//===- Combine.td - Combine rule definitions ---------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Declare GlobalISel combine rules and provide mechanisms to opt-out.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Base Classes
//
// These are the core classes that the combiner backend relies on.
//===----------------------------------------------------------------------===//
/// All arguments of the defs operator must be subclasses of GIDefKind or
/// sub-dags whose operator is GIDefKindWithArgs.
class GIDefKind;
class GIDefKindWithArgs;
/// Declare a root node. There must be at least one of these in every combine
/// rule.
def root : GIDefKind;
def defs;
def pattern;
def match;
def apply;
def wip_match_opcode;
// Common base class for GICombineRule and GICombineGroup.
class GICombine {
// See GICombineGroup. We only declare it here to make the tablegen pass
// simpler.
list<GICombine> Rules = ?;
}
// A group of combine rules that can be added to a GICombiner or another group.
class GICombineGroup<list<GICombine> rules> : GICombine {
// The rules contained in this group. The rules in a group are flattened into
// a single list and sorted into whatever order is most efficient. However,
// they will never be re-ordered such that behaviour differs from the
// specified order. It is therefore possible to use the order of rules in this
// list to describe priorities.
let Rules = rules;
}
// Declares a combiner implementation class
class GICombiner<string classname, list<GICombine> rules>
: GICombineGroup<rules> {
// The class name to use in the generated output.
string Classname = classname;
// Combiners can use this so they're free to define tryCombineAll themselves
// and do extra work before/after calling the TableGen-erated code.
string CombineAllMethodName = "tryCombineAll";
}
/// Declares data that is passed from the match stage to the apply stage.
class GIDefMatchData<string type> {
/// A C++ type name indicating the storage type.
string Type = type;
}
class GICombineRule<dag defs, dag match, dag apply> : GICombine {
/// Defines the external interface of the match rule. This includes:
/// * The names of the root nodes (requires at least one)
/// See GIDefKind for details.
dag Defs = defs;
/// Defines the things which must be true for the pattern to match
dag Match = match;
/// Defines the things which happen after the decision is made to apply a
/// combine rule.
dag Apply = apply;
/// Defines the predicates that are checked before the match function
/// is called. Targets can use this to, for instance, check Subtarget
/// features.
list<Predicate> Predicates = [];
// Maximum number of permutations of this rule that can be emitted.
// Set to -1 to disable the limit.
int MaxPermutations = 16;
}
def gi_mo;
def gi_imm;
// This is an equivalent of PatFrags but for MIR Patterns.
//
// GICombinePatFrags can be used in place of instructions for 'match' patterns.
// Much like normal instructions, the defs (outs) come first, and the ins second
//
// Out operands can only be of type "root" or "gi_mo", and they must be defined
// by an instruction pattern in all alternatives.
//
// In operands can be gi_imm or gi_mo. They cannot be redefined in any alternative
// pattern and may only appear in the C++ code, or in the output operand of an
// instruction pattern.
class GICombinePatFrag<dag outs, dag ins, list<dag> alts> {
dag InOperands = ins;
dag OutOperands = outs;
list<dag> Alternatives = alts;
}
//===----------------------------------------------------------------------===//
// Pattern Special Types
//===----------------------------------------------------------------------===//
class GISpecialType;
// In an apply pattern, GITypeOf can be used to set the type of a new temporary
// register to match the type of a matched register.
//
// This can only be used on temporary registers defined by the apply pattern.
//
// TODO: Make this work in matchers as well?
//
// FIXME: Syntax is very ugly.
class GITypeOf<string opName> : GISpecialType {
string OpName = opName;
}
// The type of an operand that can match a variable amount of operands.
// This type contains a minimum and maximum number of operands to match.
// The minimum must be 1 or more, as we cannot have an operand representing
// zero operands, and the max can be zero (which means "unlimited") or a value
// greater than the minimum.
class GIVariadic<int min = 1, int max = 0> : GISpecialType {
int MinArgs = min;
int MaxArgs = max;
}
//===----------------------------------------------------------------------===//
// Pattern Builtins
//===----------------------------------------------------------------------===//
// "Magic" Builtin instructions for MIR patterns.
// The definitions that implement
class GIBuiltinInst;
// Replace all references to a register with another one.
//
// Usage:
// (apply (GIReplaceReg $old, $new))
//
// Operands:
// - $old (out) register defined by a matched instruction
// - $new (in) register
//
// Semantics:
// - Can only appear in an 'apply' pattern.
// - If both old/new are operands of matched instructions,
// "canReplaceReg" is checked before applying the rule.
def GIReplaceReg : GIBuiltinInst;
// Apply action that erases the match root.
//
// Usage:
// (apply (GIEraseRoot))
//
// Semantics:
// - Can only appear as the only pattern of an 'apply' pattern list.
// - The root cannot have any output operands.
// - The root must be a CodeGenInstruction
//
// TODO: Allow using this directly, like (apply GIEraseRoot)
def GIEraseRoot : GIBuiltinInst;
//===----------------------------------------------------------------------===//
// Pattern MIFlags
//===----------------------------------------------------------------------===//
class MIFlagEnum<string enumName> {
string EnumName = "MachineInstr::" # enumName;
}
def FmNoNans : MIFlagEnum<"FmNoNans">;
def FmNoInfs : MIFlagEnum<"FmNoInfs">;
def FmNsz : MIFlagEnum<"FmNsz">;
def FmArcp : MIFlagEnum<"FmArcp">;
def FmContract : MIFlagEnum<"FmContract">;
def FmAfn : MIFlagEnum<"FmAfn">;
def FmReassoc : MIFlagEnum<"FmReassoc">;
def IsExact : MIFlagEnum<"IsExact">;
def NoSWrap : MIFlagEnum<"NoSWrap">;
def NoUWrap : MIFlagEnum<"NoUWrap">;
def NonNeg : MIFlagEnum<"NonNeg">;
def MIFlags;
// def not; -> Already defined as a SDNode
//===----------------------------------------------------------------------===//
def extending_load_matchdata : GIDefMatchData<"PreferredTuple">;
def indexed_load_store_matchdata : GIDefMatchData<"IndexedLoadStoreMatchInfo">;
def instruction_steps_matchdata: GIDefMatchData<"InstructionStepsMatchInfo">;
def register_matchinfo: GIDefMatchData<"Register">;
def int64_matchinfo: GIDefMatchData<"int64_t">;
def apint_matchinfo : GIDefMatchData<"APInt">;
def constantfp_matchinfo : GIDefMatchData<"ConstantFP*">;
def build_fn_matchinfo :
GIDefMatchData<"std::function<void(MachineIRBuilder &)>">;
def unsigned_matchinfo: GIDefMatchData<"unsigned">;
def copy_prop : GICombineRule<
(defs root:$d),
(match (COPY $d, $s):$mi,
[{ return Helper.matchCombineCopy(*${mi}); }]),
(apply [{ Helper.applyCombineCopy(*${mi}); }])>;
// idempotent operations
// Fold (freeze (freeze x)) -> (freeze x).
// Fold (fabs (fabs x)) -> (fabs x).
// Fold (fcanonicalize (fcanonicalize x)) -> (fcanonicalize x).
def idempotent_prop_frags : GICombinePatFrag<
(outs root:$dst, $src), (ins),
!foreach(op, [G_FREEZE, G_FABS, G_FCANONICALIZE],
(pattern (op $dst, $src), (op $src, $x)))>;
def idempotent_prop : GICombineRule<
(defs root:$dst),
(match (idempotent_prop_frags $dst, $src)),
(apply (GIReplaceReg $dst, $src))>;
// Convert freeze(Op(Op0, NonPoisonOps...)) to Op(freeze(Op0), NonPoisonOps...)
