; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
target datalayout = "n32"
define i1 @is_rem2_neg_i8(i8 %x) {
; CHECK-LABEL: @is_rem2_neg_i8(
; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[X:%.*]], -127
; CHECK-NEXT: [[R:%.*]] = icmp eq i8 [[TMP1]], -127
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i8 %x, 2
%r = icmp slt i8 %s, 0
ret i1 %r
}
define <2 x i1> @is_rem2_pos_v2i8(<2 x i8> %x) {
; CHECK-LABEL: @is_rem2_pos_v2i8(
; CHECK-NEXT: [[TMP1:%.*]] = and <2 x i8> [[X:%.*]], <i8 -127, i8 -127>
; CHECK-NEXT: [[R:%.*]] = icmp eq <2 x i8> [[TMP1]], <i8 1, i8 1>
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%s = srem <2 x i8> %x, <i8 2, i8 2>
%r = icmp sgt <2 x i8> %s, zeroinitializer
ret <2 x i1> %r
}
; i8 -97 == 159 == 0b10011111
define i1 @is_rem32_pos_i8(i8 %x) {
; CHECK-LABEL: @is_rem32_pos_i8(
; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[X:%.*]], -97
; CHECK-NEXT: [[R:%.*]] = icmp sgt i8 [[TMP1]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i8 %x, 32
%r = icmp sgt i8 %s, 0
ret i1 %r
}
; i16 -32765 == 32771 == 0b1000000000000011
define i1 @is_rem4_neg_i16(i16 %x) {
; CHECK-LABEL: @is_rem4_neg_i16(
; CHECK-NEXT: [[TMP1:%.*]] = and i16 [[X:%.*]], -32765
; CHECK-NEXT: [[R:%.*]] = icmp ugt i16 [[TMP1]], -32768
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i16 %x, 4
%r = icmp slt i16 %s, 0
ret i1 %r
}
declare void @use(i32)
; TODO: This is still worth folding because srem is difficult?
define i1 @is_rem32_neg_i32_extra_use(i32 %x) {
; CHECK-LABEL: @is_rem32_neg_i32_extra_use(
; CHECK-NEXT: [[S:%.*]] = srem i32 [[X:%.*]], 32
; CHECK-NEXT: call void @use(i32 [[S]])
; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[S]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i32 %x, 32
call void @use(i32 %s)
%r = icmp slt i32 %s, 0
ret i1 %r
}
; Negative test - wrong compare constant
define i1 @is_rem8_nonneg_i16(i16 %x) {
; CHECK-LABEL: @is_rem8_nonneg_i16(
; CHECK-NEXT: [[S:%.*]] = srem i16 [[X:%.*]], 8
; CHECK-NEXT: [[R:%.*]] = icmp sgt i16 [[S]], -1
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i16 %x, 8
%r = icmp sgt i16 %s, -1
ret i1 %r
}
; Negative test - wrong remainder constant
define i1 @is_rem3_neg_i8(i8 %x) {
; CHECK-LABEL: @is_rem3_neg_i8(
; CHECK-NEXT: [[S:%.*]] = srem i8 [[X:%.*]], 3
; CHECK-NEXT: [[R:%.*]] = icmp slt i8 [[S]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i8 %x, 3
%r = icmp slt i8 %s, 0
ret i1 %r
}
; Negative test - wrong compare constant
define i1 @is_rem16_something_i8(i8 %x) {
; CHECK-LABEL: @is_rem16_something_i8(
; CHECK-NEXT: [[S:%.*]] = srem i8 [[X:%.*]], 16
; CHECK-NEXT: [[R:%.*]] = icmp slt i8 [[S]], 7
; CHECK-NEXT: ret i1 [[R]]
;
%s = srem i8 %x, 16
%r = icmp slt i8 %s, 7
ret i1 %r
}
; PR30281 - https://llvm.org/bugs/show_bug.cgi?id=30281
; All of these tests contain foldable division-by-constant instructions, but we
; can't assert that those folds have occurred before we process the later icmp.
