; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=aggressive-instcombine -mtriple x86_64-- -S | FileCheck %s
declare float @sqrtf(float)
declare double @sqrt(double)
declare fp128 @sqrtl(fp128)
declare float @llvm.fabs.f32(float)
declare void @llvm.assume(i1 noundef)
; "nnan" implies no setting of errno and the target can lower this to an
; instruction, so transform to an intrinsic.
define float @sqrt_call_nnan_f32(float %x) {
; CHECK-LABEL: @sqrt_call_nnan_f32(
; CHECK-NEXT: [[SQRT1:%.*]] = call nnan float @llvm.sqrt.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[SQRT1]]
;
%sqrt = call nnan float @sqrtf(float %x)
ret float %sqrt
}
; Verify that other FMF are propagated to the intrinsic call.
; We don't care about propagating 'tail' because this is not going to be a lowered as a call.
define double @sqrt_call_nnan_f64(double %x) {
; CHECK-LABEL: @sqrt_call_nnan_f64(
; CHECK-NEXT: [[SQRT1:%.*]] = call nnan ninf double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[SQRT1]]
;
%sqrt = tail call nnan ninf double @sqrt(double %x)
ret double %sqrt
}
; We don't change this because it will be lowered to a call that could
; theoretically still change errno and affect other accessors of errno.
define fp128 @sqrt_call_nnan_f128(fp128 %x) {
; CHECK-LABEL: @sqrt_call_nnan_f128(
; CHECK-NEXT: [[SQRT:%.*]] = call nnan fp128 @sqrtl(fp128 [[X:%.*]])
; CHECK-NEXT: ret fp128 [[SQRT]]
;
%sqrt = call nnan fp128 @sqrtl(fp128 %x)
ret fp128 %sqrt
}
; Don't alter a no-builtin libcall.
define float @sqrt_call_nnan_f32_nobuiltin(float %x) {
; CHECK-LABEL: @sqrt_call_nnan_f32_nobuiltin(
; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @sqrtf(float [[X:%.*]]) #[[ATTR2:[0-9]+]]
; CHECK-NEXT: ret float [[SQRT]]
;
%sqrt = call nnan float @sqrtf(float %x) nobuiltin
ret float %sqrt
}
define float @sqrt_call_f32_squared(float %x) {
; CHECK-LABEL: @sqrt_call_f32_squared(
; CHECK-NEXT: [[X2:%.*]] = fmul float [[X:%.*]], [[X]]
; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[X2]])
; CHECK-NEXT: ret float [[SQRT1]]
;
%x2 = fmul float %x, %x
%sqrt = call float @sqrtf(float %x2)
ret float %sqrt
}
define float @sqrt_call_f32_fabs(float %x) {
; CHECK-LABEL: @sqrt_call_f32_fabs(
; CHECK-NEXT: [[A:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[A]])
; CHECK-NEXT: ret float [[SQRT1]]
;
%a = call float @llvm.fabs.f32(float %x)
%sqrt = call float @sqrtf(float %a)
ret float %sqrt
}
define float @sqrt_call_f32_assume_oge_n0(float %x) {
; CHECK-LABEL: @sqrt_call_f32_assume_oge_n0(
; CHECK-NEXT: [[IS_POS:%.*]] = fcmp oge float [[X:%.*]], -0.000000e+00
; CHECK-NEXT: call void @llvm.assume(i1 [[IS_POS]])
; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[X]])
; CHECK-NEXT: ret float [[SQRT1]]
;
%is.pos = fcmp oge float %x, -0.0
call void @llvm.assume(i1 %is.pos)
%sqrt = call float @sqrtf(float %x)
ret float %sqrt
}