; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -O3 -mtriple=x86_64-unknown-unknown -mcpu=core2 | FileCheck %s -check-prefix=X64
; RUN: llc < %s -O3 -mtriple=i686-unknown-unknown -mcpu=core2 | FileCheck %s -check-prefix=X32
; @simple is the most basic chain of address induction variables. Chaining
; saves at least one register and avoids complex addressing and setup
; code.
;
; %x * 4
; no other address computation in the preheader
; no complex address modes
;
; no expensive address computation in the preheader
; no complex address modes
define i32 @simple(ptr %a, ptr %b, i32 %x) nounwind {
; X64-LABEL: simple:
; X64: # %bb.0: # %entry
; X64-NEXT: movslq %edx, %rcx
; X64-NEXT: shlq $2, %rcx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: leaq (%rcx,%rcx), %rdx
; X64-NEXT: .p2align 4
; X64-NEXT: .LBB0_1: # %loop
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: addl (%rdi), %eax
; X64-NEXT: addl (%rdi,%rcx), %eax
; X64-NEXT: leaq (%rdi,%rcx), %r8
; X64-NEXT: addl (%rcx,%r8), %eax
; X64-NEXT: addq %rcx, %r8
; X64-NEXT: addl (%rcx,%r8), %eax
; X64-NEXT: addq %rdx, %r8
; X64-NEXT: movq %r8, %rdi
; X64-NEXT: cmpq %rsi, %r8
; X64-NEXT: jne .LBB0_1
; X64-NEXT: # %bb.2: # %exit
; X64-NEXT: retq
;
; X32-LABEL: simple:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebx
; X32-NEXT: pushl %edi
; X32-NEXT: pushl %esi
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edi
; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
; X32-NEXT: shll $2, %edx
; X32-NEXT: xorl %eax, %eax
; X32-NEXT: leal (%edx,%edx), %esi
; X32-NEXT: .p2align 4
; X32-NEXT: .LBB0_1: # %loop
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: addl (%edi), %eax
; X32-NEXT: addl (%edi,%edx), %eax
; X32-NEXT: leal (%edi,%edx), %ebx
; X32-NEXT: addl (%edx,%ebx), %eax
; X32-NEXT: addl %edx, %ebx
; X32-NEXT: addl (%edx,%ebx), %eax
; X32-NEXT: addl %esi, %ebx
; X32-NEXT: movl %ebx, %edi
; X32-NEXT: cmpl %ecx, %ebx
; X32-NEXT: jne .LBB0_1
; X32-NEXT: # %bb.2: # %exit
; X32-NEXT: popl %esi
; X32-NEXT: popl %edi
; X32-NEXT: popl %ebx
; X32-NEXT: retl
entry:
br label %loop
loop:
%iv = phi ptr [ %a, %entry ], [ %iv4, %loop ]
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
%v = load i32, ptr %iv
%iv1 = getelementptr inbounds i32, ptr %iv, i32 %x
%v1 = load i32, ptr %iv1
%iv2 = getelementptr inbounds i32, ptr %iv1, i32 %x
%v2 = load i32, ptr %iv2
%iv3 = getelementptr inbounds i32, ptr %iv2, i32 %x
%v3 = load i32, ptr %iv3
%s1 = add i32 %s, %v
%s2 = add i32 %s1, %v1
%s3 = add i32 %s2, %v2
%s4 = add i32 %s3, %v3
%iv4 = getelementptr inbounds i32, ptr %iv3, i32 %x
%cmp = icmp eq ptr %iv4, %b
br i1 %cmp, label %exit, label %loop
exit:
ret i32 %s4
}
; @user is not currently chained because the IV is live across memory ops.