// when Op0 is not guaranteed non-poison
def push_freeze_to_prevent_poison_from_propagating : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_FREEZE $dst, $src):$root,
[{ return !isGuaranteedNotToBePoison(${src}.getReg(), MRI) && Helper.matchFreezeOfSingleMaybePoisonOperand(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def extending_loads : GICombineRule<
(defs root:$root, extending_load_matchdata:$matchinfo),
(match (wip_match_opcode G_LOAD, G_SEXTLOAD, G_ZEXTLOAD):$root,
[{ return Helper.matchCombineExtendingLoads(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineExtendingLoads(*${root}, ${matchinfo}); }])>;
def load_and_mask : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_AND):$root,
[{ return Helper.matchCombineLoadWithAndMask(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def combines_for_extload: GICombineGroup<[extending_loads, load_and_mask]>;
def sext_trunc_sextload : GICombineRule<
(defs root:$d),
(match (wip_match_opcode G_SEXT_INREG):$d,
[{ return Helper.matchSextTruncSextLoad(*${d}); }]),
(apply [{ Helper.applySextTruncSextLoad(*${d}); }])>;
def sext_inreg_of_load_matchdata : GIDefMatchData<"std::tuple<Register, unsigned>">;
def sext_inreg_of_load : GICombineRule<
(defs root:$root, sext_inreg_of_load_matchdata:$matchinfo),
(match (wip_match_opcode G_SEXT_INREG):$root,
[{ return Helper.matchSextInRegOfLoad(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applySextInRegOfLoad(*${root}, ${matchinfo}); }])>;
def sext_inreg_to_zext_inreg : GICombineRule<
(defs root:$dst),
(match
(G_SEXT_INREG $dst, $src, $imm):$root,
[{
unsigned BitWidth = MRI.getType(${src}.getReg()).getScalarSizeInBits();
return Helper.getKnownBits()->maskedValueIsZero(${src}.getReg(),
APInt::getOneBitSet(BitWidth, ${imm}.getImm() - 1)); }]),
(apply [{
Helper.getBuilder().setInstrAndDebugLoc(*${root});
Helper.getBuilder().buildZExtInReg(${dst}, ${src}, ${imm}.getImm());
${root}->eraseFromParent();
}])
>;
def combine_extracted_vector_load : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_EXTRACT_VECTOR_ELT):$root,
[{ return Helper.matchCombineExtractedVectorLoad(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def combine_indexed_load_store : GICombineRule<
(defs root:$root, indexed_load_store_matchdata:$matchinfo),
(match (wip_match_opcode G_LOAD, G_SEXTLOAD, G_ZEXTLOAD, G_STORE):$root,
[{ return Helper.matchCombineIndexedLoadStore(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineIndexedLoadStore(*${root}, ${matchinfo}); }])>;
def opt_brcond_by_inverting_cond_matchdata : GIDefMatchData<"MachineInstr *">;
def opt_brcond_by_inverting_cond : GICombineRule<
(defs root:$root, opt_brcond_by_inverting_cond_matchdata:$matchinfo),
(match (wip_match_opcode G_BR):$root,
[{ return Helper.matchOptBrCondByInvertingCond(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyOptBrCondByInvertingCond(*${root}, ${matchinfo}); }])>;
def ptr_add_immed_matchdata : GIDefMatchData<"PtrAddChain">;
def ptr_add_immed_chain : GICombineRule<
(defs root:$d, ptr_add_immed_matchdata:$matchinfo),
(match (wip_match_opcode G_PTR_ADD):$d,
[{ return Helper.matchPtrAddImmedChain(*${d}, ${matchinfo}); }]),
(apply [{ Helper.applyPtrAddImmedChain(*${d}, ${matchinfo}); }])>;
def shifts_too_big : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SHL, G_ASHR, G_LSHR):$root,
[{ return Helper.matchShiftsTooBig(*${root}); }]),
(apply [{ Helper.replaceInstWithUndef(*${root}); }])>;
// Fold shift (shift base x), y -> shift base, (x+y), if shifts are same
def shift_immed_matchdata : GIDefMatchData<"RegisterImmPair">;
def shift_immed_chain : GICombineRule<
(defs root:$d, shift_immed_matchdata:$matchinfo),
(match (wip_match_opcode G_SHL, G_ASHR, G_LSHR, G_SSHLSAT, G_USHLSAT):$d,
[{ return Helper.matchShiftImmedChain(*${d}, ${matchinfo}); }]),
(apply [{ Helper.applyShiftImmedChain(*${d}, ${matchinfo}); }])>;
// Transform shift (logic (shift X, C0), Y), C1
// -> logic (shift X, (C0+C1)), (shift Y, C1), if shifts are same
def shift_of_shifted_logic_matchdata : GIDefMatchData<"ShiftOfShiftedLogic">;
def shift_of_shifted_logic_chain : GICombineRule<
(defs root:$d, shift_of_shifted_logic_matchdata:$matchinfo),
(match (wip_match_opcode G_SHL, G_ASHR, G_LSHR, G_USHLSAT, G_SSHLSAT):$d,
[{ return Helper.matchShiftOfShiftedLogic(*${d}, ${matchinfo}); }]),
(apply [{ Helper.applyShiftOfShiftedLogic(*${d}, ${matchinfo}); }])>;
def mul_to_shl : GICombineRule<
(defs root:$d, unsigned_matchinfo:$matchinfo),
(match (G_MUL $d, $op1, $op2):$mi,
[{ return Helper.matchCombineMulToShl(*${mi}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineMulToShl(*${mi}, ${matchinfo}); }])>;
// shl ([asz]ext x), y => zext (shl x, y), if shift does not overflow int
def reduce_shl_of_extend_matchdata : GIDefMatchData<"RegisterImmPair">;
def reduce_shl_of_extend : GICombineRule<
(defs root:$dst, reduce_shl_of_extend_matchdata:$matchinfo),
(match (G_SHL $dst, $src0, $src1):$mi,
[{ return Helper.matchCombineShlOfExtend(*${mi}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineShlOfExtend(*${mi}, ${matchinfo}); }])>;
// Combine bitreverse(shl (bitreverse x), y)) -> (lshr x, y)
def bitreverse_shl : GICombineRule<
(defs root:$d),
(match (G_BITREVERSE $rev, $val),
(G_SHL $src, $rev, $amt):$mi,
(G_BITREVERSE $d, $src),
[{ return Helper.isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR,
{MRI.getType(${val}.getReg()),
MRI.getType(${amt}.getReg())}}); }]),
(apply (G_LSHR $d, $val, $amt))>;
// Combine bitreverse(lshr (bitreverse x), y)) -> (shl x, y)
def bitreverse_lshr : GICombineRule<
(defs root:$d),
(match (G_BITREVERSE $rev, $val),
(G_LSHR $src, $rev, $amt):$mi,
(G_BITREVERSE $d, $src),
[{ return Helper.isLegalOrBeforeLegalizer({TargetOpcode::G_SHL,
{MRI.getType(${val}.getReg()),
MRI.getType(${amt}.getReg())}}); }]),
(apply (G_SHL $d, $val, $amt))>;
// Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
def commute_shift : GICombineRule<
(defs root:$d, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_SHL):$d,
[{ return Helper.matchCommuteShift(*${d}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${d}, ${matchinfo}); }])>;
def narrow_binop_feeding_and : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_AND):$root,
[{ return Helper.matchNarrowBinopFeedingAnd(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnNoErase(*${root}, ${matchinfo}); }])>;
// [us]itofp(undef) = 0, because the result value is bounded.
def undef_to_fp_zero : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_UITOFP, G_SITOFP):$root,
[{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]),
(apply [{ Helper.replaceInstWithFConstant(*${root}, 0.0); }])>;
def undef_to_int_zero: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_AND, G_MUL):$root,
[{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]),
(apply [{ Helper.replaceInstWithConstant(*${root}, 0); }])>;
def undef_to_negative_one: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_OR):$root,
[{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]),
(apply [{ Helper.replaceInstWithConstant(*${root}, -1); }])>;
def binop_left_undef_to_zero: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SHL, G_UDIV, G_UREM):$root,
[{ return Helper.matchOperandIsUndef(*${root}, 1); }]),
(apply [{ Helper.replaceInstWithConstant(*${root}, 0); }])>;
def binop_right_undef_to_undef: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SHL, G_ASHR, G_LSHR):$root,
[{ return Helper.matchOperandIsUndef(*${root}, 2); }]),
(apply [{ Helper.replaceInstWithUndef(*${root}); }])>;
def unary_undef_to_zero: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_ABS):$root,
[{ return Helper.matchOperandIsUndef(*${root}, 1); }]),
(apply [{ Helper.replaceInstWithConstant(*${root}, 0); }])>;
// Instructions where if any source operand is undef, the instruction can be
// replaced with undef.
def propagate_undef_any_op: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_ADD, G_FPTOSI, G_FPTOUI, G_SUB, G_XOR, G_TRUNC):$root,
[{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]),
(apply [{ Helper.replaceInstWithUndef(*${root}); }])>;
// Instructions where if all source operands are undef, the instruction can be
// replaced with undef.
def propagate_undef_all_ops: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SHUFFLE_VECTOR):$root,
[{ return Helper.matchAllExplicitUsesAreUndef(*${root}); }]),
(apply [{ Helper.replaceInstWithUndef(*${root}); }])>;
// Replace a G_SHUFFLE_VECTOR with an undef mask with a G_IMPLICIT_DEF.
def propagate_undef_shuffle_mask: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SHUFFLE_VECTOR):$root,
[{ return Helper.matchUndefShuffleVectorMask(*${root}); }]),
(apply [{ Helper.replaceInstWithUndef(*${root}); }])>;
// Replace a G_SHUFFLE_VECTOR with a G_EXTRACT_VECTOR_ELT.
def shuffle_to_extract: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SHUFFLE_VECTOR):$root,
[{ return Helper.matchShuffleToExtract(*${root}); }]),
(apply [{ Helper.applyShuffleToExtract(*${root}); }])>;
// Replace an insert/extract element of an out of bounds index with undef.