define i32 @icmp_div(i16 %a, i16 %c) {
; CHECK-LABEL: @icmp_div(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TOBOOL:%.*]] = icmp eq i16 [[A:%.*]], 0
; CHECK-NEXT: br i1 [[TOBOOL]], label [[THEN:%.*]], label [[EXIT:%.*]]
; CHECK: then:
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp eq i16 [[C:%.*]], 0
; CHECK-NEXT: [[TMP0:%.*]] = sext i1 [[CMP_NOT]] to i32
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ -1, [[ENTRY:%.*]] ], [ [[TMP0]], [[THEN]] ]
; CHECK-NEXT: ret i32 [[PHI]]
;
entry:
%tobool = icmp eq i16 %a, 0
br i1 %tobool, label %then, label %exit
then:
%div = sdiv i16 %c, -1
%cmp = icmp ne i16 %div, 0
br label %exit
exit:
%phi = phi i1 [ false, %entry ], [ %cmp, %then ]
%zext = zext i1 %phi to i32
%add = add nsw i32 %zext, -1
ret i32 %add
}
define i32 @icmp_div2(i16 %a, i16 %c) {
; CHECK-LABEL: @icmp_div2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TOBOOL:%.*]] = icmp eq i16 [[A:%.*]], 0
; CHECK-NEXT: br i1 [[TOBOOL]], label [[THEN:%.*]], label [[EXIT:%.*]]
; CHECK: then:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret i32 -1
;
entry:
%tobool = icmp eq i16 %a, 0
br i1 %tobool, label %then, label %exit
then:
%div = sdiv i16 %c, 0
%cmp = icmp ne i16 %div, 0
br label %exit
exit:
%phi = phi i1 [ false, %entry ], [ %cmp, %then ]
%zext = zext i1 %phi to i32
%add = add nsw i32 %zext, -1
ret i32 %add
}
define i32 @icmp_div3(i16 %a, i16 %c) {
; CHECK-LABEL: @icmp_div3(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TOBOOL:%.*]] = icmp eq i16 [[A:%.*]], 0
; CHECK-NEXT: br i1 [[TOBOOL]], label [[THEN:%.*]], label [[EXIT:%.*]]
; CHECK: then:
; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp eq i16 [[C:%.*]], 0
; CHECK-NEXT: [[TMP0:%.*]] = sext i1 [[CMP_NOT]] to i32
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ -1, [[ENTRY:%.*]] ], [ [[TMP0]], [[THEN]] ]
; CHECK-NEXT: ret i32 [[PHI]]
;
entry:
%tobool = icmp eq i16 %a, 0
br i1 %tobool, label %then, label %exit
then:
%div = sdiv i16 %c, 1
%cmp = icmp ne i16 %div, 0
br label %exit
exit:
%phi = phi i1 [ false, %entry ], [ %cmp, %then ]
%zext = zext i1 %phi to i32
%add = add nsw i32 %zext, -1
ret i32 %add
}
define i1 @udiv_eq_umax(i8 %x, i8 %y) {
; CHECK-LABEL: @udiv_eq_umax(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i8 [[X:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i8 [[Y:%.*]], 1
; CHECK-NEXT: [[R:%.*]] = and i1 [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret i1 [[R]]
;
%d = udiv i8 %x, %y
%r = icmp eq i8 %d, 255
ret i1 %r
}
define <2 x i1> @udiv_ne_umax(<2 x i5> %x, <2 x i5> %y) {
; CHECK-LABEL: @udiv_ne_umax(
; CHECK-NEXT: [[TMP1:%.*]] = icmp ne <2 x i5> [[X:%.*]], <i5 -1, i5 -1>
; CHECK-NEXT: [[TMP2:%.*]] = icmp ne <2 x i5> [[Y:%.*]], <i5 1, i5 1>
; CHECK-NEXT: [[R:%.*]] = or <2 x i1> [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%d = udiv <2 x i5> %x, %y
%r = icmp ne <2 x i5> %d, <i5 -1, i5 -1>
ret <2 x i1> %r
}
define i1 @udiv_eq_big(i8 %x, i8 %y) {
; CHECK-LABEL: @udiv_eq_big(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i8 [[X:%.*]], -128
; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i8 [[Y:%.*]], 1
