; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -mtriple=x86_64-unknown-linux-gnu < %s -passes=instcombine -S | FileCheck %s
; Make sure libcalls are replaced with intrinsic calls.
declare float @llvm.fabs.f32(float)
declare <2 x float> @llvm.fabs.v2f32(<2 x float>)
declare double @llvm.fabs.f64(double)
declare fp128 @llvm.fabs.f128(fp128)
declare float @fabsf(float)
declare double @fabs(double)
declare fp128 @fabsl(fp128)
declare float @llvm.fma.f32(float, float, float)
declare float @llvm.fmuladd.f32(float, float, float)
declare void @use(float)
declare void @usebool(i1)
define float @replace_fabs_call_f32(float %x) {
; CHECK-LABEL: @replace_fabs_call_f32(
; CHECK-NEXT: [[FABSF:%.*]] = tail call float @llvm.fabs.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[FABSF]]
;
%fabsf = tail call float @fabsf(float %x)
ret float %fabsf
}
define double @replace_fabs_call_f64(double %x) {
; CHECK-LABEL: @replace_fabs_call_f64(
; CHECK-NEXT: [[FABS:%.*]] = tail call double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%fabs = tail call double @fabs(double %x)
ret double %fabs
}
define fp128 @replace_fabs_call_f128(fp128 %x) {
; CHECK-LABEL: @replace_fabs_call_f128(
; CHECK-NEXT: [[FABSL:%.*]] = tail call fp128 @llvm.fabs.f128(fp128 [[X:%.*]])
; CHECK-NEXT: ret fp128 [[FABSL]]
;
%fabsl = tail call fp128 @fabsl(fp128 %x)
ret fp128 %fabsl
}
; Make sure fast math flags are preserved when replacing the libcall.
define float @fmf_replace_fabs_call_f32(float %x) {
; CHECK-LABEL: @fmf_replace_fabs_call_f32(
; CHECK-NEXT: [[FABSF:%.*]] = tail call nnan float @llvm.fabs.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[FABSF]]
;
%fabsf = tail call nnan float @fabsf(float %x)
ret float %fabsf
}
; Make sure all intrinsic calls are eliminated when the input is known
; positive.
; The fabs cannot be eliminated because %x may be a NaN
define float @square_fabs_intrinsic_f32(float %x) {
; CHECK-LABEL: @square_fabs_intrinsic_f32(
; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[X]]
; CHECK-NEXT: [[FABSF:%.*]] = tail call float @llvm.fabs.f32(float [[MUL]])
; CHECK-NEXT: ret float [[FABSF]]
;
%mul = fmul float %x, %x
%fabsf = tail call float @llvm.fabs.f32(float %mul)
ret float %fabsf
}
define double @square_fabs_intrinsic_f64(double %x) {
; CHECK-LABEL: @square_fabs_intrinsic_f64(
; CHECK-NEXT: [[MUL:%.*]] = fmul double [[X:%.*]], [[X]]
; CHECK-NEXT: [[FABS:%.*]] = tail call double @llvm.fabs.f64(double [[MUL]])
; CHECK-NEXT: ret double [[FABS]]
;
%mul = fmul double %x, %x
%fabs = tail call double @llvm.fabs.f64(double %mul)
ret double %fabs
}
define fp128 @square_fabs_intrinsic_f128(fp128 %x) {
; CHECK-LABEL: @square_fabs_intrinsic_f128(
; CHECK-NEXT: [[MUL:%.*]] = fmul fp128 [[X:%.*]], [[X]]
; CHECK-NEXT: [[FABSL:%.*]] = tail call fp128 @llvm.fabs.f128(fp128 [[MUL]])
; CHECK-NEXT: ret fp128 [[FABSL]]
;
%mul = fmul fp128 %x, %x
%fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul)
ret fp128 %fabsl
}
define float @square_nnan_fabs_intrinsic_f32(float %x) {
; CHECK-LABEL: @square_nnan_fabs_intrinsic_f32(
; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], [[X]]
; CHECK-NEXT: ret float [[MUL]]
;
%mul = fmul nnan float %x, %x
%fabsf = call float @llvm.fabs.f32(float %mul)
ret float %fabsf
}
; Shrinking a library call to a smaller type should not be inhibited by nor inhibit the square optimization.