;
; expensive address computation in the preheader
; complex address modes
define i32 @user(ptr %a, ptr %b, i32 %x) nounwind {
; X64-LABEL: user:
; X64: # %bb.0: # %entry
; X64-NEXT: movslq %edx, %rcx
; X64-NEXT: movq %rcx, %rdx
; X64-NEXT: shlq $4, %rdx
; X64-NEXT: leaq (,%rcx,4), %rax
; X64-NEXT: leaq (%rax,%rax,2), %r8
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: .p2align 4
; X64-NEXT: .LBB1_1: # %loop
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: addl (%rdi), %eax
; X64-NEXT: addl (%rdi,%rcx,4), %eax
; X64-NEXT: addl (%rdi,%rcx,8), %eax
; X64-NEXT: addl (%rdi,%r8), %eax
; X64-NEXT: movl %eax, (%rdi)
; X64-NEXT: addq %rdx, %rdi
; X64-NEXT: cmpq %rsi, %rdi
; X64-NEXT: jne .LBB1_1
; X64-NEXT: # %bb.2: # %exit
; X64-NEXT: retq
;
; X32-LABEL: user:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebx
; X32-NEXT: pushl %edi
; X32-NEXT: pushl %esi
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
; X32-NEXT: movl %ecx, %edi
; X32-NEXT: shll $4, %edi
; X32-NEXT: leal (,%ecx,4), %eax
; X32-NEXT: leal (%eax,%eax,2), %ebx
; X32-NEXT: xorl %eax, %eax
; X32-NEXT: .p2align 4
; X32-NEXT: .LBB1_1: # %loop
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: addl (%esi), %eax
; X32-NEXT: addl (%esi,%ecx,4), %eax
; X32-NEXT: addl (%esi,%ecx,8), %eax
; X32-NEXT: addl (%esi,%ebx), %eax
; X32-NEXT: movl %eax, (%esi)
; X32-NEXT: addl %edi, %esi
; X32-NEXT: cmpl %edx, %esi
; X32-NEXT: jne .LBB1_1
; X32-NEXT: # %bb.2: # %exit
; X32-NEXT: popl %esi
; X32-NEXT: popl %edi
; X32-NEXT: popl %ebx
; X32-NEXT: retl
entry:
br label %loop
loop:
%iv = phi ptr [ %a, %entry ], [ %iv4, %loop ]
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
%v = load i32, ptr %iv
%iv1 = getelementptr inbounds i32, ptr %iv, i32 %x
%v1 = load i32, ptr %iv1
%iv2 = getelementptr inbounds i32, ptr %iv1, i32 %x
%v2 = load i32, ptr %iv2
%iv3 = getelementptr inbounds i32, ptr %iv2, i32 %x
%v3 = load i32, ptr %iv3
%s1 = add i32 %s, %v
%s2 = add i32 %s1, %v1
%s3 = add i32 %s2, %v2
%s4 = add i32 %s3, %v3
%iv4 = getelementptr inbounds i32, ptr %iv3, i32 %x
store i32 %s4, ptr %iv
%cmp = icmp eq ptr %iv4, %b
br i1 %cmp, label %exit, label %loop
exit:
ret i32 %s4
}
; @extrastride is a slightly more interesting case of a single
; complete chain with multiple strides. The test case IR is what LSR
; used to do, and exactly what we don't want to do. LSR's new IV
; chaining feature should now undo the damage.
;
; We currently don't handle this on X64 because the sexts cause
; strange increment expressions like this:
; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
;
; For x32, no spills in the preheader, no complex address modes, no reloads.
