; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -enable-load-pre -enable-pre -passes=lcssa,gvn -S < %s | FileCheck %s
declare void @side_effect() nofree
declare i1 @side_effect_cond() nofree
declare void @may_free_memory()
declare i32 @personality_function()
; We can PRE the load from gc-managed memory away from the hot path.
define i32 @test_load_on_cold_path_gc(ptr addrspace(1) %p) gc "statepoint-example" personality ptr @"personality_function" {
; CHECK-LABEL: @test_load_on_cold_path_gc(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[X_PRE1:%.*]] = load i32, ptr addrspace(1) [[P:%.*]], align 4
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[X:%.*]] = phi i32 [ [[X_PRE1]], [[ENTRY:%.*]] ], [ [[X2:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE]] ]
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @may_free_memory()
; CHECK-NEXT: [[X_PRE:%.*]] = load i32, ptr addrspace(1) [[P]], align 4
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[X2]] = phi i32 [ [[X_PRE]], [[COLD_PATH]] ], [ [[X]], [[HOT_PATH]] ]
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr addrspace(1) %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @may_free_memory()
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; Do not PRE here because a loop-variant pointer.
define i32 @test_load_on_cold_path_gc_variant_neg(ptr addrspace(1) %pp) gc "statepoint-example" personality ptr @"personality_function" {
; CHECK-LABEL: @test_load_on_cold_path_gc_variant_neg(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[P:%.*]] = load volatile ptr addrspace(1), ptr addrspace(1) [[PP:%.*]], align 8
; CHECK-NEXT: [[X:%.*]] = load i32, ptr addrspace(1) [[P]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @may_free_memory()
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%p = load volatile ptr addrspace(1), ptr addrspace(1) %pp
%x = load i32, ptr addrspace(1) %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @may_free_memory()
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; TODO: We can PRE the load away from the hot path.
define i32 @test_load_on_cold_path(ptr %p) {
; CHECK-LABEL: @test_load_on_cold_path(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @side_effect() #[[ATTR0:[0-9]+]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; We should NOT PRE here because the function on the cold path may possibly
; free the memory under the pointer.
define i32 @test_load_on_cold_path_may_free_memory_neg(ptr %p) {
; CHECK-LABEL: @test_load_on_cold_path_may_free_memory_neg(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @may_free_memory()
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @may_free_memory()
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
declare void @may_modify_or_free_pointer(ptr %p)
; TODO: Despite the fact that the function may free memory in general, it
; cannot free memory allocated by alloca.
define i32 @test_load_on_cold_path_may_free_memory_alloca() {
; CHECK-LABEL: @test_load_on_cold_path_may_free_memory_alloca(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[P:%.*]] = alloca i32, align 4
; CHECK-NEXT: call void @may_modify_or_free_pointer(ptr [[P]])
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @may_modify_or_free_pointer(ptr [[P]])
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
%p = alloca i32
call void @may_modify_or_free_pointer(ptr %p)
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @may_modify_or_free_pointer(ptr %p)
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; PRE here is meaningless, so we should not do it.
define i32 @test_load_on_both_paths(ptr %p) {
; CHECK-LABEL: @test_load_on_both_paths(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
call void @side_effect() nofree
br label %backedge
cold_path:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; We could PRE here, but it doesn't seem very profitable.
define i32 @test_load_on_backedge(ptr %p) {
; CHECK-LABEL: @test_load_on_backedge(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
call void @side_effect() nofree
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; TODO: We can PRE via splitting of the critical edge in the cold path.
define i32 @test_load_on_exiting_cold_path_01(ptr %p) {
; CHECK-LABEL: @test_load_on_exiting_cold_path_01(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: [[SIDE_COND:%.*]] = call i1 @side_effect_cond() #[[ATTR0]]
; CHECK-NEXT: br i1 [[SIDE_COND]], label [[BACKEDGE]], label [[COLD_EXIT:%.*]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
; CHECK: cold_exit:
; CHECK-NEXT: ret i32 -1
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
%side_cond = call i1 @side_effect_cond() nofree
br i1 %side_cond, label %backedge, label %cold_exit
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
cold_exit:
ret i32 -1
}
; TODO: We can PRE via splitting of the critical edge in the cold path.
define i32 @test_load_on_exiting_cold_path_02(ptr %p) gc "statepoint-example" personality ptr @personality_function {
; CHECK-LABEL: @test_load_on_exiting_cold_path_02(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: invoke void @side_effect()
; CHECK-NEXT: to label [[BACKEDGE]] unwind label [[COLD_EXIT:%.*]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
; CHECK: cold_exit:
; CHECK-NEXT: [[LANDING_PAD:%.*]] = landingpad token
; CHECK-NEXT: cleanup
; CHECK-NEXT: ret i32 -1
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
invoke void @side_effect() to label %backedge unwind label %cold_exit
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
cold_exit:
%landing_pad = landingpad token
cleanup
ret i32 -1
}
; Make sure we do not insert load into both cold path & backedge.