define float @square_fabs_shrink_call1(float %x) {
; CHECK-LABEL: @square_fabs_shrink_call1(
; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[X]]
; CHECK-NEXT: [[TRUNC:%.*]] = call float @llvm.fabs.f32(float [[TMP1]])
; CHECK-NEXT: ret float [[TRUNC]]
;
%ext = fpext float %x to double
%sq = fmul double %ext, %ext
%fabs = call double @fabs(double %sq)
%trunc = fptrunc double %fabs to float
ret float %trunc
}
define float @square_fabs_shrink_call2(float %x) {
; CHECK-LABEL: @square_fabs_shrink_call2(
; CHECK-NEXT: [[SQ:%.*]] = fmul float [[X:%.*]], [[X]]
; CHECK-NEXT: [[TMP1:%.*]] = call float @llvm.fabs.f32(float [[SQ]])
; CHECK-NEXT: ret float [[TMP1]]
;
%sq = fmul float %x, %x
%ext = fpext float %sq to double
%fabs = call double @fabs(double %ext)
%trunc = fptrunc double %fabs to float
ret float %trunc
}
define float @fabs_select_constant_negative_positive(i32 %c) {
; CHECK-LABEL: @fabs_select_constant_negative_positive(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0
; CHECK-NEXT: [[FABS:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00
; CHECK-NEXT: ret float [[FABS]]
;
%cmp = icmp eq i32 %c, 0
%select = select i1 %cmp, float -1.0, float 2.0
%fabs = call float @llvm.fabs.f32(float %select)
ret float %fabs
}
define float @fabs_select_constant_positive_negative(i32 %c) {
; CHECK-LABEL: @fabs_select_constant_positive_negative(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0
; CHECK-NEXT: [[FABS:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00
; CHECK-NEXT: ret float [[FABS]]
;
%cmp = icmp eq i32 %c, 0
%select = select i1 %cmp, float 1.0, float -2.0
%fabs = call float @llvm.fabs.f32(float %select)
ret float %fabs
}
define float @fabs_select_constant_negative_negative(i32 %c) {
; CHECK-LABEL: @fabs_select_constant_negative_negative(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0
; CHECK-NEXT: [[FABS:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00
; CHECK-NEXT: ret float [[FABS]]
;
%cmp = icmp eq i32 %c, 0
%select = select i1 %cmp, float -1.0, float -2.0
%fabs = call float @llvm.fabs.f32(float %select)
ret float %fabs
}
define float @fabs_select_constant_neg0(i32 %c) {
; CHECK-LABEL: @fabs_select_constant_neg0(
; CHECK-NEXT: ret float 0.000000e+00
;
%cmp = icmp eq i32 %c, 0
%select = select i1 %cmp, float -0.0, float 0.0
%fabs = call float @llvm.fabs.f32(float %select)
ret float %fabs
}
define float @fabs_select_var_constant_negative(i32 %c, float %x) {
; CHECK-LABEL: @fabs_select_var_constant_negative(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0
; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT:%.*]])
; CHECK-NEXT: [[FABS1:%.*]] = select i1 [[CMP]], float [[FABS]], float 1.000000e+00
; CHECK-NEXT: ret float [[FABS1]]
;
%cmp = icmp eq i32 %c, 0
%select = select i1 %cmp, float %x, float -1.0
%fabs = call float @llvm.fabs.f32(float %select)
ret float %fabs
}
; The fabs cannot be eliminated because %x may be a NaN
define float @square_fma_fabs_intrinsic_f32(float %x) {
; CHECK-LABEL: @square_fma_fabs_intrinsic_f32(
; CHECK-NEXT: [[FMA:%.*]] = call float @llvm.fma.f32(float [[X:%.*]], float [[X]], float 1.000000e+00)
; CHECK-NEXT: [[FABSF:%.*]] = call float @llvm.fabs.f32(float [[FMA]])
; CHECK-NEXT: ret float [[FABSF]]
;
%fma = call float @llvm.fma.f32(float %x, float %x, float 1.0)
%fabsf = call float @llvm.fabs.f32(float %fma)
ret float %fabsf
}
; The fabs cannot be eliminated because %x may be a NaN
define float @square_nnan_fma_fabs_intrinsic_f32(float %x) {
; CHECK-LABEL: @square_nnan_fma_fabs_intrinsic_f32(
; CHECK-NEXT: [[FMA:%.*]] = call nnan float @llvm.fma.f32(float [[X:%.*]], float [[X]], float 1.000000e+00)
; CHECK-NEXT: ret float [[FMA]]
;
%fma = call nnan float @llvm.fma.f32(float %x, float %x, float 1.0)
%fabsf = call float @llvm.fabs.f32(float %fma)
ret float %fabsf
}
define float @square_fmuladd_fabs_intrinsic_f32(float %x) {
; CHECK-LABEL: @square_fmuladd_fabs_intrinsic_f32(
; CHECK-NEXT: [[FMULADD:%.*]] = call float @llvm.fmuladd.f32(float [[X:%.*]], float [[X]], float 1.000000e+00)
; CHECK-NEXT: [[FABSF:%.*]] = call float @llvm.fabs.f32(float [[FMULADD]])
; CHECK-NEXT: ret float [[FABSF]]
;
%fmuladd = call float @llvm.fmuladd.f32(float %x, float %x, float 1.0)
%fabsf = call float @llvm.fabs.f32(float %fmuladd)
ret float %fabsf
}
define float @square_nnan_fmuladd_fabs_intrinsic_f32(float %x) {
; CHECK-LABEL: @square_nnan_fmuladd_fabs_intrinsic_f32(
; CHECK-NEXT: [[FMULADD:%.*]] = call nnan float @llvm.fmuladd.f32(float [[X:%.*]], float [[X]], float 1.000000e+00)
; CHECK-NEXT: ret float [[FMULADD]]
;
%fmuladd = call nnan float @llvm.fmuladd.f32(float %x, float %x, float 1.0)
%fabsf = call float @llvm.fabs.f32(float %fmuladd)
ret float %fabsf
}
; Don't introduce a second fpext
define double @multi_use_fabs_fpext(float %x) {
; CHECK-LABEL: @multi_use_fabs_fpext(
; CHECK-NEXT: [[FPEXT:%.*]] = fpext float [[X:%.*]] to double
; CHECK-NEXT: [[FABS:%.*]] = call double @llvm.fabs.f64(double [[FPEXT]])
; CHECK-NEXT: store volatile double [[FPEXT]], ptr undef, align 8
; CHECK-NEXT: ret double [[FABS]]
;
%fpext = fpext float %x to double
%fabs = call double @llvm.fabs.f64(double %fpext)
