; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; This test makes sure that these instructions are properly eliminated.
;
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
declare void @use(i8)
define i32 @shl_C1_add_A_C2_i32(i16 %A) {
; CHECK-LABEL: @shl_C1_add_A_C2_i32(
; CHECK-NEXT: [[B:%.*]] = zext nneg i16 [[A:%.*]] to i32
; CHECK-NEXT: [[D:%.*]] = shl i32 192, [[B]]
; CHECK-NEXT: ret i32 [[D]]
;
%B = zext i16 %A to i32
%C = add i32 %B, 5
%D = shl i32 6, %C
ret i32 %D
}
define i32 @ashr_C1_add_A_C2_i32(i32 %A) {
; CHECK-LABEL: @ashr_C1_add_A_C2_i32(
; CHECK-NEXT: ret i32 0
;
%B = and i32 %A, 65535
%C = add i32 %B, 5
%D = ashr i32 6, %C
ret i32 %D
}
define i32 @lshr_C1_add_A_C2_i32(i32 %A) {
; CHECK-LABEL: @lshr_C1_add_A_C2_i32(
; CHECK-NEXT: [[B:%.*]] = and i32 [[A:%.*]], 65535
; CHECK-NEXT: [[D:%.*]] = shl i32 192, [[B]]
; CHECK-NEXT: ret i32 [[D]]
;
%B = and i32 %A, 65535
%C = add i32 %B, 5
%D = shl i32 6, %C
ret i32 %D
}
define <4 x i32> @shl_C1_add_A_C2_v4i32(<4 x i16> %A) {
; CHECK-LABEL: @shl_C1_add_A_C2_v4i32(
; CHECK-NEXT: [[B:%.*]] = zext nneg <4 x i16> [[A:%.*]] to <4 x i32>
; CHECK-NEXT: [[D:%.*]] = shl <4 x i32> <i32 6, i32 4, i32 poison, i32 -458752>, [[B]]
; CHECK-NEXT: ret <4 x i32> [[D]]
;
%B = zext <4 x i16> %A to <4 x i32>
%C = add <4 x i32> %B, <i32 0, i32 1, i32 50, i32 16>
%D = shl <4 x i32> <i32 6, i32 2, i32 1, i32 -7>, %C
ret <4 x i32> %D
}
define <4 x i32> @ashr_C1_add_A_C2_v4i32(<4 x i32> %A) {
; CHECK-LABEL: @ashr_C1_add_A_C2_v4i32(
; CHECK-NEXT: [[B:%.*]] = and <4 x i32> [[A:%.*]], <i32 0, i32 15, i32 255, i32 65535>
; CHECK-NEXT: [[D:%.*]] = ashr <4 x i32> <i32 6, i32 1, i32 poison, i32 -1>, [[B]]
; CHECK-NEXT: ret <4 x i32> [[D]]
;
%B = and <4 x i32> %A, <i32 0, i32 15, i32 255, i32 65535>
%C = add <4 x i32> %B, <i32 0, i32 1, i32 50, i32 16>
%D = ashr <4 x i32> <i32 6, i32 2, i32 1, i32 -7>, %C
ret <4 x i32> %D
}
define <4 x i32> @lshr_C1_add_A_C2_v4i32(<4 x i32> %A) {
; CHECK-LABEL: @lshr_C1_add_A_C2_v4i32(
; CHECK-NEXT: [[B:%.*]] = and <4 x i32> [[A:%.*]], <i32 0, i32 15, i32 255, i32 65535>
; CHECK-NEXT: [[D:%.*]] = lshr <4 x i32> <i32 6, i32 1, i32 poison, i32 65535>, [[B]]
; CHECK-NEXT: ret <4 x i32> [[D]]
;
%B = and <4 x i32> %A, <i32 0, i32 15, i32 255, i32 65535>
%C = add <4 x i32> %B, <i32 0, i32 1, i32 50, i32 16>
%D = lshr <4 x i32> <i32 6, i32 2, i32 1, i32 -7>, %C
ret <4 x i32> %D
}
define <4 x i32> @shl_C1_add_A_C2_v4i32_splat(i16 %I) {
; CHECK-LABEL: @shl_C1_add_A_C2_v4i32_splat(
; CHECK-NEXT: [[A:%.*]] = zext i16 [[I:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = insertelement <4 x i32> poison, i32 [[A]], i64 0
; CHECK-NEXT: [[C:%.*]] = shufflevector <4 x i32> [[B]], <4 x i32> poison, <4 x i32> zeroinitializer