def insert_extract_vec_elt_out_of_bounds : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_INSERT_VECTOR_ELT, G_EXTRACT_VECTOR_ELT):$root,
[{ return Helper.matchInsertExtractVecEltOutOfBounds(*${root}); }]),
(apply [{ Helper.replaceInstWithUndef(*${root}); }])>;
// Fold (cond ? x : x) -> x
def select_same_val: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SELECT):$root,
[{ return Helper.matchSelectSameVal(*${root}); }]),
(apply [{ Helper.replaceSingleDefInstWithOperand(*${root}, 2); }])
>;
// Fold (undef ? x : y) -> y
def select_undef_cmp: GICombineRule<
(defs root:$dst),
(match (G_IMPLICIT_DEF $undef),
(G_SELECT $dst, $undef, $x, $y)),
(apply (GIReplaceReg $dst, $y))
>;
// Fold (true ? x : y) -> x
// Fold (false ? x : y) -> y
def select_constant_cmp: GICombineRule<
(defs root:$root, unsigned_matchinfo:$matchinfo),
(match (wip_match_opcode G_SELECT):$root,
[{ return Helper.matchConstantSelectCmp(*${root}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithOperand(*${root}, ${matchinfo}); }])
>;
// Fold (C op x) -> (x op C)
// TODO: handle more isCommutable opcodes
// TODO: handle compares (currently not marked as isCommutable)
def commute_int_constant_to_rhs : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_ADD, G_MUL, G_AND, G_OR, G_XOR,
G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_UADDO, G_SADDO,
G_UMULO, G_SMULO, G_UMULH, G_SMULH,
G_UADDSAT, G_SADDSAT, G_SMULFIX, G_UMULFIX,
G_SMULFIXSAT, G_UMULFIXSAT):$root,
[{ return Helper.matchCommuteConstantToRHS(*${root}); }]),
(apply [{ Helper.applyCommuteBinOpOperands(*${root}); }])
>;
def commute_fp_constant_to_rhs : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_FADD, G_FMUL, G_FMINNUM, G_FMAXNUM,
G_FMINNUM_IEEE, G_FMAXNUM_IEEE,
G_FMINIMUM, G_FMAXIMUM):$root,
[{ return Helper.matchCommuteFPConstantToRHS(*${root}); }]),
(apply [{ Helper.applyCommuteBinOpOperands(*${root}); }])
>;
def commute_constant_to_rhs : GICombineGroup<[
commute_int_constant_to_rhs,
commute_fp_constant_to_rhs
]>;
// Fold x op 0 -> x
def right_identity_zero_frags : GICombinePatFrag<
(outs root:$dst), (ins $x),
!foreach(op,
[G_SUB, G_ADD, G_OR, G_XOR, G_SHL, G_ASHR,
G_LSHR, G_PTR_ADD, G_ROTL, G_ROTR],
(pattern (op $dst, $x, 0)))>;
def right_identity_zero: GICombineRule<
(defs root:$dst),
(match (right_identity_zero_frags $dst, $lhs)),
(apply (GIReplaceReg $dst, $lhs))
>;
def right_identity_neg_zero_fp: GICombineRule<
(defs root:$dst),
(match (G_FADD $dst, $x, $y):$root,
[{ return Helper.matchConstantFPOp(${y}, -0.0); }]),
(apply (GIReplaceReg $dst, $x))
>;
// Fold x op 1 -> x
def right_identity_one_int: GICombineRule<
(defs root:$dst),
(match (G_MUL $dst, $x, 1)),
(apply (GIReplaceReg $dst, $x))
>;
def right_identity_one_fp: GICombineRule<
(defs root:$dst),
(match (G_FMUL $dst, $x, $y):$root,
[{ return Helper.matchConstantFPOp(${y}, 1.0); }]),
(apply (GIReplaceReg $dst, $x))
>;
def right_identity_neg_one_fp: GICombineRule<
(defs root:$dst),
(match (G_FMUL $dst, $x, $y):$root,
[{ return Helper.matchConstantFPOp(${y}, -1.0); }]),
(apply (G_FNEG $dst, $x))
>;
def right_identity_one : GICombineGroup<[right_identity_one_int, right_identity_one_fp]>;
// Fold (x op x) - > x
def binop_same_val_frags : GICombinePatFrag<
(outs root:$dst), (ins $x),
[
(pattern (G_AND $dst, $x, $x)),
(pattern (G_OR $dst, $x, $x)),
]
>;
def binop_same_val: GICombineRule<
(defs root:$dst),
(match (binop_same_val_frags $dst, $src)),
(apply (GIReplaceReg $dst, $src))
>;
// Fold (0 op x) - > 0
def binop_left_to_zero: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SDIV, G_UDIV, G_SREM, G_UREM):$root,
[{ return Helper.matchOperandIsZero(*${root}, 1); }]),
(apply [{ Helper.replaceSingleDefInstWithOperand(*${root}, 1); }])
>;
def urem_pow2_to_mask : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_UREM):$root,
[{ return Helper.matchOperandIsKnownToBeAPowerOfTwo(*${root}, 2); }]),
(apply [{ Helper.applySimplifyURemByPow2(*${root}); }])
>;
// Push a binary operator through a select on constants.
//
// binop (select cond, K0, K1), K2 ->
// select cond, (binop K0, K2), (binop K1, K2)
// Every binary operator that has constant folding. We currently do
// not have constant folding for G_FPOW, G_FMAXNUM_IEEE or
// G_FMINNUM_IEEE.
def fold_binop_into_select : GICombineRule<
(defs root:$root, unsigned_matchinfo:$select_op_no),
(match (wip_match_opcode
G_ADD, G_SUB, G_PTR_ADD, G_AND, G_OR, G_XOR,
G_SDIV, G_SREM, G_UDIV, G_UREM, G_LSHR, G_ASHR, G_SHL,
G_SMIN, G_SMAX, G_UMIN, G_UMAX,
G_FMUL, G_FADD, G_FSUB, G_FDIV, G_FREM,
G_FMINNUM, G_FMAXNUM, G_FMINIMUM, G_FMAXIMUM):$root,
[{ return Helper.matchFoldBinOpIntoSelect(*${root}, ${select_op_no}); }]),
(apply [{ Helper.applyFoldBinOpIntoSelect(*${root}, ${select_op_no}); }])
>;
// Transform d = [su]div(x, y) and r = [su]rem(x, y) - > d, r = [su]divrem(x, y)
def div_rem_to_divrem_matchdata : GIDefMatchData<"MachineInstr *">;
def div_rem_to_divrem : GICombineRule<
(defs root:$root, div_rem_to_divrem_matchdata:$matchinfo),
(match (wip_match_opcode G_SDIV, G_UDIV, G_SREM, G_UREM):$root,
[{ return Helper.matchCombineDivRem(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineDivRem(*${root}, ${matchinfo}); }])
>;
// Fold (x op 0) - > 0
def binop_right_to_zero: GICombineRule<
(defs root:$dst),
(match (G_MUL $dst, $lhs, 0:$zero)),
(apply (GIReplaceReg $dst, $zero))
>;
// Erase stores of undef values.
def erase_undef_store : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_STORE):$root,
[{ return Helper.matchUndefStore(*${root}); }]),
(apply [{ Helper.eraseInst(*${root}); }])
>;
def simplify_add_to_sub_matchinfo: GIDefMatchData<"std::tuple<Register, Register>">;
def simplify_add_to_sub: GICombineRule <
(defs root:$root, simplify_add_to_sub_matchinfo:$info),
(match (wip_match_opcode G_ADD):$root,
[{ return Helper.matchSimplifyAddToSub(*${root}, ${info}); }]),
(apply [{ Helper.applySimplifyAddToSub(*${root}, ${info});}])
>;
// Fold fp_op(cst) to the constant result of the floating point operation.
class constant_fold_unary_fp_op_rule<Instruction opcode> : GICombineRule <
(defs root:$dst),
(match (opcode $dst, $src0):$root, (G_FCONSTANT $src0, $cst)),
(apply [{ Helper.applyCombineConstantFoldFpUnary(*${root}, ${cst}.getFPImm()); }])
>;
def constant_fold_fneg : constant_fold_unary_fp_op_rule<G_FNEG>;
def constant_fold_fabs : constant_fold_unary_fp_op_rule<G_FABS>;
def constant_fold_fsqrt : constant_fold_unary_fp_op_rule<G_FSQRT>;
def constant_fold_flog2 : constant_fold_unary_fp_op_rule<G_FLOG2>;
def constant_fold_fptrunc : constant_fold_unary_fp_op_rule<G_FPTRUNC>;
// Fold constant zero int to fp conversions.
class itof_const_zero_fold_rule<Instruction opcode> : GICombineRule <
(defs root:$dst),
(match (opcode $dst, 0)),
// Can't use COPY $dst, 0 here because the 0 operand may be a smaller type
// than the destination for itofp.
(apply [{ Helper.replaceInstWithFConstant(*${dst}.getParent(), 0.0); }])
>;
def itof_const_zero_fold_si : itof_const_zero_fold_rule<G_SITOFP>;
def itof_const_zero_fold_ui : itof_const_zero_fold_rule<G_UITOFP>;
def constant_fold_fp_ops : GICombineGroup<[
constant_fold_fneg,
constant_fold_fabs,
constant_fold_fsqrt,
constant_fold_flog2,
constant_fold_fptrunc,
itof_const_zero_fold_si,
itof_const_zero_fold_ui
]>;
// Fold int2ptr(ptr2int(x)) -> x
def p2i_to_i2p: GICombineRule<
(defs root:$root, register_matchinfo:$info),
(match (wip_match_opcode G_INTTOPTR):$root,
[{ return Helper.matchCombineI2PToP2I(*${root}, ${info}); }]),
(apply [{ Helper.applyCombineI2PToP2I(*${root}, ${info}); }])
>;
// Fold ptr2int(int2ptr(x)) -> x
def i2p_to_p2i: GICombineRule<
(defs root:$dst, register_matchinfo:$info),
(match (G_INTTOPTR $t, $ptr),
(G_PTRTOINT $dst, $t):$mi,
[{ ${info} = ${ptr}.getReg(); return true; }]),
(apply [{ Helper.applyCombineP2IToI2P(*${mi}, ${info}); }])
>;
// Fold add ptrtoint(x), y -> ptrtoint (ptr_add x), y
def add_p2i_to_ptradd_matchinfo : GIDefMatchData<"std::pair<Register, bool>">;
def add_p2i_to_ptradd : GICombineRule<
(defs root:$root, add_p2i_to_ptradd_matchinfo:$info),
(match (wip_match_opcode G_ADD):$root,
[{ return Helper.matchCombineAddP2IToPtrAdd(*${root}, ${info}); }]),
(apply [{ Helper.applyCombineAddP2IToPtrAdd(*${root}, ${info}); }])
>;
// Fold (ptr_add (int2ptr C1), C2) -> C1 + C2
def const_ptradd_to_i2p: GICombineRule<
(defs root:$root, apint_matchinfo:$info),
(match (wip_match_opcode G_PTR_ADD):$root,
[{ return Helper.matchCombineConstPtrAddToI2P(*${root}, ${info}); }]),
(apply [{ Helper.applyCombineConstPtrAddToI2P(*${root}, ${info}); }])
>;
// Simplify: (logic_op (op x...), (op y...)) -> (op (logic_op x, y))
def hoist_logic_op_with_same_opcode_hands: GICombineRule <
(defs root:$root, instruction_steps_matchdata:$info),
(match (wip_match_opcode G_AND, G_OR, G_XOR):$root,
[{ return Helper.matchHoistLogicOpWithSameOpcodeHands(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildInstructionSteps(*${root}, ${info});}])
>;
// Fold ashr (shl x, C), C -> sext_inreg (C)
def shl_ashr_to_sext_inreg_matchinfo : GIDefMatchData<"std::tuple<Register, int64_t>">;
def shl_ashr_to_sext_inreg : GICombineRule<
(defs root:$root, shl_ashr_to_sext_inreg_matchinfo:$info),
(match (wip_match_opcode G_ASHR): $root,
[{ return Helper.matchAshrShlToSextInreg(*${root}, ${info}); }]),
(apply [{ Helper.applyAshShlToSextInreg(*${root}, ${info});}])
>;
// Fold and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
def overlapping_and: GICombineRule <
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_AND):$root,
[{ return Helper.matchOverlappingAnd(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])
>;
// Fold (x & y) -> x or (x & y) -> y when (x & y) is known to equal x or equal y.