store volatile double %fpext, ptr undef
ret double %fabs
}
; X <= 0.0 ? (0.0 - X) : X --> fabs(X)
define double @select_fcmp_ole_zero(double %x) {
; CHECK-LABEL: @select_fcmp_ole_zero(
; CHECK-NEXT: [[FABS:%.*]] = call double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ole double %x, 0.0
%negx = fsub double 0.0, %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
define double @select_fcmp_nnan_ole_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_ole_zero(
; CHECK-NEXT: [[FABS:%.*]] = call double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ole double %x, 0.0
%negx = fsub nnan double 0.0, %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
define double @select_nnan_fcmp_nnan_ole_zero(double %x) {
; CHECK-LABEL: @select_nnan_fcmp_nnan_ole_zero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ole double %x, 0.0
%negx = fsub nnan double 0.0, %x
%fabs = select nnan i1 %lezero, double %negx, double %x
ret double %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define double @select_fcmp_nnan_ule_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_ule_zero(
; CHECK-NEXT: [[FABS:%.*]] = call double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ule double %x, 0.0
%negx = fsub nnan double 0.0, %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
; Negative test - wrong predicate.
define double @select_fcmp_nnan_olt_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_olt_zero(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fsub nnan double 0.000000e+00, [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select i1 [[LEZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp olt double %x, 0.0
%negx = fsub nnan double 0.0, %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
; X <= -0.0 ? (0.0 - X) : X --> fabs(X)
define <2 x float> @select_fcmp_nnan_ole_negzero(<2 x float> %x) {
; CHECK-LABEL: @select_fcmp_nnan_ole_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]])
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%lezero = fcmp ole <2 x float> %x, <float -0.0, float -0.0>
%negx = fsub nnan <2 x float> <float 0.0, float poison>, %x
%fabs = select <2 x i1> %lezero, <2 x float> %negx, <2 x float> %x
ret <2 x float> %fabs
}
define <2 x float> @select_nnan_fcmp_nnan_ole_negzero(<2 x float> %x) {
; CHECK-LABEL: @select_nnan_fcmp_nnan_ole_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]])
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%lezero = fcmp ole <2 x float> %x, <float -0.0, float -0.0>
%negx = fsub nnan <2 x float> <float 0.0, float poison>, %x
%fabs = select nnan <2 x i1> %lezero, <2 x float> %negx, <2 x float> %x
ret <2 x float> %fabs
}
; X > 0.0 ? X : (0.0 - X) --> fabs(X)
define fp128 @select_fcmp_ogt_zero(fp128 %x) {
; CHECK-LABEL: @select_fcmp_ogt_zero(
; CHECK-NEXT: [[FABS:%.*]] = call fp128 @llvm.fabs.f128(fp128 [[X:%.*]])
; CHECK-NEXT: ret fp128 [[FABS]]
;
%gtzero = fcmp ogt fp128 %x, zeroinitializer
%negx = fsub fp128 zeroinitializer, %x
%fabs = select i1 %gtzero, fp128 %x, fp128 %negx
ret fp128 %fabs
}
; This is not fabs because that could produce a different signbit for a NAN input.
; PR59279
define float @select_nsz_fcmp_ogt_fneg(float %a) {
; CHECK-LABEL: @select_nsz_fcmp_ogt_fneg(
; CHECK-NEXT: [[FNEG:%.*]] = fneg float [[A:%.*]]
; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt float [[A]], 0.000000e+00
; CHECK-NEXT: [[R:%.*]] = select nsz i1 [[CMP]], float [[A]], float [[FNEG]]
; CHECK-NEXT: ret float [[R]]
;
%fneg = fneg float %a
%cmp = fcmp ogt float %a, %fneg
%r = select nsz i1 %cmp, float %a, float %fneg
ret float %r
}
define float @select_nsz_nnan_fcmp_ogt_fneg(float %a) {
; CHECK-LABEL: @select_nsz_nnan_fcmp_ogt_fneg(
; CHECK-NEXT: [[R:%.*]] = call nnan nsz float @llvm.fabs.f32(float [[A:%.*]])
; CHECK-NEXT: ret float [[R]]
;
%fneg = fneg float %a
%cmp = fcmp ogt float %a, %fneg
%r = select nsz nnan i1 %cmp, float %a, float %fneg
ret float %r
}
define fp128 @select_fcmp_nnan_ogt_zero(fp128 %x) {
; CHECK-LABEL: @select_fcmp_nnan_ogt_zero(
; CHECK-NEXT: [[FABS:%.*]] = call fp128 @llvm.fabs.f128(fp128 [[X:%.*]])
; CHECK-NEXT: ret fp128 [[FABS]]
;
%gtzero = fcmp ogt fp128 %x, zeroinitializer
%negx = fsub nnan fp128 zeroinitializer, %x
%fabs = select i1 %gtzero, fp128 %x, fp128 %negx
ret fp128 %fabs
}
define fp128 @select_nnan_fcmp_nnan_ogt_zero(fp128 %x) {
; CHECK-LABEL: @select_nnan_fcmp_nnan_ogt_zero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan fp128 @llvm.fabs.f128(fp128 [[X:%.*]])
; CHECK-NEXT: ret fp128 [[FABS]]
;
%gtzero = fcmp ogt fp128 %x, zeroinitializer
%negx = fsub nnan fp128 zeroinitializer, %x
%fabs = select nnan i1 %gtzero, fp128 %x, fp128 %negx
ret fp128 %fabs
}
; X > -0.0 ? X : (0.0 - X) --> fabs(X)
define half @select_fcmp_nnan_ogt_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_ogt_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call half @llvm.fabs.f16(half [[X:%.*]])
; CHECK-NEXT: ret half [[FABS]]
;
%gtzero = fcmp ogt half %x, -0.0
%negx = fsub nnan half 0.0, %x
%fabs = select i1 %gtzero, half %x, half %negx
ret half %fabs
}
define half @select_nnan_fcmp_nnan_ogt_negzero(half %x) {