; CHECK-NEXT: [[E:%.*]] = shl <4 x i32> <i32 6, i32 4, i32 poison, i32 -458752>, [[C]]
; CHECK-NEXT: ret <4 x i32> [[E]]
;
%A = zext i16 %I to i32
%B = insertelement <4 x i32> undef, i32 %A, i32 0
%C = shufflevector <4 x i32> %B, <4 x i32> undef, <4 x i32> zeroinitializer
%D = add <4 x i32> %C, <i32 0, i32 1, i32 50, i32 16>
%E = shl <4 x i32> <i32 6, i32 2, i32 1, i32 -7>, %D
ret <4 x i32> %E
}
define <4 x i32> @ashr_C1_add_A_C2_v4i32_splat(i16 %I) {
; CHECK-LABEL: @ashr_C1_add_A_C2_v4i32_splat(
; CHECK-NEXT: [[A:%.*]] = zext i16 [[I:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = insertelement <4 x i32> poison, i32 [[A]], i64 0
; CHECK-NEXT: [[C:%.*]] = shufflevector <4 x i32> [[B]], <4 x i32> poison, <4 x i32> zeroinitializer
; CHECK-NEXT: [[E:%.*]] = ashr <4 x i32> <i32 6, i32 1, i32 poison, i32 -1>, [[C]]
; CHECK-NEXT: ret <4 x i32> [[E]]
;
%A = zext i16 %I to i32
%B = insertelement <4 x i32> undef, i32 %A, i32 0
%C = shufflevector <4 x i32> %B, <4 x i32> undef, <4 x i32> zeroinitializer
%D = add <4 x i32> %C, <i32 0, i32 1, i32 50, i32 16>
%E = ashr <4 x i32> <i32 6, i32 2, i32 1, i32 -7>, %D
ret <4 x i32> %E
}
define <4 x i32> @lshr_C1_add_A_C2_v4i32_splat(i16 %I) {
; CHECK-LABEL: @lshr_C1_add_A_C2_v4i32_splat(
; CHECK-NEXT: [[A:%.*]] = zext i16 [[I:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = insertelement <4 x i32> poison, i32 [[A]], i64 0
; CHECK-NEXT: [[C:%.*]] = shufflevector <4 x i32> [[B]], <4 x i32> poison, <4 x i32> zeroinitializer
; CHECK-NEXT: [[E:%.*]] = lshr <4 x i32> <i32 6, i32 1, i32 poison, i32 65535>, [[C]]
; CHECK-NEXT: ret <4 x i32> [[E]]
;
%A = zext i16 %I to i32
%B = insertelement <4 x i32> undef, i32 %A, i32 0
%C = shufflevector <4 x i32> %B, <4 x i32> undef, <4 x i32> zeroinitializer
%D = add <4 x i32> %C, <i32 0, i32 1, i32 50, i32 16>
%E = lshr <4 x i32> <i32 6, i32 2, i32 1, i32 -7>, %D
ret <4 x i32> %E
}
define i32 @shl_add_nuw(i32 %x) {
; CHECK-LABEL: @shl_add_nuw(
; CHECK-NEXT: [[R:%.*]] = shl i32 192, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add nuw i32 %x, 5
%r = shl i32 6, %a
ret i32 %r
}
; vectors with arbitrary constants work too
define <2 x i12> @lshr_add_nuw(<2 x i12> %x) {
; CHECK-LABEL: @lshr_add_nuw(
; CHECK-NEXT: [[R:%.*]] = lshr <2 x i12> <i12 0, i12 21>, [[X:%.*]]
; CHECK-NEXT: ret <2 x i12> [[R]]
;
%a = add nuw <2 x i12> %x, <i12 5, i12 1>
%r = lshr <2 x i12> <i12 6, i12 42>, %a
ret <2 x i12> %r
}
; extra use is ok and in this case the result can be simplified to a constant
define i32 @ashr_add_nuw(i32 %x, ptr %p) {
; CHECK-LABEL: @ashr_add_nuw(
; CHECK-NEXT: [[A:%.*]] = add nuw i32 [[X:%.*]], 5
; CHECK-NEXT: store i32 [[A]], ptr [[P:%.*]], align 4
; CHECK-NEXT: ret i32 -1
;
%a = add nuw i32 %x, 5
store i32 %a, ptr %p
%r = ashr i32 -6, %a
ret i32 %r
}
; Preserve nuw and exact flags.