define i32 @test_load_on_cold_path_and_backedge(ptr %p) {
; CHECK-LABEL: @test_load_on_cold_path_and_backedge(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
call void @side_effect() nofree
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; TODO: We can PRE the load away from the hot path. Make sure we only insert 1 load.
define i32 @test_load_multi_block_cold_path(ptr %p) {
; CHECK-LABEL: @test_load_multi_block_cold_path(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH_1:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path.1:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path.1
hot_path:
br label %backedge
cold_path.1:
call void @side_effect() nofree
br label %cold_path.2
cold_path.2:
call void @side_effect() nofree
br label %cold_path.3
cold_path.3:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
call void @side_effect() nofree
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; TODO: We can PRE via splitting of the critical edge in the cold path. Make sure we only insert 1 load.
define i32 @test_load_on_multi_exiting_cold_path(ptr %p) {
; CHECK-LABEL: @test_load_on_multi_exiting_cold_path(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH_1:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path.1:
; CHECK-NEXT: [[SIDE_COND_1:%.*]] = call i1 @side_effect_cond() #[[ATTR0]]
; CHECK-NEXT: br i1 [[SIDE_COND_1]], label [[COLD_PATH_2:%.*]], label [[COLD_EXIT:%.*]]
; CHECK: cold_path.2:
; CHECK-NEXT: [[SIDE_COND_2:%.*]] = call i1 @side_effect_cond() #[[ATTR0]]
; CHECK-NEXT: br i1 [[SIDE_COND_2]], label [[COLD_PATH_3:%.*]], label [[COLD_EXIT]]
; CHECK: cold_path.3:
; CHECK-NEXT: [[SIDE_COND_3:%.*]] = call i1 @side_effect_cond() #[[ATTR0]]
; CHECK-NEXT: br i1 [[SIDE_COND_3]], label [[BACKEDGE]], label [[COLD_EXIT]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
; CHECK: cold_exit:
; CHECK-NEXT: ret i32 -1
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path.1
hot_path:
br label %backedge
cold_path.1:
%side_cond.1 = call i1 @side_effect_cond() nofree
br i1 %side_cond.1, label %cold_path.2, label %cold_exit
cold_path.2:
%side_cond.2 = call i1 @side_effect_cond() nofree
br i1 %side_cond.2, label %cold_path.3, label %cold_exit
cold_path.3:
%side_cond.3 = call i1 @side_effect_cond() nofree
br i1 %side_cond.3, label %backedge, label %cold_exit
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
cold_exit:
ret i32 -1
}
; TODO: PRE via splittinga backedge in the cold loop. Make sure we don't insert a load into an inner loop.
define i32 @test_inner_loop(ptr %p) {
; CHECK-LABEL: @test_inner_loop(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: br label [[INNER_LOOP:%.*]]
; CHECK: inner_loop:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br i1 undef, label [[INNER_LOOP]], label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
br label %inner_loop
inner_loop:
call void @side_effect() nofree
br i1 undef, label %inner_loop, label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; TODO: We can PRE here, but profitablility depends on frequency of cold blocks. Conservatively, we should not do it unless there is a reason.
define i32 @test_multiple_cold_paths(ptr %p) {
; CHECK-LABEL: @test_multiple_cold_paths(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND_1:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND_1]], label [[HOT_PATH_1:%.*]], label [[COLD_PATH_1:%.*]]
; CHECK: hot_path.1:
; CHECK-NEXT: br label [[DOM_1:%.*]]
; CHECK: cold_path.1:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[DOM_1]]
; CHECK: dom.1:
; CHECK-NEXT: [[COND_2:%.*]] = icmp ne i32 [[X]], 1
; CHECK-NEXT: br i1 [[COND_2]], label [[HOT_PATH_2:%.*]], label [[COLD_PATH_2:%.*]]
; CHECK: hot_path.2:
; CHECK-NEXT: br label [[DOM_2:%.*]]
; CHECK: cold_path.2:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[DOM_2]]
; CHECK: dom.2:
; CHECK-NEXT: [[COND_3:%.*]] = icmp ne i32 [[X]], 2
; CHECK-NEXT: br i1 [[COND_3]], label [[HOT_PATH_3:%.*]], label [[COLD_PATH_3:%.*]]
; CHECK: hot_path.3:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path.3:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond.1 = icmp ne i32 %x, 0
br i1 %cond.1, label %hot_path.1, label %cold_path.1
hot_path.1:
br label %dom.1
cold_path.1:
call void @side_effect() nofree
br label %dom.1
dom.1:
%cond.2 = icmp ne i32 %x, 1
br i1 %cond.2, label %hot_path.2, label %cold_path.2
hot_path.2:
br label %dom.2
cold_path.2:
call void @side_effect() nofree
br label %dom.2
dom.2:
%cond.3 = icmp ne i32 %x, 2
br i1 %cond.3, label %hot_path.3, label %cold_path.3
hot_path.3:
br label %backedge
cold_path.3:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
; TODO: We can PRE via split of critical edge.