; CHECK-LABEL: @select_nnan_fcmp_nnan_ogt_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan half @llvm.fabs.f16(half [[X:%.*]])
; CHECK-NEXT: ret half [[FABS]]
;
%gtzero = fcmp ogt half %x, -0.0
%negx = fsub nnan half 0.0, %x
%fabs = select nnan i1 %gtzero, half %x, half %negx
ret half %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define half @select_fcmp_nnan_ugt_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_ugt_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call half @llvm.fabs.f16(half [[X:%.*]])
; CHECK-NEXT: ret half [[FABS]]
;
%gtzero = fcmp ugt half %x, -0.0
%negx = fsub nnan half 0.0, %x
%fabs = select i1 %gtzero, half %x, half %negx
ret half %fabs
}
; Negative test - wrong predicate.
define half @select_fcmp_nnan_oge_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_oge_negzero(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp oge half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fsub nnan half 0xH0000, [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select i1 [[GTZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gtzero = fcmp oge half %x, -0.0
%negx = fsub nnan half 0.0, %x
%fabs = select i1 %gtzero, half %x, half %negx
ret half %fabs
}
; This is not fabs because that could produce a different signbit for a NAN input.
; PR59279
define double @select_nsz_fcmp_olt_zero_unary_fneg(double %x) {
; CHECK-LABEL: @select_nsz_fcmp_olt_zero_unary_fneg(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nsz i1 [[LTZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp olt double %x, 0.0
%negx = fneg double %x
%fabs = select nsz i1 %ltzero, double %negx, double %x
ret double %fabs
}
; X < 0.0 ? -X : X --> fabs(X)
define double @select_nsz_nnan_fcmp_olt_zero_unary_fneg(double %x) {
; CHECK-LABEL: @select_nsz_nnan_fcmp_olt_zero_unary_fneg(
; CHECK-NEXT: [[FABS:%.*]] = call nnan nsz double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp olt double %x, 0.0
%negx = fneg double %x
%fabs = select nsz nnan i1 %ltzero, double %negx, double %x
ret double %fabs
}
define double @select_fcmp_nnan_nsz_olt_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_zero(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LTZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp olt double %x, 0.0
%negx = fsub nnan nsz double -0.0, %x
%fabs = select i1 %ltzero, double %negx, double %x
ret double %fabs
}
define double @select_nnan_nsz_fcmp_nnan_nsz_olt_zero(double %x) {
; CHECK-LABEL: @select_nnan_nsz_fcmp_nnan_nsz_olt_zero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan nsz double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp olt double %x, 0.0
%negx = fsub nnan nsz double -0.0, %x
%fabs = select nnan nsz i1 %ltzero, double %negx, double %x
ret double %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define double @select_fcmp_nnan_nsz_ult_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_zero(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LTZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp ult double %x, 0.0
%negx = fsub nnan nsz double -0.0, %x
%fabs = select i1 %ltzero, double %negx, double %x
ret double %fabs
}
define double @select_fcmp_nnan_nsz_olt_zero_unary_fneg(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_zero_unary_fneg(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LTZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp olt double %x, 0.0
%negx = fneg nnan nsz double %x
%fabs = select i1 %ltzero, double %negx, double %x
ret double %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define double @select_fcmp_nnan_nsz_ult_zero_unary_fneg(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_zero_unary_fneg(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LTZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%ltzero = fcmp ult double %x, 0.0
%negx = fneg nnan nsz double %x
%fabs = select i1 %ltzero, double %negx, double %x
ret double %fabs
}
; X < -0.0 ? -X : X --> fabs(X)
define float @select_fcmp_nnan_nsz_olt_negzero(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_negzero(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LTZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%ltzero = fcmp olt float %x, -0.0
%negx = fsub nnan ninf nsz float -0.0, %x
%fabs = select i1 %ltzero, float %negx, float %x
ret float %fabs
}
define float @select_nnan_ninf_nsz_fcmp_nnan_nsz_olt_negzero(float %x) {
; CHECK-LABEL: @select_nnan_ninf_nsz_fcmp_nnan_nsz_olt_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan ninf nsz float @llvm.fabs.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[FABS]]
;
%ltzero = fcmp olt float %x, -0.0
%negx = fsub nnan nsz float -0.0, %x
%fabs = select nnan ninf nsz i1 %ltzero, float %negx, float %x
ret float %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define float @select_fcmp_nnan_nsz_ult_negzero(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_negzero(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LTZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%ltzero = fcmp ult float %x, -0.0
%negx = fsub nnan ninf nsz float -0.0, %x
%fabs = select i1 %ltzero, float %negx, float %x