define i32 @shl_nuw_add_nuw(i32 %x) {
; CHECK-LABEL: @shl_nuw_add_nuw(
; CHECK-NEXT: [[R:%.*]] = shl nuw i32 2, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add nuw i32 %x, 1
%r = shl nuw i32 1, %a
ret i32 %r
}
define i32 @shl_nsw_add_nuw(i32 %x) {
; CHECK-LABEL: @shl_nsw_add_nuw(
; CHECK-NEXT: [[R:%.*]] = shl nsw i32 -2, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add nuw i32 %x, 1
%r = shl nsw i32 -1, %a
ret i32 %r
}
define i32 @lshr_exact_add_nuw(i32 %x) {
; CHECK-LABEL: @lshr_exact_add_nuw(
; CHECK-NEXT: [[R:%.*]] = lshr exact i32 2, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add nuw i32 %x, 1
%r = lshr exact i32 4, %a
ret i32 %r
}
define i32 @ashr_exact_add_nuw(i32 %x) {
; CHECK-LABEL: @ashr_exact_add_nuw(
; CHECK-NEXT: [[R:%.*]] = ashr exact i32 -2, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add nuw i32 %x, 1
%r = ashr exact i32 -4, %a
ret i32 %r
}
; negative test - must have 'nuw'
define i32 @shl_add_nsw(i32 %x) {
; CHECK-LABEL: @shl_add_nsw(
; CHECK-NEXT: [[A:%.*]] = add nsw i32 [[X:%.*]], 5
; CHECK-NEXT: [[R:%.*]] = shl i32 6, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add nsw i32 %x, 5
%r = shl i32 6, %a
ret i32 %r
}
; offset precondition check (must be negative constant) for lshr_exact_add_negative_shift_positive
define i32 @lshr_exact_add_positive_shift_positive(i32 %x) {
; CHECK-LABEL: @lshr_exact_add_positive_shift_positive(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], 1
; CHECK-NEXT: [[R:%.*]] = lshr exact i32 2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, 1
%r = lshr exact i32 2, %a
ret i32 %r
}
define i32 @lshr_exact_add_big_negative_offset(i32 %x) {
; CHECK-LABEL: @lshr_exact_add_big_negative_offset(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -33
; CHECK-NEXT: [[R:%.*]] = lshr exact i32 2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -33
%r = lshr exact i32 2, %a
ret i32 %r
}
; leading zeros for shifted constant precondition check for lshr_exact_add_negative_shift_positive
define i32 @lshr_exact_add_negative_shift_negative(i32 %x) {
; CHECK-LABEL: @lshr_exact_add_negative_shift_negative(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -1
; CHECK-NEXT: [[R:%.*]] = lshr exact i32 -2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -1
%r = lshr exact i32 -2, %a
ret i32 %r
}
; exact precondition check for lshr_exact_add_negative_shift_positive
define i32 @lshr_add_negative_shift_no_exact(i32 %x) {
; CHECK-LABEL: @lshr_add_negative_shift_no_exact(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -1
; CHECK-NEXT: [[R:%.*]] = lshr i32 2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -1
%r = lshr i32 2, %a
ret i32 %r
}
define i32 @lshr_exact_add_negative_shift_positive(i32 %x) {
; CHECK-LABEL: @lshr_exact_add_negative_shift_positive(
; CHECK-NEXT: [[R:%.*]] = lshr exact i32 4, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -1
%r = lshr exact i32 2, %a
ret i32 %r
}
define i8 @lshr_exact_add_negative_shift_positive_extra_use(i8 %x) {
; CHECK-LABEL: @lshr_exact_add_negative_shift_positive_extra_use(
; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -1
; CHECK-NEXT: call void @use(i8 [[A]])
; CHECK-NEXT: [[R:%.*]] = lshr exact i8 -128, [[X]]
; CHECK-NEXT: ret i8 [[R]]
;
%a = add i8 %x, -1
call void @use(i8 %a)
%r = lshr exact i8 64, %a
ret i8 %r
}
define <2 x i9> @lshr_exact_add_negative_shift_positive_vec(<2 x i9> %x) {