; CHECK-NEXT: [[R:%.*]] = and i1 [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret i1 [[R]]
;
%d = udiv i8 %x, %y
%r = icmp eq i8 %d, 128
ret i1 %r
}
define i1 @udiv_ne_big(i8 %x, i8 %y) {
; CHECK-LABEL: @udiv_ne_big(
; CHECK-NEXT: [[TMP1:%.*]] = icmp ne i8 [[X:%.*]], -128
; CHECK-NEXT: [[TMP2:%.*]] = icmp ne i8 [[Y:%.*]], 1
; CHECK-NEXT: [[R:%.*]] = or i1 [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret i1 [[R]]
;
%d = udiv i8 %x, %y
%r = icmp ne i8 %d, 128
ret i1 %r
}
; negative test - must have negative compare constant
define i1 @udiv_eq_not_big(i8 %x, i8 %y) {
; CHECK-LABEL: @udiv_eq_not_big(
; CHECK-NEXT: [[D:%.*]] = udiv i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = icmp eq i8 [[D]], 127
; CHECK-NEXT: ret i1 [[R]]
;
%d = udiv i8 %x, %y
%r = icmp eq i8 %d, 127
ret i1 %r
}
; negative test - must be equality predicate
define i1 @udiv_slt_umax(i8 %x, i8 %y) {
; CHECK-LABEL: @udiv_slt_umax(
; CHECK-NEXT: [[D:%.*]] = udiv i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = icmp slt i8 [[D]], -1
; CHECK-NEXT: ret i1 [[R]]
;
%d = udiv i8 %x, %y
%r = icmp slt i8 %d, 255
ret i1 %r
}
; negative test - extra use
define i1 @udiv_eq_umax_use(i32 %x, i32 %y) {
; CHECK-LABEL: @udiv_eq_umax_use(
; CHECK-NEXT: [[D:%.*]] = udiv i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: call void @use(i32 [[D]])
; CHECK-NEXT: [[R:%.*]] = icmp eq i32 [[D]], -1
; CHECK-NEXT: ret i1 [[R]]
;
%d = udiv i32 %x, %y
call void @use(i32 %d)
%r = icmp eq i32 %d, -1
ret i1 %r
}
define i1 @sdiv_eq_smin(i8 %x, i8 %y) {
; CHECK-LABEL: @sdiv_eq_smin(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i8 [[X:%.*]], -128
; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i8 [[Y:%.*]], 1
; CHECK-NEXT: [[R:%.*]] = and i1 [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret i1 [[R]]
;
%d = sdiv i8 %x, %y
%r = icmp eq i8 %d, -128
ret i1 %r
}
define <2 x i1> @sdiv_ne_smin(<2 x i5> %x, <2 x i5> %y) {
; CHECK-LABEL: @sdiv_ne_smin(
; CHECK-NEXT: [[TMP1:%.*]] = icmp ne <2 x i5> [[X:%.*]], <i5 -16, i5 -16>
; CHECK-NEXT: [[TMP2:%.*]] = icmp ne <2 x i5> [[Y:%.*]], <i5 1, i5 1>
; CHECK-NEXT: [[R:%.*]] = or <2 x i1> [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%d = sdiv <2 x i5> %x, %y
%r = icmp ne <2 x i5> %d, <i5 -16, i5 -16>
ret <2 x i1> %r
}
; negative test - must be SMIN
define i1 @sdiv_eq_small(i8 %x, i8 %y) {
; CHECK-LABEL: @sdiv_eq_small(
; CHECK-NEXT: [[D:%.*]] = sdiv i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = icmp eq i8 [[D]], -127
; CHECK-NEXT: ret i1 [[R]]
;
%d = sdiv i8 %x, %y
%r = icmp eq i8 %d, -127
ret i1 %r
}
; negative test - must be SMIN
define i1 @sdiv_ne_big(i8 %x, i8 %y) {
; CHECK-LABEL: @sdiv_ne_big(
; CHECK-NEXT: [[D:%.*]] = sdiv i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = icmp ne i8 [[D]], 127
; CHECK-NEXT: ret i1 [[R]]
;
%d = sdiv i8 %x, %y
%r = icmp ne i8 %d, 127
ret i1 %r
}
; negative test - must be SMIN
define i1 @sdiv_eq_not_big(i8 %x, i8 %y) {
; CHECK-LABEL: @sdiv_eq_not_big(
; CHECK-NEXT: [[D:%.*]] = sdiv i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = icmp eq i8 [[D]], 100
; CHECK-NEXT: ret i1 [[R]]
;
%d = sdiv i8 %x, %y