ret float %fabs
}
define float @select_fcmp_nnan_nsz_olt_negzero_unary_fneg(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_olt_negzero_unary_fneg(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp olt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LTZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%ltzero = fcmp olt float %x, -0.0
%negx = fneg nnan ninf nsz float %x
%fabs = select i1 %ltzero, float %negx, float %x
ret float %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define float @select_fcmp_nnan_nsz_ult_negzero_unary_fneg(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ult_negzero_unary_fneg(
; CHECK-NEXT: [[LTZERO:%.*]] = fcmp ult float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan ninf nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LTZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%ltzero = fcmp ult float %x, -0.0
%negx = fneg nnan ninf nsz float %x
%fabs = select i1 %ltzero, float %negx, float %x
ret float %fabs
}
; X <= 0.0 ? -X : X --> fabs(X)
define double @select_fcmp_nnan_nsz_ole_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_zero(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LEZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ole double %x, 0.0
%negx = fsub fast double -0.0, %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
define double @select_fast_fcmp_nnan_nsz_ole_zero(double %x) {
; CHECK-LABEL: @select_fast_fcmp_nnan_nsz_ole_zero(
; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ole double %x, 0.0
%negx = fsub nnan nsz double -0.0, %x
%fabs = select fast i1 %lezero, double %negx, double %x
ret double %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define double @select_fcmp_nnan_nsz_ule_zero(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_zero(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LEZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ule double %x, 0.0
%negx = fsub fast double -0.0, %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
define double @select_fcmp_nnan_nsz_ole_zero_unary_fneg(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_zero_unary_fneg(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LEZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ole double %x, 0.0
%negx = fneg fast double %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define double @select_fcmp_nnan_nsz_ule_zero_unary_fneg(double %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_zero_unary_fneg(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule double [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg fast double [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[LEZERO]], double [[NEGX]], double [[X]]
; CHECK-NEXT: ret double [[FABS]]
;
%lezero = fcmp ule double %x, 0.0
%negx = fneg fast double %x
%fabs = select i1 %lezero, double %negx, double %x
ret double %fabs
}
; X <= -0.0 ? -X : X --> fabs(X)
define float @select_fcmp_nnan_nsz_ole_negzero(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_negzero(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LEZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%lezero = fcmp ole float %x, -0.0
%negx = fsub nnan nsz float -0.0, %x
%fabs = select i1 %lezero, float %negx, float %x
ret float %fabs
}
define float @select_nnan_nsz_fcmp_nnan_nsz_ole_negzero(float %x) {
; CHECK-LABEL: @select_nnan_nsz_fcmp_nnan_nsz_ole_negzero(
; CHECK-NEXT: [[FABS:%.*]] = call nnan nsz float @llvm.fabs.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[FABS]]
;
%lezero = fcmp ole float %x, -0.0
%negx = fsub nnan nsz float -0.0, %x
%fabs = select nnan nsz i1 %lezero, float %negx, float %x
ret float %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define float @select_fcmp_nnan_nsz_ule_negzero(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_negzero(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LEZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%lezero = fcmp ule float %x, -0.0
%negx = fsub nnan nsz float -0.0, %x
%fabs = select i1 %lezero, float %negx, float %x
ret float %fabs
}
define float @select_fcmp_nnan_nsz_ole_negzero_unary_fneg(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ole_negzero_unary_fneg(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ole float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LEZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%lezero = fcmp ole float %x, -0.0
%negx = fneg nnan nsz float %x
%fabs = select i1 %lezero, float %negx, float %x
ret float %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define float @select_fcmp_nnan_nsz_ule_negzero_unary_fneg(float %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ule_negzero_unary_fneg(
; CHECK-NEXT: [[LEZERO:%.*]] = fcmp ule float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz float [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[LEZERO]], float [[NEGX]], float [[X]]
; CHECK-NEXT: ret float [[FABS]]
;
%lezero = fcmp ule float %x, -0.0
%negx = fneg nnan nsz float %x
%fabs = select i1 %lezero, float %negx, float %x
ret float %fabs
}
; This is not fabs because that could produce a different signbit for a NAN input.