; CHECK-LABEL: @lshr_exact_add_negative_shift_positive_vec(
; CHECK-NEXT: [[R:%.*]] = lshr exact <2 x i9> <i9 -256, i9 -256>, [[X:%.*]]
; CHECK-NEXT: ret <2 x i9> [[R]]
;
%a = add <2 x i9> %x, <i9 -7, i9 -7>
%r = lshr exact <2 x i9> <i9 2, i9 2>, %a
ret <2 x i9> %r
}
; not enough leading zeros in shift constant
define <2 x i9> @lshr_exact_add_negative_shift_lzcnt(<2 x i9> %x) {
; CHECK-LABEL: @lshr_exact_add_negative_shift_lzcnt(
; CHECK-NEXT: [[A:%.*]] = add <2 x i9> [[X:%.*]], <i9 -7, i9 -7>
; CHECK-NEXT: [[R:%.*]] = lshr exact <2 x i9> <i9 4, i9 4>, [[A]]
; CHECK-NEXT: ret <2 x i9> [[R]]
;
%a = add <2 x i9> %x, <i9 -7, i9 -7>
%r = lshr exact <2 x i9> <i9 4, i9 4>, %a
ret <2 x i9> %r
}
; leading ones precondition check for ashr_exact_add_negative_shift_[positive,negative]
define i8 @ashr_exact_add_negative_shift_no_trailing_zeros(i8 %x) {
; CHECK-LABEL: @ashr_exact_add_negative_shift_no_trailing_zeros(
; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -4
; CHECK-NEXT: [[R:%.*]] = ashr exact i8 -112, [[A]]
; CHECK-NEXT: ret i8 [[R]]
;
%a = add i8 %x, -4
%r = ashr exact i8 -112, %a ; 0b1001_0000
ret i8 %r
}
define i32 @ashr_exact_add_big_negative_offset(i32 %x) {
; CHECK-LABEL: @ashr_exact_add_big_negative_offset(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -33
; CHECK-NEXT: [[R:%.*]] = ashr exact i32 -2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -33
%r = ashr exact i32 -2, %a
ret i32 %r
}
; exact precondition check for ashr_exact_add_negative_shift_[positive,negative]
define i32 @ashr_add_negative_shift_no_exact(i32 %x) {
; CHECK-LABEL: @ashr_add_negative_shift_no_exact(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -1
; CHECK-NEXT: [[R:%.*]] = ashr i32 -2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -1
%r = ashr i32 -2, %a
ret i32 %r
}
define i32 @ashr_exact_add_negative_shift_negative(i32 %x) {
; CHECK-LABEL: @ashr_exact_add_negative_shift_negative(
; CHECK-NEXT: [[R:%.*]] = ashr exact i32 -4, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -1
%r = ashr exact i32 -2, %a
ret i32 %r
}
define i8 @ashr_exact_add_negative_shift_negative_extra_use(i8 %x) {
; CHECK-LABEL: @ashr_exact_add_negative_shift_negative_extra_use(
; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -2
; CHECK-NEXT: call void @use(i8 [[A]])
; CHECK-NEXT: [[R:%.*]] = ashr exact i8 -128, [[X]]
; CHECK-NEXT: ret i8 [[R]]
;
%a = add i8 %x, -2
call void @use(i8 %a)
%r = ashr exact i8 -32, %a
ret i8 %r
}
define <2 x i7> @ashr_exact_add_negative_shift_negative_vec(<2 x i7> %x) {
; CHECK-LABEL: @ashr_exact_add_negative_shift_negative_vec(
; CHECK-NEXT: [[R:%.*]] = ashr exact <2 x i7> <i7 -64, i7 -64>, [[X:%.*]]
; CHECK-NEXT: ret <2 x i7> [[R]]
;
%a = add <2 x i7> %x, <i7 -5, i7 -5>
%r = ashr exact <2 x i7> <i7 -2, i7 -2>, %a
ret <2 x i7> %r
}
; not enough leading ones in shift constant
define <2 x i7> @ashr_exact_add_negative_leading_ones_vec(<2 x i7> %x) {
; CHECK-LABEL: @ashr_exact_add_negative_leading_ones_vec(
; CHECK-NEXT: [[A:%.*]] = add <2 x i7> [[X:%.*]], <i7 -5, i7 -5>
; CHECK-NEXT: [[R:%.*]] = ashr exact <2 x i7> <i7 -4, i7 -4>, [[A]]
; CHECK-NEXT: ret <2 x i7> [[R]]
;
%a = add <2 x i7> %x, <i7 -5, i7 -5>
%r = ashr exact <2 x i7> <i7 -4, i7 -4>, %a
ret <2 x i7> %r
}
; PR54890
define i32 @shl_nsw_add_negative(i32 %x) {
; CHECK-LABEL: @shl_nsw_add_negative(
; CHECK-NEXT: [[R:%.*]] = shl nuw i32 1, [[X:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -1