def redundant_and: GICombineRule <
(defs root:$root, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_AND):$root,
[{ return Helper.matchRedundantAnd(*${root}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }])
>;
// Fold (x | y) -> x or (x | y) -> y when (x | y) is known to equal x or equal y.
def redundant_or: GICombineRule <
(defs root:$root, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_OR):$root,
[{ return Helper.matchRedundantOr(*${root}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }])
>;
// If the input is already sign extended, just drop the extension.
// sext_inreg x, K ->
// if computeNumSignBits(x) >= (x.getScalarSizeInBits() - K + 1)
def redundant_sext_inreg: GICombineRule <
(defs root:$root),
(match (wip_match_opcode G_SEXT_INREG):$root,
[{ return Helper.matchRedundantSExtInReg(*${root}); }]),
(apply [{ Helper.replaceSingleDefInstWithOperand(*${root}, 1); }])
>;
// Fold (anyext (trunc x)) -> x if the source type is same as
// the destination type.
def anyext_trunc_fold: GICombineRule <
(defs root:$root, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_ANYEXT):$root,
[{ return Helper.matchCombineAnyExtTrunc(*${root}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }])
>;
// Fold (zext (trunc x)) -> x if the source type is same as the destination type
// and truncated bits are known to be zero.
def zext_trunc_fold: GICombineRule <
(defs root:$root, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_ZEXT):$root,
[{ return Helper.matchCombineZextTrunc(*${root}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }])
>;
def not_cmp_fold_matchinfo : GIDefMatchData<"SmallVector<Register, 4>">;
def not_cmp_fold : GICombineRule<
(defs root:$d, not_cmp_fold_matchinfo:$info),
(match (wip_match_opcode G_XOR): $d,
[{ return Helper.matchNotCmp(*${d}, ${info}); }]),
(apply [{ Helper.applyNotCmp(*${d}, ${info}); }])
>;
// Fold (fneg (fneg x)) -> x.
def fneg_fneg_fold: GICombineRule <
(defs root:$dst),
(match (G_FNEG $t, $src),
(G_FNEG $dst, $t)),
(apply (GIReplaceReg $dst, $src))
>;
// Fold (unmerge(merge x, y, z)) -> z, y, z.
def unmerge_merge_matchinfo : GIDefMatchData<"SmallVector<Register, 8>">;
def unmerge_merge : GICombineRule<
(defs root:$d, unmerge_merge_matchinfo:$info),
(match (wip_match_opcode G_UNMERGE_VALUES): $d,
[{ return Helper.matchCombineUnmergeMergeToPlainValues(*${d}, ${info}); }]),
(apply [{ Helper.applyCombineUnmergeMergeToPlainValues(*${d}, ${info}); }])
>;
// Fold merge(unmerge).
def merge_unmerge : GICombineRule<
(defs root:$d, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_MERGE_VALUES):$d,
[{ return Helper.matchCombineMergeUnmerge(*${d}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${d}, ${matchinfo}); }])
>;
// Fold (fabs (fneg x)) -> (fabs x).
def fabs_fneg_fold: GICombineRule <
(defs root:$dst),
(match (G_FNEG $tmp, $x),
(G_FABS $dst, $tmp)),
(apply (G_FABS $dst, $x))>;
// Fold (unmerge cst) -> cst1, cst2, ...
def unmerge_cst_matchinfo : GIDefMatchData<"SmallVector<APInt, 8>">;
def unmerge_cst : GICombineRule<
(defs root:$d, unmerge_cst_matchinfo:$info),
(match (wip_match_opcode G_UNMERGE_VALUES): $d,
[{ return Helper.matchCombineUnmergeConstant(*${d}, ${info}); }]),
(apply [{ Helper.applyCombineUnmergeConstant(*${d}, ${info}); }])
>;
// Fold (unmerge undef) -> undef, undef, ...
def unmerge_undef : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_UNMERGE_VALUES): $root,
[{ return Helper.matchCombineUnmergeUndef(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])
>;
// Transform x,y<dead> = unmerge z -> x = trunc z.
def unmerge_dead_to_trunc : GICombineRule<
(defs root:$d),
(match (wip_match_opcode G_UNMERGE_VALUES): $d,
[{ return Helper.matchCombineUnmergeWithDeadLanesToTrunc(*${d}); }]),
(apply [{ Helper.applyCombineUnmergeWithDeadLanesToTrunc(*${d}); }])
>;
// Transform x,y = unmerge(zext(z)) -> x = zext z; y = 0.
def unmerge_zext_to_zext : GICombineRule<
(defs root:$d),
(match (wip_match_opcode G_UNMERGE_VALUES): $d,
[{ return Helper.matchCombineUnmergeZExtToZExt(*${d}); }]),
(apply [{ Helper.applyCombineUnmergeZExtToZExt(*${d}); }])
>;
// Under certain conditions, transform:
// trunc (shl x, K) -> shl (trunc x), K//
// trunc ([al]shr x, K) -> (trunc ([al]shr (trunc x), K))
def trunc_shift_matchinfo : GIDefMatchData<"std::pair<MachineInstr*, LLT>">;
def trunc_shift: GICombineRule <
(defs root:$root, trunc_shift_matchinfo:$matchinfo),
(match (wip_match_opcode G_TRUNC):$root,
[{ return Helper.matchCombineTruncOfShift(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineTruncOfShift(*${root}, ${matchinfo}); }])
>;
// Transform (mul x, -1) -> (sub 0, x)
def mul_by_neg_one: GICombineRule <
(defs root:$dst),
(match (G_MUL $dst, $x, -1)),
(apply (G_SUB $dst, 0, $x))
>;
// Fold (xor (and x, y), y) -> (and (not x), y)
def xor_of_and_with_same_reg_matchinfo :
GIDefMatchData<"std::pair<Register, Register>">;
def xor_of_and_with_same_reg: GICombineRule <
(defs root:$root, xor_of_and_with_same_reg_matchinfo:$matchinfo),
(match (wip_match_opcode G_XOR):$root,
[{ return Helper.matchXorOfAndWithSameReg(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyXorOfAndWithSameReg(*${root}, ${matchinfo}); }])
>;
// Transform (ptr_add 0, x) -> (int_to_ptr x)
def ptr_add_with_zero: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_PTR_ADD):$root,
[{ return Helper.matchPtrAddZero(*${root}); }]),
(apply [{ Helper.applyPtrAddZero(*${root}); }])>;
def regs_small_vec : GIDefMatchData<"SmallVector<Register, 4>">;
def combine_insert_vec_elts_build_vector : GICombineRule<
(defs root:$root, regs_small_vec:$info),
(match (wip_match_opcode G_INSERT_VECTOR_ELT):$root,
[{ return Helper.matchCombineInsertVecElts(*${root}, ${info}); }]),
(apply [{ Helper.applyCombineInsertVecElts(*${root}, ${info}); }])>;
def load_or_combine : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_OR):$root,
[{ return Helper.matchLoadOrCombine(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def extend_through_phis_matchdata: GIDefMatchData<"MachineInstr*">;
def extend_through_phis : GICombineRule<
(defs root:$root, extend_through_phis_matchdata:$matchinfo),
(match (wip_match_opcode G_PHI):$root,
[{ return Helper.matchExtendThroughPhis(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyExtendThroughPhis(*${root}, ${matchinfo}); }])>;
// Currently only the one combine above.
def insert_vec_elt_combines : GICombineGroup<
[combine_insert_vec_elts_build_vector]>;
def extract_vec_elt_build_vec : GICombineRule<
(defs root:$root, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_EXTRACT_VECTOR_ELT):$root,
[{ return Helper.matchExtractVecEltBuildVec(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyExtractVecEltBuildVec(*${root}, ${matchinfo}); }])>;
// Fold away full elt extracts from a build_vector.