; PR59279
define <2 x float> @select_nsz_fcmp_ogt_zero_unary_fneg(<2 x float> %x) {
; CHECK-LABEL: @select_nsz_fcmp_ogt_zero_unary_fneg(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt <2 x float> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg <2 x float> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nsz <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]]
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%gtzero = fcmp ogt <2 x float> %x, zeroinitializer
%negx = fneg <2 x float> %x
%fabs = select nsz <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx
ret <2 x float> %fabs
}
; X > 0.0 ? X : (-X) --> fabs(X)
define <2 x float> @select_nsz_nnan_fcmp_ogt_zero_unary_fneg(<2 x float> %x) {
; CHECK-LABEL: @select_nsz_nnan_fcmp_ogt_zero_unary_fneg(
; CHECK-NEXT: [[FABS:%.*]] = call nnan nsz <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]])
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%gtzero = fcmp ogt <2 x float> %x, zeroinitializer
%negx = fneg <2 x float> %x
%fabs = select nsz nnan <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx
ret <2 x float> %fabs
}
define <2 x float> @select_fcmp_nnan_nsz_ogt_zero(<2 x float> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ogt_zero(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt <2 x float> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]]
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%gtzero = fcmp ogt <2 x float> %x, zeroinitializer
%negx = fsub nnan nsz arcp <2 x float> <float -0.0, float -0.0>, %x
%fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx
ret <2 x float> %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define <2 x float> @select_fcmp_nnan_nsz_ugt_zero(<2 x float> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ugt_zero(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ugt <2 x float> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]]
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%gtzero = fcmp ugt <2 x float> %x, zeroinitializer
%negx = fsub nnan nsz arcp <2 x float> <float -0.0, float -0.0>, %x
%fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx
ret <2 x float> %fabs
}
define <2 x float> @select_fcmp_nnan_nsz_ogt_zero_unary_fneg(<2 x float> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ogt_zero_unary_fneg(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt <2 x float> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]]
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%gtzero = fcmp ogt <2 x float> %x, zeroinitializer
%negx = fneg nnan nsz arcp <2 x float> %x
%fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx
ret <2 x float> %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define <2 x float> @select_fcmp_nnan_nsz_ugt_zero_unary_fneg(<2 x float> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ugt_zero_unary_fneg(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ugt <2 x float> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz arcp <2 x float> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GTZERO]], <2 x float> [[X]], <2 x float> [[NEGX]]
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%gtzero = fcmp ugt <2 x float> %x, zeroinitializer
%negx = fneg nnan nsz arcp <2 x float> %x
%fabs = select <2 x i1> %gtzero, <2 x float> %x, <2 x float> %negx
ret <2 x float> %fabs
}
; X > -0.0 ? X : (0.0 - X) --> fabs(X)
define half @select_fcmp_nnan_nsz_ogt_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ogt_negzero(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ogt half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fneg fast half [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[GTZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gtzero = fcmp ogt half %x, -0.0
%negx = fsub fast half 0.0, %x
%fabs = select i1 %gtzero, half %x, half %negx
ret half %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define half @select_fcmp_nnan_nsz_ugt_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_ugt_negzero(
; CHECK-NEXT: [[GTZERO:%.*]] = fcmp ugt half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fneg fast half [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan ninf i1 [[GTZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gtzero = fcmp ugt half %x, -0.0
%negx = fsub fast half 0.0, %x
%fabs = select i1 %gtzero, half %x, half %negx
ret half %fabs
}
; X > 0.0 ? X : (0.0 - X) --> fabs(X)
define <2 x double> @select_fcmp_nnan_nsz_oge_zero(<2 x double> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_zero(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge <2 x double> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]]
; CHECK-NEXT: ret <2 x double> [[FABS]]
;
%gezero = fcmp oge <2 x double> %x, zeroinitializer
%negx = fsub nnan nsz reassoc <2 x double> <double -0.0, double -0.0>, %x
%fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx
ret <2 x double> %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define <2 x double> @select_fcmp_nnan_nsz_uge_zero(<2 x double> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_zero(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge <2 x double> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]]
; CHECK-NEXT: ret <2 x double> [[FABS]]
;
%gezero = fcmp uge <2 x double> %x, zeroinitializer
%negx = fsub nnan nsz reassoc <2 x double> <double -0.0, double -0.0>, %x
%fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx
ret <2 x double> %fabs
}
define <2 x double> @select_fcmp_nnan_nsz_oge_zero_unary_fneg(<2 x double> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_zero_unary_fneg(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge <2 x double> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]]
; CHECK-NEXT: ret <2 x double> [[FABS]]
;
%gezero = fcmp oge <2 x double> %x, zeroinitializer
%negx = fneg nnan nsz reassoc <2 x double> %x
%fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx
ret <2 x double> %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define <2 x double> @select_fcmp_nnan_nsz_uge_zero_unary_fneg(<2 x double> %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_zero_unary_fneg(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge <2 x double> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[NEGX:%.*]] = fneg reassoc nnan nsz <2 x double> [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan <2 x i1> [[GEZERO]], <2 x double> [[X]], <2 x double> [[NEGX]]
; CHECK-NEXT: ret <2 x double> [[FABS]]
;
%gezero = fcmp uge <2 x double> %x, zeroinitializer
%negx = fneg nnan nsz reassoc <2 x double> %x
%fabs = select <2 x i1> %gezero, <2 x double> %x, <2 x double> %negx
ret <2 x double> %fabs
}
; X > -0.0 ? X : (0.0 - X) --> fabs(X)
define half @select_fcmp_nnan_nsz_oge_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_negzero(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[GEZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gezero = fcmp oge half %x, -0.0
%negx = fsub nnan nsz half -0.0, %x
%fabs = select i1 %gezero, half %x, half %negx
ret half %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define half @select_fcmp_nnan_nsz_uge_negzero(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_negzero(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[GEZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gezero = fcmp uge half %x, -0.0
%negx = fsub nnan nsz half -0.0, %x
%fabs = select i1 %gezero, half %x, half %negx
ret half %fabs
}
define half @select_fcmp_nnan_nsz_oge_negzero_unary_fneg(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_oge_negzero_unary_fneg(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp oge half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[GEZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gezero = fcmp oge half %x, -0.0
%negx = fneg nnan nsz half %x
%fabs = select i1 %gezero, half %x, half %negx
ret half %fabs
}
; Repeat with unordered predicate - nnan allows us to treat ordered/unordered identically.