%r = shl nsw i32 2, %a
ret i32 %r
}
; vectors and extra uses are allowed
; nuw propagates to the new shift
define <2 x i8> @shl_nuw_add_negative_splat_uses(<2 x i8> %x, ptr %p) {
; CHECK-LABEL: @shl_nuw_add_negative_splat_uses(
; CHECK-NEXT: [[A:%.*]] = add <2 x i8> [[X:%.*]], <i8 -2, i8 -2>
; CHECK-NEXT: store <2 x i8> [[A]], ptr [[P:%.*]], align 2
; CHECK-NEXT: [[R:%.*]] = shl nuw <2 x i8> <i8 3, i8 3>, [[X]]
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%a = add <2 x i8> %x, <i8 -2, i8 -2>
store <2 x i8> %a, ptr %p
%r = shl nuw <2 x i8> <i8 12, i8 12>, %a
ret <2 x i8> %r
}
; negative test - shift constant must have enough trailing zeros to allow the pre-shift
define i32 @shl_nsw_add_negative_invalid_constant(i32 %x) {
; CHECK-LABEL: @shl_nsw_add_negative_invalid_constant(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -2
; CHECK-NEXT: [[R:%.*]] = shl nsw i32 2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -2
%r = shl nsw i32 2, %a
ret i32 %r
}
; negative test - the offset constant must be negative
define i32 @shl_nsw_add_positive_invalid_constant(i32 %x) {
; CHECK-LABEL: @shl_nsw_add_positive_invalid_constant(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], 2
; CHECK-NEXT: [[R:%.*]] = shl nsw i32 4, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, 2
%r = shl nsw i32 4, %a
ret i32 %r
}
; negative test - a large shift must be detected without crashing
define i32 @shl_nsw_add_negative_invalid_constant2(i32 %x) {
; CHECK-LABEL: @shl_nsw_add_negative_invalid_constant2(
; CHECK-NEXT: [[A:%.*]] = add i32 [[X:%.*]], -33
; CHECK-NEXT: [[R:%.*]] = shl nsw i32 2, [[A]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = add i32 %x, -33
%r = shl nsw i32 2, %a
ret i32 %r
}
; negative test - currently transformed to 'xor' before we see it,
; but INT_MIN should be handled too
define i4 @shl_nsw_add_negative_invalid_constant3(i4 %x) {
; CHECK-LABEL: @shl_nsw_add_negative_invalid_constant3(
; CHECK-NEXT: [[A:%.*]] = xor i4 [[X:%.*]], -8
; CHECK-NEXT: [[R:%.*]] = shl nsw i4 2, [[A]]
; CHECK-NEXT: ret i4 [[R]]
;
%a = add i4 %x, 8
%r = shl nsw i4 2, %a
ret i4 %r
}
define i2 @lshr_2_add_zext_basic(i1 %a, i1 %b) {
; CHECK-LABEL: @lshr_2_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = and i1 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[TMP1]] to i2
; CHECK-NEXT: ret i2 [[LSHR]]
;
%zext.a = zext i1 %a to i2
%zext.b = zext i1 %b to i2
%add = add i2 %zext.a, %zext.b
%lshr = lshr i2 %add, 1
ret i2 %lshr
}
define i2 @ashr_2_add_zext_basic(i1 %a, i1 %b) {
; CHECK-LABEL: @ashr_2_add_zext_basic(
; CHECK-NEXT: [[ZEXT_A:%.*]] = zext i1 [[A:%.*]] to i2
; CHECK-NEXT: [[ZEXT_B:%.*]] = zext i1 [[B:%.*]] to i2
; CHECK-NEXT: [[ADD:%.*]] = add nuw i2 [[ZEXT_A]], [[ZEXT_B]]
; CHECK-NEXT: [[LSHR:%.*]] = ashr i2 [[ADD]], 1
; CHECK-NEXT: ret i2 [[LSHR]]
;
%zext.a = zext i1 %a to i2
%zext.b = zext i1 %b to i2
%add = add i2 %zext.a, %zext.b
%lshr = ashr i2 %add, 1
ret i2 %lshr
}
define i32 @lshr_16_add_zext_basic(i16 %a, i16 %b) {
; CHECK-LABEL: @lshr_16_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = xor i16 [[A:%.*]], -1
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ugt i16 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i32
; CHECK-NEXT: ret i32 [[LSHR]]
;
%zext.a = zext i16 %a to i32
%zext.b = zext i16 %b to i32
%add = add i32 %zext.a, %zext.b
%lshr = lshr i32 %add, 16
ret i32 %lshr
}
define i32 @lshr_16_add_zext_basic_multiuse(i16 %a, i16 %b) {