def extract_all_elts_from_build_vector_matchinfo :
GIDefMatchData<"SmallVector<std::pair<Register, MachineInstr*>>">;
def extract_all_elts_from_build_vector : GICombineRule<
(defs root:$root, extract_all_elts_from_build_vector_matchinfo:$matchinfo),
(match (wip_match_opcode G_BUILD_VECTOR):$root,
[{ return Helper.matchExtractAllEltsFromBuildVector(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyExtractAllEltsFromBuildVector(*${root}, ${matchinfo}); }])>;
def extract_vec_elt_combines : GICombineGroup<[
extract_vec_elt_build_vec,
extract_all_elts_from_build_vector]>;
def funnel_shift_from_or_shift : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_OR):$root,
[{ return Helper.matchOrShiftToFunnelShift(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])
>;
def funnel_shift_to_rotate : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_FSHL, G_FSHR):$root,
[{ return Helper.matchFunnelShiftToRotate(*${root}); }]),
(apply [{ Helper.applyFunnelShiftToRotate(*${root}); }])
>;
// Fold fshr x, y, 0 -> y
def funnel_shift_right_zero: GICombineRule<
(defs root:$root),
(match (G_FSHR $x, $y, $z, 0):$root),
(apply (COPY $x, $z))
>;
// Fold fshl x, y, 0 -> x
def funnel_shift_left_zero: GICombineRule<
(defs root:$root),
(match (G_FSHL $x, $y, $z, 0):$root),
(apply (COPY $x, $y))
>;
// Fold fsh(l/r) x, y, C -> fsh(l/r) x, y, C % bw
def funnel_shift_overshift: GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_FSHL, G_FSHR):$root,
[{ return Helper.matchConstantLargerBitWidth(*${root}, 3); }]),
(apply [{ Helper.applyFunnelShiftConstantModulo(*${root}); }])
>;
def rotate_out_of_range : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_ROTR, G_ROTL):$root,
[{ return Helper.matchRotateOutOfRange(*${root}); }]),
(apply [{ Helper.applyRotateOutOfRange(*${root}); }])
>;
def icmp_to_true_false_known_bits : GICombineRule<
(defs root:$d, int64_matchinfo:$matchinfo),
(match (wip_match_opcode G_ICMP):$d,
[{ return Helper.matchICmpToTrueFalseKnownBits(*${d}, ${matchinfo}); }]),
(apply [{ Helper.replaceInstWithConstant(*${d}, ${matchinfo}); }])>;
def icmp_to_lhs_known_bits : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_ICMP):$root,
[{ return Helper.matchICmpToLHSKnownBits(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def redundant_binop_in_equality : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_ICMP):$root,
[{ return Helper.matchRedundantBinOpInEquality(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform: (X == 0 & Y == 0) -> (X | Y) == 0
def double_icmp_zero_and_combine: GICombineRule<
(defs root:$root),
(match (G_ICMP $d1, $p, $s1, 0),
(G_ICMP $d2, $p, $s2, 0),
(G_AND $root, $d1, $d2),
[{ return ${p}.getPredicate() == CmpInst::ICMP_EQ &&
!MRI.getType(${s1}.getReg()).getScalarType().isPointer() &&
(MRI.getType(${s1}.getReg()) ==
MRI.getType(${s2}.getReg())); }]),
(apply (G_OR $ordst, $s1, $s2),
(G_ICMP $root, $p, $ordst, 0))
>;
// Transform: (X != 0 | Y != 0) -> (X | Y) != 0
def double_icmp_zero_or_combine: GICombineRule<
(defs root:$root),
(match (G_ICMP $d1, $p, $s1, 0),
(G_ICMP $d2, $p, $s2, 0),
(G_OR $root, $d1, $d2),
[{ return ${p}.getPredicate() == CmpInst::ICMP_NE &&
!MRI.getType(${s1}.getReg()).getScalarType().isPointer() &&
(MRI.getType(${s1}.getReg()) ==
MRI.getType(${s2}.getReg())); }]),
(apply (G_OR $ordst, $s1, $s2),
(G_ICMP $root, $p, $ordst, 0))
>;
def and_or_disjoint_mask : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_AND):$root,
[{ return Helper.matchAndOrDisjointMask(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFnNoErase(*${root}, ${info}); }])>;
def bitfield_extract_from_and : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (G_CONSTANT $mask, $imm2),
(G_CONSTANT $lsb, $imm1),
(G_LSHR $shift, $x, $lsb),
(G_AND $root, $shift, $mask):$root,
[{ return Helper.matchBitfieldExtractFromAnd(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def funnel_shift_combines : GICombineGroup<[funnel_shift_from_or_shift,
funnel_shift_to_rotate,
funnel_shift_right_zero,
funnel_shift_left_zero,
funnel_shift_overshift]>;
def bitfield_extract_from_sext_inreg : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_SEXT_INREG):$root,
[{ return Helper.matchBitfieldExtractFromSExtInReg(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def bitfield_extract_from_shr : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_ASHR, G_LSHR):$root,
[{ return Helper.matchBitfieldExtractFromShr(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def bitfield_extract_from_shr_and : GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_ASHR, G_LSHR):$root,
[{ return Helper.matchBitfieldExtractFromShrAnd(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def form_bitfield_extract : GICombineGroup<[bitfield_extract_from_sext_inreg,
bitfield_extract_from_and,
bitfield_extract_from_shr,
bitfield_extract_from_shr_and]>;
def udiv_by_const : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_UDIV):$root,
[{ return Helper.matchUDivByConst(*${root}); }]),
(apply [{ Helper.applyUDivByConst(*${root}); }])>;
def sdiv_by_const : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_SDIV):$root,
[{ return Helper.matchSDivByConst(*${root}); }]),
(apply [{ Helper.applySDivByConst(*${root}); }])>;
def sdiv_by_pow2 : GICombineRule<
(defs root:$root),
(match (G_SDIV $dst, $x, $y, (MIFlags (not IsExact))):$root,
[{ return Helper.matchDivByPow2(*${root}, /*IsSigned=*/true); }]),
(apply [{ Helper.applySDivByPow2(*${root}); }])>;
def udiv_by_pow2 : GICombineRule<
(defs root:$root),
(match (G_UDIV $dst, $x, $y, (MIFlags (not IsExact))):$root,
[{ return Helper.matchDivByPow2(*${root}, /*IsSigned=*/false); }]),
(apply [{ Helper.applyUDivByPow2(*${root}); }])>;
def intdiv_combines : GICombineGroup<[udiv_by_const, sdiv_by_const,
sdiv_by_pow2, udiv_by_pow2]>;
def reassoc_ptradd : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_PTR_ADD):$root,
[{ return Helper.matchReassocPtrAdd(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnNoErase(*${root}, ${matchinfo}); }])>;
def reassoc_comm_binops : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_ADD $root, $src1, $src2):$root,
[{ return Helper.matchReassocCommBinOp(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def reassocs : GICombineGroup<[reassoc_ptradd, reassoc_comm_binops]>;
// Constant fold operations.
def constant_fold_binop : GICombineRule<
(defs root:$d, apint_matchinfo:$matchinfo),
(match (wip_match_opcode G_ADD, G_PTR_ADD, G_AND, G_ASHR, G_LSHR, G_MUL, G_OR,
G_SHL, G_SUB, G_XOR, G_UDIV, G_SDIV, G_UREM, G_SREM,
G_SMIN, G_SMAX, G_UMIN, G_UMAX):$d,
[{ return Helper.matchConstantFoldBinOp(*${d}, ${matchinfo}); }]),
(apply [{ Helper.replaceInstWithConstant(*${d}, ${matchinfo}); }])>;
def constant_fold_fp_binop : GICombineRule<
(defs root:$d, constantfp_matchinfo:$matchinfo),
(match (wip_match_opcode G_FADD, G_FSUB, G_FMUL, G_FDIV):$d,
[{ return Helper.matchConstantFoldFPBinOp(*${d}, ${matchinfo}); }]),
(apply [{ Helper.replaceInstWithFConstant(*${d}, ${matchinfo}); }])>;
def constant_fold_fma : GICombineRule<
(defs root:$d, constantfp_matchinfo:$matchinfo),
(match (wip_match_opcode G_FMAD, G_FMA):$d,
[{ return Helper.matchConstantFoldFMA(*${d}, ${matchinfo}); }]),
(apply [{ Helper.replaceInstWithFConstant(*${d}, ${matchinfo}); }])>;
def constant_fold_cast_op : GICombineRule<
(defs root:$d, apint_matchinfo:$matchinfo),
(match (wip_match_opcode G_ZEXT, G_SEXT, G_ANYEXT):$d,
[{ return Helper.matchConstantFoldCastOp(*${d}, ${matchinfo}); }]),
(apply [{ Helper.replaceInstWithConstant(*${d}, ${matchinfo}); }])>;
def mulo_by_2: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_UMULO, G_SMULO):$root,
[{ return Helper.matchMulOBy2(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnNoErase(*${root}, ${matchinfo}); }])>;
def mulo_by_0: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_UMULO, G_SMULO):$root,
[{ return Helper.matchMulOBy0(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
// Transform (uadde x, y, 0) -> (uaddo x, y)
// (sadde x, y, 0) -> (saddo x, y)
// (usube x, y, 0) -> (usubo x, y)
// (ssube x, y, 0) -> (ssubo x, y)
def adde_to_addo: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_UADDE, G_SADDE, G_USUBE, G_SSUBE):$root,
[{ return Helper.matchAddEToAddO(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnNoErase(*${root}, ${matchinfo}); }])>;
def mulh_to_lshr : GICombineRule<
(defs root:$root),
(match (wip_match_opcode G_UMULH):$root,
[{ return Helper.matchUMulHToLShr(*${root}); }]),
(apply [{ Helper.applyUMulHToLShr(*${root}); }])>;
def mulh_combines : GICombineGroup<[mulh_to_lshr]>;
def redundant_neg_operands: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMAD, G_FMA):$root,
[{ return Helper.matchRedundantNegOperands(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnNoErase(*${root}, ${matchinfo}); }])>;
// Transform (fsub +-0.0, X) -> (fneg X)
def fsub_to_fneg: GICombineRule<
(defs root:$root, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_FSUB):$root,
[{ return Helper.matchFsubToFneg(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyFsubToFneg(*${root}, ${matchinfo}); }])>;