define void @extrastride(ptr nocapture %main, i32 %main_stride, ptr nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
; X64-LABEL: extrastride:
; X64: # %bb.0: # %entry
; X64-NEXT: # kill: def $ecx killed $ecx def $rcx
; X64-NEXT: # kill: def $esi killed $esi def $rsi
; X64-NEXT: testl %r9d, %r9d
; X64-NEXT: je .LBB2_4
; X64-NEXT: # %bb.1: # %for.body.lr.ph
; X64-NEXT: pushq %rbx
; X64-NEXT: leal (%rsi,%rsi), %r10d
; X64-NEXT: leal (%rsi,%rsi,2), %r11d
; X64-NEXT: addl %esi, %ecx
; X64-NEXT: leal (,%rsi,4), %eax
; X64-NEXT: leal (%rcx,%rsi,4), %ebx
; X64-NEXT: cltq
; X64-NEXT: movslq %r11d, %rcx
; X64-NEXT: movslq %r10d, %r10
; X64-NEXT: movslq %esi, %rsi
; X64-NEXT: movslq %r8d, %r8
; X64-NEXT: shlq $2, %r8
; X64-NEXT: movslq %ebx, %r11
; X64-NEXT: .p2align 4
; X64-NEXT: .LBB2_2: # %for.body
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movl (%rdi,%rsi), %ebx
; X64-NEXT: addl (%rdi), %ebx
; X64-NEXT: addl (%rdi,%r10), %ebx
; X64-NEXT: addl (%rdi,%rcx), %ebx
; X64-NEXT: addl (%rdi,%rax), %ebx
; X64-NEXT: movl %ebx, (%rdx)
; X64-NEXT: addq %r11, %rdi
; X64-NEXT: addq %r8, %rdx
; X64-NEXT: decl %r9d
; X64-NEXT: jne .LBB2_2
; X64-NEXT: # %bb.3:
; X64-NEXT: popq %rbx
; X64-NEXT: .LBB2_4: # %for.end
; X64-NEXT: retq
;
; X32-LABEL: extrastride:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebp
; X32-NEXT: pushl %ebx
; X32-NEXT: pushl %edi
; X32-NEXT: pushl %esi
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: testl %eax, %eax
; X32-NEXT: je .LBB2_3
; X32-NEXT: # %bb.1: # %for.body.lr.ph
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
; X32-NEXT: movl {{[0-9]+}}(%esp), %ebx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edi
; X32-NEXT: addl %esi, %edi
; X32-NEXT: shll $2, %ecx
; X32-NEXT: .p2align 4
; X32-NEXT: .LBB2_2: # %for.body
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: movl (%ebx,%esi), %ebp
; X32-NEXT: addl (%ebx), %ebp
; X32-NEXT: addl %esi, %ebx
; X32-NEXT: addl (%esi,%ebx), %ebp
; X32-NEXT: addl %esi, %ebx
; X32-NEXT: addl (%esi,%ebx), %ebp
; X32-NEXT: addl %esi, %ebx
; X32-NEXT: addl (%esi,%ebx), %ebp
; X32-NEXT: movl %ebp, (%edx)
; X32-NEXT: addl %esi, %ebx
; X32-NEXT: addl %edi, %ebx
; X32-NEXT: addl %ecx, %edx
; X32-NEXT: decl %eax
; X32-NEXT: jne .LBB2_2
; X32-NEXT: .LBB2_3: # %for.end
; X32-NEXT: popl %esi
; X32-NEXT: popl %edi
; X32-NEXT: popl %ebx
; X32-NEXT: popl %ebp
; X32-NEXT: retl
entry:
%cmp8 = icmp eq i32 %z, 0
br i1 %cmp8, label %for.end, label %for.body.lr.ph
for.body.lr.ph: ; preds = %entry
%add.ptr.sum = shl i32 %main_stride, 1 ; s*2
%add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
%add.ptr2.sum = add i32 %x, %main_stride ; s + x
%add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
%add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%main.addr.011 = phi ptr [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
%i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%res.addr.09 = phi ptr [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
%0 = load i32, ptr %main.addr.011, align 4
%add.ptr = getelementptr inbounds i8, ptr %main.addr.011, i32 %main_stride
%1 = load i32, ptr %add.ptr, align 4
%add.ptr1 = getelementptr inbounds i8, ptr %main.addr.011, i32 %add.ptr.sum
%2 = load i32, ptr %add.ptr1, align 4
%add.ptr2 = getelementptr inbounds i8, ptr %main.addr.011, i32 %add.ptr1.sum
%3 = load i32, ptr %add.ptr2, align 4
%add.ptr3 = getelementptr inbounds i8, ptr %main.addr.011, i32 %add.ptr4.sum
%4 = load i32, ptr %add.ptr3, align 4
%add = add i32 %1, %0
%add4 = add i32 %add, %2
%add5 = add i32 %add4, %3
%add6 = add i32 %add5, %4
store i32 %add6, ptr %res.addr.09, align 4
%add.ptr6 = getelementptr inbounds i8, ptr %main.addr.011, i32 %add.ptr3.sum
%add.ptr7 = getelementptr inbounds i32, ptr %res.addr.09, i32 %y
%inc = add i32 %i.010, 1
%cmp = icmp eq i32 %inc, %z
br i1 %cmp, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
; @foldedidx is an unrolled variant of this loop:
; for (unsigned long i = 0; i < len; i += s) {
; c[i] = a[i] + b[i];
; }
; where 's' can be folded into the addressing mode.