; CHECK-LABEL: @lshr_16_add_zext_basic_multiuse(
; CHECK-NEXT: [[ZEXT_A:%.*]] = zext i16 [[A:%.*]] to i32
; CHECK-NEXT: [[ZEXT_B:%.*]] = zext i16 [[B:%.*]] to i32
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i32 [[ZEXT_A]], [[ZEXT_B]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[ADD]], 16
; CHECK-NEXT: [[OTHERUSE:%.*]] = or i32 [[LSHR]], [[ZEXT_A]]
; CHECK-NEXT: ret i32 [[OTHERUSE]]
;
%zext.a = zext i16 %a to i32
%zext.b = zext i16 %b to i32
%add = add i32 %zext.a, %zext.b
%lshr = lshr i32 %add, 16
%otheruse = or i32 %lshr, %zext.a
ret i32 %otheruse
}
define i32 @lshr_16_add_known_16_leading_zeroes(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_16_add_known_16_leading_zeroes(
; CHECK-NEXT: [[A16:%.*]] = and i32 [[A:%.*]], 65535
; CHECK-NEXT: [[B16:%.*]] = and i32 [[B:%.*]], 65535
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i32 [[A16]], [[B16]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[ADD]], 16
; CHECK-NEXT: ret i32 [[LSHR]]
;
%a16 = and i32 %a, 65535 ; 0x65535
%b16 = and i32 %b, 65535 ; 0x65535
%add = add i32 %a16, %b16
%lshr = lshr i32 %add, 16
ret i32 %lshr
}
define i32 @lshr_16_add_not_known_16_leading_zeroes(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_16_add_not_known_16_leading_zeroes(
; CHECK-NEXT: [[A16:%.*]] = and i32 [[A:%.*]], 131071
; CHECK-NEXT: [[B16:%.*]] = and i32 [[B:%.*]], 65535
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i32 [[A16]], [[B16]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[ADD]], 16
; CHECK-NEXT: ret i32 [[LSHR]]
;
%a16 = and i32 %a, 131071 ; 0x1FFFF
%b16 = and i32 %b, 65535 ; 0x65535
%add = add i32 %a16, %b16
%lshr = lshr i32 %add, 16
ret i32 %lshr
}
define i64 @lshr_32_add_zext_basic(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_32_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ugt i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i64
; CHECK-NEXT: ret i64 [[LSHR]]
;
%zext.a = zext i32 %a to i64
%zext.b = zext i32 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = lshr i64 %add, 32
ret i64 %lshr
}
define i64 @lshr_32_add_zext_basic_multiuse(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_32_add_zext_basic_multiuse(
; CHECK-NEXT: [[ZEXT_A:%.*]] = zext i32 [[A:%.*]] to i64
; CHECK-NEXT: [[ZEXT_B:%.*]] = zext i32 [[B:%.*]] to i64
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i64 [[ZEXT_A]], [[ZEXT_B]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i64 [[ADD]], 32
; CHECK-NEXT: [[OTHERUSE:%.*]] = or i64 [[LSHR]], [[ZEXT_B]]
; CHECK-NEXT: ret i64 [[OTHERUSE]]
;
%zext.a = zext i32 %a to i64
%zext.b = zext i32 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = lshr i64 %add, 32
%otheruse = or i64 %lshr, %zext.b
ret i64 %otheruse
}
define i64 @lshr_31_i32_add_zext_basic(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_31_i32_add_zext_basic(
; CHECK-NEXT: [[ZEXT_A:%.*]] = zext i32 [[A:%.*]] to i64
; CHECK-NEXT: [[ZEXT_B:%.*]] = zext i32 [[B:%.*]] to i64
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i64 [[ZEXT_A]], [[ZEXT_B]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i64 [[ADD]], 31
; CHECK-NEXT: ret i64 [[LSHR]]
;
%zext.a = zext i32 %a to i64
%zext.b = zext i32 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = lshr i64 %add, 31
ret i64 %lshr
}
define i64 @lshr_33_i32_add_zext_basic(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_33_i32_add_zext_basic(
; CHECK-NEXT: ret i64 0