// Transform (fadd x, (fmul y, z)) -> (fma y, z, x)
// (fadd x, (fmul y, z)) -> (fmad y, z, x)
// Transform (fadd (fmul x, y), z) -> (fma x, y, z)
// (fadd (fmul x, y), z) -> (fmad x, y, z)
def combine_fadd_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FADD):$root,
[{ return Helper.matchCombineFAddFMulToFMadOrFMA(*${root},
${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
// -> (fmad (fpext x), (fpext y), z)
// Transform (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
// -> (fmad (fpext y), (fpext z), x)
def combine_fadd_fpext_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FADD):$root,
[{ return Helper.matchCombineFAddFpExtFMulToFMadOrFMA(*${root},
${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fadd (fma x, y, (fmul z, u)), v) -> (fma x, y, (fma z, u, v))
// (fadd (fmad x, y, (fmul z, u)), v) -> (fmad x, y, (fmad z, u, v))
// Transform (fadd v, (fma x, y, (fmul z, u))) -> (fma x, y, (fma z, u, v))
// (fadd v, (fmad x, y, (fmul z, u))) -> (fmad x, y, (fmad z, u, v))
def combine_fadd_fma_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FADD):$root,
[{ return Helper.matchCombineFAddFMAFMulToFMadOrFMA(*${root},
${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fadd (fma x, y, (fpext (fmul u, v))), z) ->
// (fma x, y, (fma (fpext u), (fpext v), z))
def combine_fadd_fpext_fma_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FADD):$root,
[{ return Helper.matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fsub (fmul x, y), z) -> (fma x, y, -z)
// -> (fmad x, y, -z)
def combine_fsub_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FSUB):$root,
[{ return Helper.matchCombineFSubFMulToFMadOrFMA(*${root},
${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
// (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
def combine_fsub_fneg_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FSUB):$root,
[{ return Helper.matchCombineFSubFNegFMulToFMadOrFMA(*${root},
${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fsub (fpext (fmul x, y)), z) ->
// (fma (fpext x), (fpext y), (fneg z))
def combine_fsub_fpext_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FSUB):$root,
[{ return Helper.matchCombineFSubFpExtFMulToFMadOrFMA(*${root},
${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
// Transform (fsub (fneg (fpext (fmul x, y))), z) ->
// (fneg (fma (fpext x), (fpext y), z))
def combine_fsub_fpext_fneg_fmul_to_fmad_or_fma: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_FSUB):$root,
[{ return Helper.matchCombineFSubFpExtFNegFMulToFMadOrFMA(
*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def combine_minmax_nan: GICombineRule<
(defs root:$root, unsigned_matchinfo:$info),
(match (wip_match_opcode G_FMINNUM, G_FMAXNUM, G_FMINIMUM, G_FMAXIMUM):$root,
[{ return Helper.matchCombineFMinMaxNaN(*${root}, ${info}); }]),
(apply [{ Helper.replaceSingleDefInstWithOperand(*${root}, ${info}); }])>;
// Transform (add x, (sub y, x)) -> y
// Transform (add (sub y, x), x) -> y
def add_sub_reg_frags : GICombinePatFrag<
(outs root:$dst), (ins $src),
[
(pattern (G_ADD $dst, $x, $tmp), (G_SUB $tmp, $src, $x)),
(pattern (G_ADD $dst, $tmp, $x), (G_SUB $tmp, $src, $x))
]>;
def add_sub_reg: GICombineRule <
(defs root:$dst),
(match (add_sub_reg_frags $dst, $src)),
(apply (GIReplaceReg $dst, $src))>;
def buildvector_identity_fold : GICombineRule<
(defs root:$build_vector, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_BUILD_VECTOR_TRUNC, G_BUILD_VECTOR):$build_vector,
[{ return Helper.matchBuildVectorIdentityFold(*${build_vector}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${build_vector}, ${matchinfo}); }])>;
def trunc_buildvector_fold : GICombineRule<
(defs root:$op, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_TRUNC):$op,
[{ return Helper.matchTruncBuildVectorFold(*${op}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${op}, ${matchinfo}); }])>;
def trunc_lshr_buildvector_fold : GICombineRule<
(defs root:$op, register_matchinfo:$matchinfo),
(match (wip_match_opcode G_TRUNC):$op,
[{ return Helper.matchTruncLshrBuildVectorFold(*${op}, ${matchinfo}); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${op}, ${matchinfo}); }])>;
// Transform:
// (x + y) - y -> x
// (x + y) - x -> y
// x - (y + x) -> 0 - y
// x - (x + z) -> 0 - z
def sub_add_reg: GICombineRule <
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_SUB):$root,
[{ return Helper.matchSubAddSameReg(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def bitcast_bitcast_fold : GICombineRule<
(defs root:$dst),
(match (G_BITCAST $dst, $src1):$op, (G_BITCAST $src1, $src0),
[{ return MRI.getType(${src0}.getReg()) == MRI.getType(${dst}.getReg()); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${op}, ${src0}.getReg()); }])>;
def fptrunc_fpext_fold : GICombineRule<
(defs root:$dst),
(match (G_FPTRUNC $dst, $src1):$op, (G_FPEXT $src1, $src0),
[{ return MRI.getType(${src0}.getReg()) == MRI.getType(${dst}.getReg()); }]),
(apply [{ Helper.replaceSingleDefInstWithReg(*${op}, ${src0}.getReg()); }])>;
def select_to_minmax: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (wip_match_opcode G_SELECT):$root,
[{ return Helper.matchSimplifySelectToMinMax(*${root}, ${info}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${info}); }])>;
def select_to_iminmax: GICombineRule<
(defs root:$root, build_fn_matchinfo:$info),
(match (G_ICMP $tst, $tst1, $a, $b),
(G_SELECT $root, $tst, $x, $y),
[{ return Helper.matchSelectIMinMax(${root}, ${info}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${info}); }])>;
def match_selects : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_SELECT):$root,
[{ return Helper.matchSelect(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def match_ands : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_AND):$root,
[{ return Helper.matchAnd(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def match_ors : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_OR):$root,
[{ return Helper.matchOr(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def match_addos : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_SADDO, G_UADDO):$root,
[{ return Helper.matchAddOverflow(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def match_extract_of_element_undef_vector: GICombineRule <
(defs root:$root),
(match (G_IMPLICIT_DEF $vector),
(G_EXTRACT_VECTOR_ELT $root, $vector, $idx)),
(apply (G_IMPLICIT_DEF $root))
>;
def match_extract_of_element_undef_index: GICombineRule <
(defs root:$root),
(match (G_IMPLICIT_DEF $idx),
(G_EXTRACT_VECTOR_ELT $root, $vector, $idx)),
(apply (G_IMPLICIT_DEF $root))
>;
def match_extract_of_element : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_EXTRACT_VECTOR_ELT):$root,
[{ return Helper.matchExtractVectorElement(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def extract_vector_element_not_const : GICombineRule<
(defs root:$root),
(match (G_INSERT_VECTOR_ELT $src, $x, $value, $idx),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx)),
(apply (GIReplaceReg $root, $value))>;
def extract_vector_element_different_indices : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_INSERT_VECTOR_ELT $src, $x, $value, $idx2),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx1),
[{ return Helper.matchExtractVectorElementWithDifferentIndices(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $idx, $imm),
(G_BUILD_VECTOR $src, GIVariadic<>:$unused):$Build,
(G_EXTRACT_VECTOR_ELT $root, $src, $idx):$Extract,
[{ return Helper.matchExtractVectorElementWithBuildVector(*${Extract}, *${Build},
${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${Extract}, ${matchinfo}); }])>;
def extract_vector_element_shuffle_vector : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $idx, $imm),
(G_SHUFFLE_VECTOR $src, $src1, $src2, $mask):$Shuffle,
(G_EXTRACT_VECTOR_ELT $root, $src, $idx):$Extract,
[{ return Helper.matchExtractVectorElementWithShuffleVector(*${Extract}, *${Shuffle},
${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${Extract}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc2 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc3 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y, $z),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc4 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y, $z, $a),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc5 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y, $z, $a, $b),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc6 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y, $z, $a, $b, $c),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc7 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y, $z, $a, $b, $c, $d),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def extract_vector_element_build_vector_trunc8 : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR_TRUNC $src, $x, $y, $z, $a, $b, $c, $d, $e),
(G_EXTRACT_VECTOR_ELT $root, $src, $idx),
[{ return Helper.matchExtractVectorElementWithBuildVectorTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def sext_trunc : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_TRUNC $src, $x, (MIFlags NoSWrap)),
