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for Pfm Counters generation.
//
include "llvm/Target/TargetPfmCounters.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for macro fusion.
//
include "llvm/Target/TargetMacroFusion.td"