;
%zext.a = zext i32 %a to i64
%zext.b = zext i32 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = lshr i64 %add, 33
ret i64 %lshr
}
define i64 @lshr_16_to_64_add_zext_basic(i16 %a, i16 %b) {
; CHECK-LABEL: @lshr_16_to_64_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = xor i16 [[A:%.*]], -1
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ugt i16 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i64
; CHECK-NEXT: ret i64 [[LSHR]]
;
%zext.a = zext i16 %a to i64
%zext.b = zext i16 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = lshr i64 %add, 16
ret i64 %lshr
}
define i64 @lshr_32_add_known_32_leading_zeroes(i64 %a, i64 %b) {
; CHECK-LABEL: @lshr_32_add_known_32_leading_zeroes(
; CHECK-NEXT: [[A32:%.*]] = and i64 [[A:%.*]], 4294967295
; CHECK-NEXT: [[B32:%.*]] = and i64 [[B:%.*]], 4294967295
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i64 [[A32]], [[B32]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i64 [[ADD]], 32
; CHECK-NEXT: ret i64 [[LSHR]]
;
%a32 = and i64 %a, 4294967295 ; 0xFFFFFFFF
%b32 = and i64 %b, 4294967295 ; 0xFFFFFFFF
%add = add i64 %a32, %b32
%lshr = lshr i64 %add, 32
ret i64 %lshr
}
define i64 @lshr_32_add_not_known_32_leading_zeroes(i64 %a, i64 %b) {
;
; CHECK-LABEL: @lshr_32_add_not_known_32_leading_zeroes(
; CHECK-NEXT: [[A32:%.*]] = and i64 [[A:%.*]], 8589934591
; CHECK-NEXT: [[B32:%.*]] = and i64 [[B:%.*]], 4294967295
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i64 [[A32]], [[B32]]
; CHECK-NEXT: [[LSHR:%.*]] = lshr i64 [[ADD]], 32
; CHECK-NEXT: ret i64 [[LSHR]]
;
%a32 = and i64 %a, 8589934591 ; 0x1FFFFFFFF
%b32 = and i64 %b, 4294967295 ; 0xFFFFFFFF
%add = add i64 %a32, %b32
%lshr = lshr i64 %add, 32
ret i64 %lshr
}
define i32 @ashr_16_add_zext_basic(i16 %a, i16 %b) {
; CHECK-LABEL: @ashr_16_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = xor i16 [[A:%.*]], -1
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ugt i16 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i32
; CHECK-NEXT: ret i32 [[LSHR]]
;
%zext.a = zext i16 %a to i32
%zext.b = zext i16 %b to i32
%add = add i32 %zext.a, %zext.b
%lshr = lshr i32 %add, 16
ret i32 %lshr
}
define i64 @ashr_32_add_zext_basic(i32 %a, i32 %b) {
; CHECK-LABEL: @ashr_32_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ugt i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i64
; CHECK-NEXT: ret i64 [[LSHR]]
;
%zext.a = zext i32 %a to i64
%zext.b = zext i32 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = ashr i64 %add, 32
ret i64 %lshr
}
define i64 @ashr_16_to_64_add_zext_basic(i16 %a, i16 %b) {
; CHECK-LABEL: @ashr_16_to_64_add_zext_basic(
; CHECK-NEXT: [[TMP1:%.*]] = xor i16 [[A:%.*]], -1
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ugt i16 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[LSHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i64
; CHECK-NEXT: ret i64 [[LSHR]]
;
%zext.a = zext i16 %a to i64
%zext.b = zext i16 %b to i64
%add = add i64 %zext.a, %zext.b
%lshr = ashr i64 %add, 16
ret i64 %lshr
}
define i32 @lshr_32_add_zext_trunc(i32 %a, i32 %b) {
; CHECK-LABEL: @lshr_32_add_zext_trunc(
; CHECK-NEXT: [[ADD_NARROWED:%.*]] = add i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ult i32 [[ADD_NARROWED]], [[A]]
; CHECK-NEXT: [[TRUNC_SHR:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i32
; CHECK-NEXT: [[RET:%.*]] = add i32 [[ADD_NARROWED]], [[TRUNC_SHR]]
; CHECK-NEXT: ret i32 [[RET]]