(G_SEXT $root, $src),
[{ return Helper.matchSextOfTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def zext_trunc : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_TRUNC $src, $x, (MIFlags NoUWrap)),
(G_ZEXT $root, $src),
[{ return Helper.matchZextOfTrunc(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def nneg_zext : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_ZEXT $root, $x, (MIFlags NonNeg)),
[{ return Helper.matchNonNegZext(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
// Combines concat operations
def concat_matchinfo : GIDefMatchData<"SmallVector<Register>">;
def combine_concat_vector : GICombineRule<
(defs root:$root, concat_matchinfo:$matchinfo),
(match (wip_match_opcode G_CONCAT_VECTORS):$root,
[{ return Helper.matchCombineConcatVectors(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineConcatVectors(*${root}, ${matchinfo}); }])>;
// Combines Shuffles of Concats
// a = G_CONCAT_VECTORS x, y, undef, undef
// b = G_CONCAT_VECTORS z, undef, undef, undef
// c = G_SHUFFLE_VECTORS a, b, <0, 1, 4, undef>
// ===>
// c = G_CONCAT_VECTORS x, y, z, undef
def combine_shuffle_concat : GICombineRule<
(defs root:$root, concat_matchinfo:$matchinfo),
(match (wip_match_opcode G_SHUFFLE_VECTOR):$root,
[{ return Helper.matchCombineShuffleConcat(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyCombineShuffleConcat(*${root}, ${matchinfo}); }])>;
def insert_vector_element_idx_undef : GICombineRule<
(defs root:$root),
(match (G_IMPLICIT_DEF $idx),
(G_INSERT_VECTOR_ELT $root, $src, $elt, $idx)),
(apply (G_IMPLICIT_DEF $root))>;
def insert_vector_element_elt_undef : GICombineRule<
(defs root:$root),
(match (G_IMPLICIT_DEF $elt),
(G_INSERT_VECTOR_ELT $root, $src, $elt, $idx),
[{ return isGuaranteedNotToBePoison(${src}.getReg(), MRI); }]),
(apply (GIReplaceReg $root, $src))>;
def insert_vector_element_extract_vector_element : GICombineRule<
(defs root:$root),
(match (G_EXTRACT_VECTOR_ELT $elt, $src, $idx),
(G_INSERT_VECTOR_ELT $root, $src, $elt, $idx)),
(apply (GIReplaceReg $root, $src))>;
def insert_vector_elt_oob : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (wip_match_opcode G_INSERT_VECTOR_ELT):$root,
[{ return Helper.matchInsertVectorElementOOB(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
// Combine v8i8 (buildvector i8 (trunc(unmerge)), i8 (trunc), i8 (trunc), i8 (trunc), undef, undef, undef, undef)
def combine_use_vector_truncate : GICombineRule<
(defs root:$root, register_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR $dst, GIVariadic<>:$unused):$root,
[{ return Helper.matchUseVectorTruncate(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyUseVectorTruncate(*${root}, ${matchinfo}); }])>;
def add_of_vscale : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_VSCALE $left, $imm1),
(G_VSCALE $right, $imm2),
(G_ADD $root, $left, $right, (MIFlags NoSWrap)),
[{ return Helper.matchAddOfVScale(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def mul_of_vscale : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_VSCALE $left, $scale),
(G_CONSTANT $x, $imm1),
(G_MUL $root, $left, $x, (MIFlags NoSWrap)),
[{ return Helper.matchMulOfVScale(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def shl_of_vscale : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_VSCALE $left, $imm),
(G_CONSTANT $x, $imm1),
(G_SHL $root, $left, $x, (MIFlags NoSWrap)),
[{ return Helper.matchShlOfVScale(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def sub_of_vscale : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_VSCALE $right, $imm),
(G_SUB $root, $x, $right, (MIFlags NoSWrap)),
[{ return Helper.matchSubOfVScale(${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;
def expand_const_fpowi : GICombineRule<
(defs root:$root),
(match (G_CONSTANT $int, $imm),
(G_FPOWI $dst, $float, $int):$root,
[{ return Helper.matchFPowIExpansion(*${root}, ${imm}.getCImm()->getSExtValue()); }]),
(apply [{ Helper.applyExpandFPowI(*${root}, ${imm}.getCImm()->getSExtValue()); }])>;
// match_extract_of_element and insert_vector_elt_oob must be the first!
def vector_ops_combines: GICombineGroup<[
match_extract_of_element_undef_vector,
match_extract_of_element_undef_index,
insert_vector_element_idx_undef,
insert_vector_element_elt_undef,
match_extract_of_element,
insert_vector_elt_oob,
extract_vector_element_not_const,
extract_vector_element_different_indices,
extract_vector_element_build_vector,
extract_vector_element_build_vector_trunc2,
extract_vector_element_build_vector_trunc3,
extract_vector_element_build_vector_trunc4,
extract_vector_element_build_vector_trunc5,
extract_vector_element_build_vector_trunc6,
extract_vector_element_build_vector_trunc7,
extract_vector_element_build_vector_trunc8,
extract_vector_element_shuffle_vector,
insert_vector_element_extract_vector_element,
add_of_vscale,
mul_of_vscale,
shl_of_vscale,
sub_of_vscale,
]>;
// fold ((0-A) + B) -> B-A
def ZeroMinusAPlusB : GICombineRule<
(defs root:$root),
(match (G_SUB $sub, 0, $A),
(G_ADD $root, $sub, $B)),
(apply (G_SUB $root, $B, $A))>;
// fold (A + (0-B)) -> A-B
def APlusZeroMinusB : GICombineRule<
(defs root:$root),
(match (G_SUB $sub, 0, $B),
(G_ADD $root, $A, $sub)),
(apply (G_SUB $root, $A, $B))>;
// fold (A+(B-A)) -> B
def APlusBMinusB : GICombineRule<
(defs root:$root),
(match (G_SUB $sub, $B, $A),
(G_ADD $root, $A, $sub)),
(apply (GIReplaceReg $root, $B))>;
// fold ((B-A)+A) -> B
def BMinusAPlusA : GICombineRule<
(defs root:$root),
(match (G_SUB $sub, $B, $A),
(G_ADD $root, $sub, $A)),
(apply (GIReplaceReg $root, $B))>;
// fold ((A-B)+(C-A)) -> (C-B)
def AMinusBPlusCMinusA : GICombineRule<
(defs root:$root),
(match (G_SUB $sub1, $A, $B),
(G_SUB $sub2, $C, $A),
(G_ADD $root, $sub1, $sub2)),
(apply (G_SUB $root, $C, $B))>;
// fold ((A-B)+(B-C)) -> (A-C)
def AMinusBPlusBMinusC : GICombineRule<
(defs root:$root),
(match (G_SUB $sub1, $A, $B),
(G_SUB $sub2, $B, $C),
(G_ADD $root, $sub1, $sub2)),
(apply (G_SUB $root, $A, $C))>;
// fold (A+(B-(A+C))) to (B-C)
def APlusBMinusAplusC : GICombineRule<
(defs root:$root),
(match (G_ADD $add1, $A, $C),
(G_SUB $sub1, $B, $add1),
(G_ADD $root, $A, $sub1)),
(apply (G_SUB $root, $B, $C))>;
// fold (A+(B-(C+A))) to (B-C)
def APlusBMinusCPlusA : GICombineRule<
(defs root:$root),
(match (G_ADD $add1, $C, $A),
(G_SUB $sub1, $B, $add1),
(G_ADD $root, $A, $sub1)),
(apply (G_SUB $root, $B, $C))>;
// fold (A+C1)-C2 -> A+(C1-C2)
def APlusC1MinusC2: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $c2, $imm2),
(G_CONSTANT $c1, $imm1),
(G_ADD $add, $A, $c1),
(G_SUB $root, $add, $c2):$root,
[{ return Helper.matchFoldAPlusC1MinusC2(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
// fold C2-(A+C1) -> (C2-C1)-A
def C2MinusAPlusC1: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $c2, $imm2),
(G_CONSTANT $c1, $imm1),
(G_ADD $add, $A, $c1),
(G_SUB $root, $c2, $add):$root,
[{ return Helper.matchFoldC2MinusAPlusC1(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
// fold (A-C1)-C2 -> A-(C1+C2)
def AMinusC1MinusC2: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $c2, $imm2),
(G_CONSTANT $c1, $imm1),
(G_SUB $sub1, $A, $c1),
(G_SUB $root, $sub1, $c2):$root,
[{ return Helper.matchFoldAMinusC1MinusC2(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
// fold (C1-A)-C2 -> (C1-C2)-A
def C1Minus2MinusC2: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $c2, $imm2),
(G_CONSTANT $c1, $imm1),
(G_SUB $sub1, $c1, $A),
(G_SUB $root, $sub1, $c2):$root,
[{ return Helper.matchFoldC1Minus2MinusC2(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
// fold ((A-C1)+C2) -> (A+(C2-C1))
def AMinusC1PlusC2: GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $c2, $imm2),
(G_CONSTANT $c1, $imm1),
(G_SUB $sub, $A, $c1),
(G_ADD $root, $sub, $c2):$root,
[{ return Helper.matchFoldAMinusC1PlusC2(*${root}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def integer_reassoc_combines: GICombineGroup<[
ZeroMinusAPlusB,
APlusZeroMinusB,
APlusBMinusB,
BMinusAPlusA,
AMinusBPlusCMinusA,
AMinusBPlusBMinusC,
APlusBMinusAplusC,
APlusBMinusCPlusA,
APlusC1MinusC2,
C2MinusAPlusC1,
AMinusC1MinusC2,
C1Minus2MinusC2,
AMinusC1PlusC2
]>;
def freeze_of_non_undef_non_poison : GICombineRule<
(defs root:$root),
(match (G_FREEZE $root, $src),
[{ return isGuaranteedNotToBeUndefOrPoison(${src}.getReg(), MRI); }]),
(apply (GIReplaceReg $root, $src))>;
def freeze_combines: GICombineGroup<[
freeze_of_non_undef_non_poison,
push_freeze_to_prevent_poison_from_propagating
]>;
/// Transform trunc ([asz]ext x) to x or ([asz]ext x) or (trunc x).
class truncate_of_opcode<Instruction extOpcode> : GICombineRule <
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (extOpcode $ext, $src):$ExtMI,
(G_TRUNC $root, $ext):$root,
[{ return Helper.matchTruncateOfExt(*${root}, *${ExtMI}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;
def truncate_of_zext : truncate_of_opcode<G_ZEXT>;
def truncate_of_sext : truncate_of_opcode<G_SEXT>;
def truncate_of_anyext : truncate_of_opcode<G_ANYEXT>;
// Push cast through select.