%r = icmp eq i8 %d, 100
ret i1 %r
}
; negative test - must be equality predicate
define i1 @sdiv_ult_smin(i8 %x, i8 %y) {
; CHECK-LABEL: @sdiv_ult_smin(
; CHECK-NEXT: [[D:%.*]] = sdiv i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = icmp sgt i8 [[D]], -1
; CHECK-NEXT: ret i1 [[R]]
;
%d = sdiv i8 %x, %y
%r = icmp ult i8 %d, 128
ret i1 %r
}
; negative test - extra use
define i1 @sdiv_eq_smin_use(i32 %x, i32 %y) {
; CHECK-LABEL: @sdiv_eq_smin_use(
; CHECK-NEXT: [[D:%.*]] = sdiv i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: call void @use(i32 [[D]])
; CHECK-NEXT: [[R:%.*]] = icmp eq i32 [[D]], -2147483648
; CHECK-NEXT: ret i1 [[R]]
;
%d = sdiv i32 %x, %y
call void @use(i32 %d)
%r = icmp eq i32 %d, -2147483648
ret i1 %r
}
; Fold (X / C) cmp X into X ~cmp 0 (~cmp is the inverse predicate of cmp), for some C != 1
; Alternative form of this fold is when division is replaced with logic right shift
define i1 @sdiv_x_by_const_cmp_x(i32 %x) {
; CHECK-LABEL: @sdiv_x_by_const_cmp_x(
; CHECK-NEXT: [[R:%.*]] = icmp eq i32 [[X:%.*]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%v = sdiv i32 %x, 13
%r = icmp eq i32 %v, %x
ret i1 %r
}
define i1 @udiv_x_by_const_cmp_x(i32 %x) {
; CHECK-LABEL: @udiv_x_by_const_cmp_x(
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i32 [[X:%.*]], 0
; CHECK-NEXT: ret i1 [[TMP1]]
;
%1 = udiv i32 %x, 123
%2 = icmp slt i32 %1, %x
ret i1 %2
}
define <2 x i1> @udiv_x_by_const_cmp_x_non_splat(<2 x i32> %x) {
; CHECK-LABEL: @udiv_x_by_const_cmp_x_non_splat(
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt <2 x i32> [[X:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[TMP1]]
;
%1 = udiv <2 x i32> %x, <i32 123, i32 -123>
%2 = icmp slt <2 x i32> %1, %x
ret <2 x i1> %2
}
define <2 x i1> @sdiv_x_by_const_cmp_x_non_splat(<2 x i32> %x) {
; CHECK-LABEL: @sdiv_x_by_const_cmp_x_non_splat(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq <2 x i32> [[X:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[TMP1]]
;
%1 = sdiv <2 x i32> %x, <i32 2, i32 3>
%2 = icmp eq <2 x i32> %1, %x
ret <2 x i1> %2
}
; Same as above but with right shift instead of division (C != 0)
define i1 @lshr_x_by_const_cmp_x(i32 %x) {
; CHECK-LABEL: @lshr_x_by_const_cmp_x(
; CHECK-NEXT: [[R:%.*]] = icmp eq i32 [[X:%.*]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%v = lshr i32 %x, 1
%r = icmp eq i32 %v, %x
ret i1 %r
}
define <4 x i1> @lshr_by_const_cmp_sle_value(<4 x i32> %x) {
; CHECK-LABEL: @lshr_by_const_cmp_sle_value(
; CHECK-NEXT: [[R:%.*]] = icmp sgt <4 x i32> [[X:%.*]], <i32 -1, i32 -1, i32 -1, i32 -1>
; CHECK-NEXT: ret <4 x i1> [[R]]
;
%v = lshr <4 x i32> %x, <i32 3, i32 3, i32 3, i32 3>
%r = icmp sle <4 x i32> %v, %x
ret <4 x i1> %r
}
define <4 x i1> @lshr_by_const_cmp_sle_value_non_splat(<4 x i32> %x) {
; CHECK-LABEL: @lshr_by_const_cmp_sle_value_non_splat(
; CHECK-NEXT: [[R:%.*]] = icmp sgt <4 x i32> [[X:%.*]], <i32 -1, i32 -1, i32 -1, i32 -1>
; CHECK-NEXT: ret <4 x i1> [[R]]
;
%v = lshr <4 x i32> %x, <i32 3, i32 3, i32 3, i32 5>
%r = icmp sle <4 x i32> %v, %x
ret <4 x i1> %r
}
define <4 x i1> @ashr_by_const_cmp_sge_value_non_splat(<4 x i32> %x) {