define half @select_fcmp_nnan_nsz_uge_negzero_unary_fneg(half %x) {
; CHECK-LABEL: @select_fcmp_nnan_nsz_uge_negzero_unary_fneg(
; CHECK-NEXT: [[GEZERO:%.*]] = fcmp uge half [[X:%.*]], 0xH0000
; CHECK-NEXT: [[NEGX:%.*]] = fneg nnan nsz half [[X]]
; CHECK-NEXT: [[FABS:%.*]] = select nnan i1 [[GEZERO]], half [[X]], half [[NEGX]]
; CHECK-NEXT: ret half [[FABS]]
;
%gezero = fcmp uge half %x, -0.0
%negx = fneg nnan nsz half %x
%fabs = select i1 %gezero, half %x, half %negx
ret half %fabs
}
define float @select_fneg(i1 %c, float %x) {
; CHECK-LABEL: @select_fneg(
; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[FABS]]
;
%n = fneg float %x
%s = select i1 %c, float %n, float %x
%fabs = call float @llvm.fabs.f32(float %s)
ret float %fabs
}
define float @select_fneg_use1(i1 %c, float %x) {
; CHECK-LABEL: @select_fneg_use1(
; CHECK-NEXT: [[N:%.*]] = fneg float [[X:%.*]]
; CHECK-NEXT: call void @use(float [[N]])
; CHECK-NEXT: [[FABS:%.*]] = call fast float @llvm.fabs.f32(float [[X]])
; CHECK-NEXT: ret float [[FABS]]
;
%n = fneg float %x
call void @use(float %n)
%s = select i1 %c, float %x, float %n
%fabs = call fast float @llvm.fabs.f32(float %s)
ret float %fabs
}
define float @select_fneg_use2(i1 %c, float %x) {
; CHECK-LABEL: @select_fneg_use2(
; CHECK-NEXT: [[N:%.*]] = fneg arcp float [[X:%.*]]
; CHECK-NEXT: [[S:%.*]] = select i1 [[C:%.*]], float [[N]], float [[X]]
; CHECK-NEXT: call void @use(float [[S]])
; CHECK-NEXT: [[FABS:%.*]] = call nnan nsz float @llvm.fabs.f32(float [[X]])
; CHECK-NEXT: ret float [[FABS]]
;
%n = fneg arcp float %x
%s = select i1 %c, float %n, float %x
call void @use(float %s)
%fabs = call nnan nsz float @llvm.fabs.f32(float %s)
ret float %fabs
}
define <2 x float> @select_fneg_vec(<2 x i1> %c, <2 x float> %x) {
; CHECK-LABEL: @select_fneg_vec(
; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[X:%.*]])
; CHECK-NEXT: ret <2 x float> [[FABS]]
;
%n = fneg <2 x float> %x
%s = select fast <2 x i1> %c, <2 x float> %x, <2 x float> %n
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %s)
ret <2 x float> %fabs
}
define float @test_select_neg_negx_x(float %value) {
; CHECK-LABEL: @test_select_neg_negx_x(
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = call float @llvm.fabs.f32(float [[VALUE:%.*]])
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_nneg_negx_x(float %value) {
; CHECK-LABEL: @test_select_nneg_negx_x(
; CHECK-NEXT: [[TMP1:%.*]] = call float @llvm.fabs.f32(float [[VALUE:%.*]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = fneg float [[TMP1]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp sgt i32 %a0, -1
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_x_negx(float %value) {
; CHECK-LABEL: @test_select_neg_x_negx(
; CHECK-NEXT: [[TMP1:%.*]] = call float @llvm.fabs.f32(float [[VALUE:%.*]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = fneg float [[TMP1]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %value, float %fneg.i
ret float %value.addr.0.i
}
define float @test_select_nneg_x_negx(float %value) {
; CHECK-LABEL: @test_select_nneg_x_negx(
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = call float @llvm.fabs.f32(float [[VALUE:%.*]])
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp sgt i32 %a0, -1
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %value, float %fneg.i
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_multiuse1(float %value) {
; CHECK-LABEL: @test_select_neg_negx_x_multiuse1(
; CHECK-NEXT: [[A0:%.*]] = bitcast float [[VALUE:%.*]] to i32
; CHECK-NEXT: [[A1:%.*]] = icmp slt i32 [[A0]], 0
; CHECK-NEXT: call void @usebool(i1 [[A1]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = call float @llvm.fabs.f32(float [[VALUE]])
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
call void @usebool(i1 %a1)
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_multiuse2(float %value) {
; CHECK-LABEL: @test_select_neg_negx_x_multiuse2(
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg float [[VALUE:%.*]]
; CHECK-NEXT: call void @use(float [[FNEG_I]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = call float @llvm.fabs.f32(float [[VALUE]])
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %value
call void @use(float %fneg.i)
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_multiuse3(float %value) {
; CHECK-LABEL: @test_select_neg_negx_x_multiuse3(