define i32 @test_side_exit_after_merge(ptr %p) {
; CHECK-LABEL: @test_side_exit_after_merge(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[X]], 0
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: [[COND_1:%.*]] = icmp ne i32 [[IV]], 1
; CHECK-NEXT: br i1 [[COND_1]], label [[DO_CALL:%.*]], label [[SIDE_EXITING:%.*]]
; CHECK: do_call:
; CHECK-NEXT: [[SIDE_COND:%.*]] = call i1 @side_effect_cond() #[[ATTR0]]
; CHECK-NEXT: br label [[SIDE_EXITING]]
; CHECK: side_exiting:
; CHECK-NEXT: [[SIDE_COND_PHI:%.*]] = phi i1 [ [[SIDE_COND]], [[DO_CALL]] ], [ true, [[COLD_PATH]] ]
; CHECK-NEXT: br i1 [[SIDE_COND_PHI]], label [[BACKEDGE]], label [[COLD_EXIT:%.*]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
; CHECK: cold_exit:
; CHECK-NEXT: ret i32 -1
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%x = load i32, ptr %p
%cond = icmp ne i32 %x, 0
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
%cond.1 = icmp ne i32 %iv, 1
br i1 %cond.1, label %do_call, label %side_exiting
do_call:
%side_cond = call i1 @side_effect_cond() nofree
br label %side_exiting
side_exiting:
%side_cond_phi = phi i1 [%side_cond, %do_call], [true, %cold_path]
br i1 %side_cond_phi, label %backedge, label %cold_exit
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
cold_exit:
ret i32 -1
}
declare void @llvm.experimental.guard(i1, ...)
define i32 @test_guard_1(ptr %p, i32 %g) {
; CHECK-LABEL: @test_guard_1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[GUARD_COND:%.*]] = icmp ne i32 [[IV]], [[G:%.*]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[GUARD_COND]]) [ "deopt"() ]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: [[COND:%.*]] = icmp ult i32 [[X]], 100
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%guard_cond = icmp ne i32 %iv, %g
call void(i1, ...) @llvm.experimental.guard(i1 %guard_cond) [ "deopt"() ]
%x = load i32, ptr %p
%cond = icmp ult i32 %x, 100
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}
define i32 @test_guard_2(ptr %p, i32 %g) {
; CHECK-LABEL: @test_guard_2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[BACKEDGE:%.*]] ]
; CHECK-NEXT: [[GUARD_COND:%.*]] = icmp ne i32 [[IV]], [[G:%.*]]
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[GUARD_COND]]) [ "deopt"() ]
; CHECK-NEXT: [[COND:%.*]] = icmp ult i32 [[X]], 100
; CHECK-NEXT: br i1 [[COND]], label [[HOT_PATH:%.*]], label [[COLD_PATH:%.*]]
; CHECK: hot_path:
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: cold_path:
; CHECK-NEXT: call void @side_effect() #[[ATTR0]]
; CHECK-NEXT: br label [[BACKEDGE]]
; CHECK: backedge:
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], [[X]]
; CHECK-NEXT: [[LOOP_COND:%.*]] = icmp ult i32 [[IV_NEXT]], 1000
; CHECK-NEXT: br i1 [[LOOP_COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret i32 [[X]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [%iv.next, %backedge]
%guard_cond = icmp ne i32 %iv, %g
%x = load i32, ptr %p
call void(i1, ...) @llvm.experimental.guard(i1 %guard_cond) [ "deopt"() ]
%cond = icmp ult i32 %x, 100
br i1 %cond, label %hot_path, label %cold_path
hot_path:
br label %backedge
cold_path:
call void @side_effect() nofree
br label %backedge
backedge:
%iv.next = add i32 %iv, %x
%loop.cond = icmp ult i32 %iv.next, 1000
br i1 %loop.cond, label %loop, label %exit
exit:
ret i32 %x
}