; CHECK-LABEL: @ashr_by_const_cmp_sge_value_non_splat(
; CHECK-NEXT: [[R:%.*]] = icmp slt <4 x i32> [[X:%.*]], <i32 1, i32 1, i32 1, i32 1>
; CHECK-NEXT: ret <4 x i1> [[R]]
;
%v = ashr <4 x i32> %x, <i32 1, i32 2, i32 3, i32 4>
%r = icmp sge <4 x i32> %v, %x
ret <4 x i1> %r
}
define i1 @lshr_by_const_cmp_sge_value(i32 %x) {
; CHECK-LABEL: @lshr_by_const_cmp_sge_value(
; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[X:%.*]], 1
; CHECK-NEXT: ret i1 [[R]]
;
%v = lshr i32 %x, 3
%r = icmp sge i32 %v, %x
ret i1 %r
}
define i1 @ashr_x_by_const_cmp_sge_x(i32 %x) {
; CHECK-LABEL: @ashr_x_by_const_cmp_sge_x(
; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[X:%.*]], 1
; CHECK-NEXT: ret i1 [[R]]
;
%v = ashr i32 %x, 5
%r = icmp sge i32 %v, %x
ret i1 %r
}
; Negative test - constant is 1
define <2 x i1> @udiv_x_by_const_cmp_eq_value_neg(<2 x i32> %x) {
; CHECK-LABEL: @udiv_x_by_const_cmp_eq_value_neg(
; CHECK-NEXT: [[V:%.*]] = udiv <2 x i32> [[X:%.*]], <i32 1, i32 3>
; CHECK-NEXT: [[R:%.*]] = icmp eq <2 x i32> [[V]], [[X]]
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%v = udiv <2 x i32> %x, <i32 1, i32 3>
%r = icmp eq <2 x i32> %v, %x
ret <2 x i1> %r
}
define <2 x i1> @sdiv_x_by_const_cmp_eq_value_neg(<2 x i32> %x) {
; CHECK-LABEL: @sdiv_x_by_const_cmp_eq_value_neg(
; CHECK-NEXT: [[V:%.*]] = sdiv <2 x i32> [[X:%.*]], <i32 1, i32 3>
; CHECK-NEXT: [[R:%.*]] = icmp eq <2 x i32> [[V]], [[X]]
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%v = sdiv <2 x i32> %x, <i32 1, i32 3>
%r = icmp eq <2 x i32> %v, %x
ret <2 x i1> %r
}
; Negative test - constant is 0
define <2 x i1> @lshr_x_by_const_cmp_slt_value_neg(<2 x i32> %x) {
; CHECK-LABEL: @lshr_x_by_const_cmp_slt_value_neg(
; CHECK-NEXT: [[V:%.*]] = lshr <2 x i32> [[X:%.*]], <i32 0, i32 2>
; CHECK-NEXT: [[R:%.*]] = icmp slt <2 x i32> [[V]], [[X]]
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%v = lshr <2 x i32> %x, <i32 0, i32 2>
%r = icmp slt <2 x i32> %v, %x
ret <2 x i1> %r
}
; Negative test - unsigned predicate with sdiv
define i1 @sdiv_x_by_const_cmp_ult_value_neg(i32 %x) {
; CHECK-LABEL: @sdiv_x_by_const_cmp_ult_value_neg(
; CHECK-NEXT: [[V:%.*]] = sdiv i32 [[X:%.*]], 3
; CHECK-NEXT: [[R:%.*]] = icmp ult i32 [[V]], [[X]]
; CHECK-NEXT: ret i1 [[R]]
;
%v = sdiv i32 %x, 3
%r = icmp ult i32 %v, %x
ret i1 %r
}
; Negative case - one of the components of a vector is 1
define <4 x i1> @sdiv_x_by_const_cmp_sgt_value_neg(<4 x i32> %x) {
; CHECK-LABEL: @sdiv_x_by_const_cmp_sgt_value_neg(
; CHECK-NEXT: [[V:%.*]] = sdiv <4 x i32> [[X:%.*]], <i32 1, i32 2, i32 3, i32 4>
; CHECK-NEXT: [[R:%.*]] = icmp sgt <4 x i32> [[V]], [[X]]
; CHECK-NEXT: ret <4 x i1> [[R]]
;
%v = sdiv <4 x i32> %x, <i32 1, i32 2, i32 3, i32 4>
%r = icmp sgt <4 x i32> %v, %x
ret <4 x i1> %r
}
; Negative case - ashr only allows sge/slt predicates
define i1 @ashr_x_by_const_cmp_sle_value_neg(i32 %x) {
; CHECK-LABEL: @ashr_x_by_const_cmp_sle_value_neg(
; CHECK-NEXT: [[V:%.*]] = ashr i32 [[X:%.*]], 3
; CHECK-NEXT: [[R:%.*]] = icmp sle i32 [[V]], [[X]]
; CHECK-NEXT: ret i1 [[R]]
;
%v = ashr i32 %x, 3
%r = icmp sle i32 %v, %x
ret i1 %r
}