class select_of_opcode<Instruction castOpcode> : GICombineRule <
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_SELECT $select, $cond, $true, $false):$Select,
(castOpcode $root, $select):$Cast,
[{ return Helper.matchCastOfSelect(*${Cast}, *${Select}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${Cast}, ${matchinfo}); }])>;
def select_of_zext : select_of_opcode<G_ZEXT>;
def select_of_anyext : select_of_opcode<G_ANYEXT>;
def select_of_truncate : select_of_opcode<G_TRUNC>;
// Fold ([asz]ext ([asz]ext x)) -> ([asz]ext x).
class ext_of_ext_opcodes<Instruction ext1Opcode, Instruction ext2Opcode> : GICombineRule <
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (ext2Opcode $second, $src):$Second,
(ext1Opcode $root, $second):$First,
[{ return Helper.matchExtOfExt(*${First}, *${Second}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${First}, ${matchinfo}); }])>;
def zext_of_zext : ext_of_ext_opcodes<G_ZEXT, G_ZEXT>;
def zext_of_anyext : ext_of_ext_opcodes<G_ZEXT, G_ANYEXT>;
def sext_of_sext : ext_of_ext_opcodes<G_SEXT, G_SEXT>;
def sext_of_anyext : ext_of_ext_opcodes<G_SEXT, G_ANYEXT>;
def anyext_of_anyext : ext_of_ext_opcodes<G_ANYEXT, G_ANYEXT>;
def anyext_of_zext : ext_of_ext_opcodes<G_ANYEXT, G_ZEXT>;
def anyext_of_sext : ext_of_ext_opcodes<G_ANYEXT, G_SEXT>;
// Push cast through build vector.
class buildvector_of_opcode<Instruction castOpcode> : GICombineRule <
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_BUILD_VECTOR $bv, GIVariadic<>:$unused):$Build,
(castOpcode $root, $bv):$Cast,
[{ return Helper.matchCastOfBuildVector(*${Cast}, *${Build}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${Cast}, ${matchinfo}); }])>;
def buildvector_of_truncate : buildvector_of_opcode<G_TRUNC>;
// narrow binop.
// trunc (binop X, C) --> binop (trunc X, trunc C)
class narrow_binop_opcode<Instruction binopOpcode> : GICombineRule <
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_CONSTANT $const, $imm),
(binopOpcode $binop, $x, $const):$Binop,
(G_TRUNC $root, $binop):$Trunc,
[{ return Helper.matchNarrowBinop(*${Trunc}, *${Binop}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${Trunc}, ${matchinfo}); }])>;
def narrow_binop_add : narrow_binop_opcode<G_ADD>;
def narrow_binop_sub : narrow_binop_opcode<G_SUB>;
def narrow_binop_mul : narrow_binop_opcode<G_MUL>;
def narrow_binop_and : narrow_binop_opcode<G_AND>;
def narrow_binop_or : narrow_binop_opcode<G_OR>;
def narrow_binop_xor : narrow_binop_opcode<G_XOR>;
// Cast of integer.
class integer_of_opcode<Instruction castOpcode> : GICombineRule <
(defs root:$root, apint_matchinfo:$matchinfo),
(match (G_CONSTANT $int, $imm),
(castOpcode $root, $int):$Cast,
[{ return Helper.matchCastOfInteger(*${Cast}, ${matchinfo}); }]),
(apply [{ Helper.replaceInstWithConstant(*${Cast}, ${matchinfo}); }])>;
def integer_of_truncate : integer_of_opcode<G_TRUNC>;
def cast_combines: GICombineGroup<[
truncate_of_zext,
truncate_of_sext,
truncate_of_anyext,
select_of_zext,
select_of_anyext,
select_of_truncate,
zext_of_zext,
zext_of_anyext,
sext_of_sext,
sext_of_anyext,
anyext_of_anyext,
anyext_of_zext,
anyext_of_sext,
buildvector_of_truncate,
narrow_binop_add,
narrow_binop_sub,
narrow_binop_mul,
narrow_binop_and,
narrow_binop_or,
narrow_binop_xor,
integer_of_truncate
]>;
def canonicalize_icmp : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_ICMP $root, $pred, $lhs, $rhs):$cmp,
[{ return Helper.matchCanonicalizeICmp(*${cmp}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${cmp}, ${matchinfo}); }])>;
def canonicalize_fcmp : GICombineRule<
(defs root:$root, build_fn_matchinfo:$matchinfo),
(match (G_FCMP $root, $pred, $lhs, $rhs):$cmp,
[{ return Helper.matchCanonicalizeFCmp(*${cmp}, ${matchinfo}); }]),
(apply [{ Helper.applyBuildFn(*${cmp}, ${matchinfo}); }])>;
def cmp_combines: GICombineGroup<[
canonicalize_icmp,
canonicalize_fcmp,
icmp_to_true_false_known_bits,
icmp_to_lhs_known_bits,
double_icmp_zero_and_combine,
double_icmp_zero_or_combine,
redundant_binop_in_equality
]>;
// FIXME: These should use the custom predicate feature once it lands.
def undef_combines : GICombineGroup<[undef_to_fp_zero, undef_to_int_zero,
undef_to_negative_one,
binop_left_undef_to_zero,
binop_right_undef_to_undef,
unary_undef_to_zero,
propagate_undef_any_op,
propagate_undef_all_ops,
propagate_undef_shuffle_mask,
erase_undef_store,
unmerge_undef,
insert_extract_vec_elt_out_of_bounds]>;
def identity_combines : GICombineGroup<[select_same_val, right_identity_zero,
binop_same_val, binop_left_to_zero,
binop_right_to_zero, p2i_to_i2p,
i2p_to_p2i, anyext_trunc_fold,
fneg_fneg_fold, right_identity_one,
add_sub_reg, buildvector_identity_fold,
trunc_buildvector_fold,
trunc_lshr_buildvector_fold,
bitcast_bitcast_fold, fptrunc_fpext_fold,
right_identity_neg_zero_fp,
right_identity_neg_one_fp]>;
def const_combines : GICombineGroup<[constant_fold_fp_ops, const_ptradd_to_i2p,
overlapping_and, mulo_by_2, mulo_by_0,
adde_to_addo,
combine_minmax_nan, expand_const_fpowi]>;
def known_bits_simplifications : GICombineGroup<[
redundant_and, redundant_sext_inreg, redundant_or, urem_pow2_to_mask,
zext_trunc_fold,
sext_inreg_to_zext_inreg]>;
def width_reduction_combines : GICombineGroup<[reduce_shl_of_extend,
narrow_binop_feeding_and]>;
def phi_combines : GICombineGroup<[extend_through_phis]>;
def bitreverse_shift : GICombineGroup<[bitreverse_shl, bitreverse_lshr]>;
def select_combines : GICombineGroup<[select_undef_cmp, select_constant_cmp,
select_to_iminmax, match_selects]>;
def trivial_combines : GICombineGroup<[copy_prop, mul_to_shl, add_p2i_to_ptradd,
mul_by_neg_one, idempotent_prop]>;
def fma_combines : GICombineGroup<[combine_fadd_fmul_to_fmad_or_fma,
combine_fadd_fpext_fmul_to_fmad_or_fma, combine_fadd_fma_fmul_to_fmad_or_fma,
combine_fadd_fpext_fma_fmul_to_fmad_or_fma, combine_fsub_fmul_to_fmad_or_fma,
combine_fsub_fneg_fmul_to_fmad_or_fma, combine_fsub_fpext_fmul_to_fmad_or_fma,
combine_fsub_fpext_fneg_fmul_to_fmad_or_fma]>;
def constant_fold_binops : GICombineGroup<[constant_fold_binop,
constant_fold_fp_binop]>;
def prefer_sign_combines : GICombineGroup<[nneg_zext]>;
def all_combines : GICombineGroup<[integer_reassoc_combines, trivial_combines,
vector_ops_combines, freeze_combines, cast_combines,
insert_vec_elt_combines, extract_vec_elt_combines, combines_for_extload,
combine_extracted_vector_load,
undef_combines, identity_combines, phi_combines,
simplify_add_to_sub, hoist_logic_op_with_same_opcode_hands, shifts_too_big,
reassocs, ptr_add_immed_chain, cmp_combines,
shl_ashr_to_sext_inreg, sext_inreg_of_load,
width_reduction_combines, select_combines,
known_bits_simplifications,
not_cmp_fold, opt_brcond_by_inverting_cond,
unmerge_merge, unmerge_cst, unmerge_dead_to_trunc,
unmerge_zext_to_zext, merge_unmerge, trunc_shift,
const_combines, xor_of_and_with_same_reg, ptr_add_with_zero,
shift_immed_chain, shift_of_shifted_logic_chain, load_or_combine,
div_rem_to_divrem, funnel_shift_combines, bitreverse_shift, commute_shift,
form_bitfield_extract, constant_fold_binops, constant_fold_fma,
constant_fold_cast_op, fabs_fneg_fold,
intdiv_combines, mulh_combines, redundant_neg_operands,
and_or_disjoint_mask, fma_combines, fold_binop_into_select,
sub_add_reg, select_to_minmax,
fsub_to_fneg, commute_constant_to_rhs, match_ands, match_ors,
combine_concat_vector, match_addos,
sext_trunc, zext_trunc, prefer_sign_combines, combine_shuffle_concat,
combine_use_vector_truncate]>;
// A combine group used to for prelegalizer combiners at -O0. The combines in
// this group have been selected based on experiments to balance code size and
// compile time performance.
def optnone_combines : GICombineGroup<[trivial_combines,
ptr_add_immed_chain, combines_for_extload,
not_cmp_fold, opt_brcond_by_inverting_cond, combine_concat_vector]>;