;
%zext.a = zext i32 %a to i64
%zext.b = zext i32 %b to i64
%add = add i64 %zext.a, %zext.b
%trunc.add = trunc i64 %add to i32
%shr = lshr i64 %add, 32
%trunc.shr = trunc i64 %shr to i32
%ret = add i32 %trunc.add, %trunc.shr
ret i32 %ret
}
define <3 x i32> @add3_i96(<3 x i32> %0, <3 x i32> %1) {
; CHECK-LABEL: @add3_i96(
; CHECK-NEXT: [[TMP3:%.*]] = extractelement <3 x i32> [[TMP0:%.*]], i64 0
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <3 x i32> [[TMP1:%.*]], i64 0
; CHECK-NEXT: [[ADD_NARROWED:%.*]] = add i32 [[TMP4]], [[TMP3]]
; CHECK-NEXT: [[ADD_NARROWED_OVERFLOW:%.*]] = icmp ult i32 [[ADD_NARROWED]], [[TMP4]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <3 x i32> [[TMP0]], i64 1
; CHECK-NEXT: [[TMP6:%.*]] = zext i32 [[TMP5]] to i64
; CHECK-NEXT: [[TMP7:%.*]] = extractelement <3 x i32> [[TMP1]], i64 1
; CHECK-NEXT: [[TMP8:%.*]] = zext i32 [[TMP7]] to i64
; CHECK-NEXT: [[TMP9:%.*]] = add nuw nsw i64 [[TMP8]], [[TMP6]]
; CHECK-NEXT: [[TMP10:%.*]] = zext i1 [[ADD_NARROWED_OVERFLOW]] to i64
; CHECK-NEXT: [[TMP11:%.*]] = add nuw nsw i64 [[TMP9]], [[TMP10]]
; CHECK-NEXT: [[TMP12:%.*]] = extractelement <3 x i32> [[TMP0]], i64 2
; CHECK-NEXT: [[TMP13:%.*]] = extractelement <3 x i32> [[TMP1]], i64 2
; CHECK-NEXT: [[TMP14:%.*]] = add i32 [[TMP13]], [[TMP12]]
; CHECK-NEXT: [[TMP15:%.*]] = lshr i64 [[TMP11]], 32
; CHECK-NEXT: [[TMP16:%.*]] = trunc nuw nsw i64 [[TMP15]] to i32
; CHECK-NEXT: [[TMP17:%.*]] = add i32 [[TMP14]], [[TMP16]]
; CHECK-NEXT: [[TMP18:%.*]] = insertelement <3 x i32> poison, i32 [[ADD_NARROWED]], i64 0
; CHECK-NEXT: [[TMP19:%.*]] = trunc i64 [[TMP11]] to i32
; CHECK-NEXT: [[TMP20:%.*]] = insertelement <3 x i32> [[TMP18]], i32 [[TMP19]], i64 1
; CHECK-NEXT: [[TMP21:%.*]] = insertelement <3 x i32> [[TMP20]], i32 [[TMP17]], i64 2
; CHECK-NEXT: ret <3 x i32> [[TMP21]]
;
%3 = extractelement <3 x i32> %0, i64 0
%4 = zext i32 %3 to i64
%5 = extractelement <3 x i32> %1, i64 0
%6 = zext i32 %5 to i64
%7 = add nuw nsw i64 %6, %4
%8 = extractelement <3 x i32> %0, i64 1
%9 = zext i32 %8 to i64
%10 = extractelement <3 x i32> %1, i64 1
%11 = zext i32 %10 to i64
%12 = add nuw nsw i64 %11, %9
%13 = lshr i64 %7, 32
%14 = add nuw nsw i64 %12, %13
%15 = extractelement <3 x i32> %0, i64 2
%16 = extractelement <3 x i32> %1, i64 2
%17 = add i32 %16, %15
%18 = lshr i64 %14, 32
%19 = trunc i64 %18 to i32
%20 = add i32 %17, %19
%21 = trunc i64 %7 to i32
%22 = insertelement <3 x i32> undef, i32 %21, i32 0
%23 = trunc i64 %14 to i32
%24 = insertelement <3 x i32> %22, i32 %23, i32 1
%25 = insertelement <3 x i32> %24, i32 %20, i32 2
ret <3 x i32> %25
}
define i8 @shl_fold_or_disjoint_cnt(i8 %x) {
; CHECK-LABEL: @shl_fold_or_disjoint_cnt(
; CHECK-NEXT: [[R:%.*]] = shl i8 16, [[X:%.*]]
; CHECK-NEXT: ret i8 [[R]]
;
%a = or disjoint i8 %x, 3
%r = shl i8 2, %a
ret i8 %r
}
define <2 x i8> @ashr_fold_or_disjoint_cnt(<2 x i8> %x) {
; CHECK-LABEL: @ashr_fold_or_disjoint_cnt(
; CHECK-NEXT: [[R:%.*]] = lshr <2 x i8> <i8 0, i8 1>, [[X:%.*]]
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%a = or disjoint <2 x i8> %x, <i8 3, i8 1>
%r = ashr <2 x i8> <i8 2, i8 3>, %a
ret <2 x i8> %r
}
define <2 x i8> @lshr_fold_or_disjoint_cnt_out_of_bounds(<2 x i8> %x) {
; CHECK-LABEL: @lshr_fold_or_disjoint_cnt_out_of_bounds(
; CHECK-NEXT: ret <2 x i8> zeroinitializer
;
%a = or disjoint <2 x i8> %x, <i8 3, i8 8>
%r = lshr <2 x i8> <i8 2, i8 3>, %a
ret <2 x i8> %r
}