; CHECK-NEXT: [[A0:%.*]] = bitcast float [[VALUE:%.*]] to i32
; CHECK-NEXT: [[A1:%.*]] = icmp slt i32 [[A0]], 0
; CHECK-NEXT: call void @usebool(i1 [[A1]])
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg float [[VALUE]]
; CHECK-NEXT: call void @use(float [[FNEG_I]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = call float @llvm.fabs.f32(float [[VALUE]])
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
call void @usebool(i1 %a1)
%fneg.i = fneg float %value
call void @use(float %fneg.i)
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_fmf(float %value) {
; CHECK-LABEL: @test_select_neg_negx_x_fmf(
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = call nnan ninf nsz float @llvm.fabs.f32(float [[VALUE:%.*]])
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %value
%value.addr.0.i = select nsz nnan ninf i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_nneg_negx_x_fmf(float %value) {
; CHECK-LABEL: @test_select_nneg_negx_x_fmf(
; CHECK-NEXT: [[TMP1:%.*]] = call nnan ninf nsz float @llvm.fabs.f32(float [[VALUE:%.*]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = fneg nnan ninf nsz float [[TMP1]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp sgt i32 %a0, -1
%fneg.i = fneg float %value
%value.addr.0.i = select nsz nnan ninf i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
; Negative tests
define float @test_select_nneg_negx_x_multiuse4(float %value) {
; CHECK-LABEL: @test_select_nneg_negx_x_multiuse4(
; CHECK-NEXT: [[A0:%.*]] = bitcast float [[VALUE:%.*]] to i32
; CHECK-NEXT: [[A1:%.*]] = icmp sgt i32 [[A0]], -1
; CHECK-NEXT: call void @usebool(i1 [[A1]])
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg float [[VALUE]]
; CHECK-NEXT: call void @use(float [[FNEG_I]])
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = select i1 [[A1]], float [[FNEG_I]], float [[VALUE]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp sgt i32 %a0, -1
call void @usebool(i1 %a1)
%fneg.i = fneg float %value
call void @use(float %fneg.i)
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_mismatched1(float %value, float %y) {
; CHECK-LABEL: @test_select_neg_negx_x_mismatched1(
; CHECK-NEXT: [[A0:%.*]] = bitcast float [[Y:%.*]] to i32
; CHECK-NEXT: [[A1:%.*]] = icmp slt i32 [[A0]], 0
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg float [[VALUE:%.*]]
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = select i1 [[A1]], float [[FNEG_I]], float [[VALUE]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %y to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_mismatched2(float %value, float %y) {
; CHECK-LABEL: @test_select_neg_negx_x_mismatched2(
; CHECK-NEXT: [[A0:%.*]] = bitcast float [[VALUE:%.*]] to i32
; CHECK-NEXT: [[A1:%.*]] = icmp slt i32 [[A0]], 0
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg float [[Y:%.*]]
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = select i1 [[A1]], float [[FNEG_I]], float [[VALUE]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %y
%value.addr.0.i = select i1 %a1, float %fneg.i, float %value
ret float %value.addr.0.i
}
define float @test_select_neg_negx_x_mismatched3(float %value, float %y) {
; CHECK-LABEL: @test_select_neg_negx_x_mismatched3(
; CHECK-NEXT: [[A0:%.*]] = bitcast float [[VALUE:%.*]] to i32
; CHECK-NEXT: [[A1:%.*]] = icmp slt i32 [[A0]], 0
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg float [[VALUE]]
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = select i1 [[A1]], float [[FNEG_I]], float [[Y:%.*]]
; CHECK-NEXT: ret float [[VALUE_ADDR_0_I]]
;
%a0 = bitcast float %value to i32
%a1 = icmp slt i32 %a0, 0
%fneg.i = fneg float %value
%value.addr.0.i = select i1 %a1, float %fneg.i, float %y
ret float %value.addr.0.i
}
define <2 x float> @test_select_neg_negx_x_wrong_type(<2 x float> %value) {
; CHECK-LABEL: @test_select_neg_negx_x_wrong_type(
; CHECK-NEXT: [[A0:%.*]] = bitcast <2 x float> [[VALUE:%.*]] to i64
; CHECK-NEXT: [[A1:%.*]] = icmp slt i64 [[A0]], 0
; CHECK-NEXT: [[FNEG_I:%.*]] = fneg <2 x float> [[VALUE]]
; CHECK-NEXT: [[VALUE_ADDR_0_I:%.*]] = select i1 [[A1]], <2 x float> [[FNEG_I]], <2 x float> [[VALUE]]
; CHECK-NEXT: ret <2 x float> [[VALUE_ADDR_0_I]]
;
%a0 = bitcast <2 x float> %value to i64
%a1 = icmp slt i64 %a0, 0
%fneg.i = fneg <2 x float> %value
%value.addr.0.i = select i1 %a1, <2 x float> %fneg.i, <2 x float> %value
ret <2 x float> %value.addr.0.i
}