; Consequently, we should *not* form any chains.
define void @foldedidx(ptr nocapture %a, ptr nocapture %b, ptr nocapture %c) nounwind ssp {
; X64-LABEL: foldedidx:
; X64: # %bb.0: # %entry
; X64-NEXT: movl $3, %eax
; X64-NEXT: .p2align 4
; X64-NEXT: .LBB3_1: # %for.body
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movzbl -3(%rdi,%rax), %ecx
; X64-NEXT: movzbl -3(%rsi,%rax), %r8d
; X64-NEXT: addl %ecx, %r8d
; X64-NEXT: movb %r8b, -3(%rdx,%rax)
; X64-NEXT: movzbl -2(%rdi,%rax), %ecx
; X64-NEXT: movzbl -2(%rsi,%rax), %r8d
; X64-NEXT: addl %ecx, %r8d
; X64-NEXT: movb %r8b, -2(%rdx,%rax)
; X64-NEXT: movzbl -1(%rdi,%rax), %ecx
; X64-NEXT: movzbl -1(%rsi,%rax), %r8d
; X64-NEXT: addl %ecx, %r8d
; X64-NEXT: movb %r8b, -1(%rdx,%rax)
; X64-NEXT: movzbl (%rdi,%rax), %ecx
; X64-NEXT: movzbl (%rsi,%rax), %r8d
; X64-NEXT: addl %ecx, %r8d
; X64-NEXT: movb %r8b, (%rdx,%rax)
; X64-NEXT: addq $4, %rax
; X64-NEXT: cmpl $403, %eax # imm = 0x193
; X64-NEXT: jne .LBB3_1
; X64-NEXT: # %bb.2: # %for.end
; X64-NEXT: retq
;
; X32-LABEL: foldedidx:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebx
; X32-NEXT: pushl %edi
; X32-NEXT: pushl %esi
; X32-NEXT: movl $3, %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
; X32-NEXT: .p2align 4
; X32-NEXT: .LBB3_1: # %for.body
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: movzbl -3(%esi,%eax), %edi
; X32-NEXT: movzbl -3(%edx,%eax), %ebx
; X32-NEXT: addl %edi, %ebx
; X32-NEXT: movb %bl, -3(%ecx,%eax)
; X32-NEXT: movzbl -2(%esi,%eax), %edi
; X32-NEXT: movzbl -2(%edx,%eax), %ebx
; X32-NEXT: addl %edi, %ebx
; X32-NEXT: movb %bl, -2(%ecx,%eax)
; X32-NEXT: movzbl -1(%esi,%eax), %edi
; X32-NEXT: movzbl -1(%edx,%eax), %ebx
; X32-NEXT: addl %edi, %ebx
; X32-NEXT: movb %bl, -1(%ecx,%eax)
; X32-NEXT: movzbl (%esi,%eax), %edi
; X32-NEXT: movzbl (%edx,%eax), %ebx
; X32-NEXT: addl %edi, %ebx
; X32-NEXT: movb %bl, (%ecx,%eax)
; X32-NEXT: addl $4, %eax
; X32-NEXT: cmpl $403, %eax # imm = 0x193
; X32-NEXT: jne .LBB3_1
; X32-NEXT: # %bb.2: # %for.end
; X32-NEXT: popl %esi
; X32-NEXT: popl %edi
; X32-NEXT: popl %ebx
; X32-NEXT: retl
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
%arrayidx = getelementptr inbounds i8, ptr %a, i32 %i.07
%0 = load i8, ptr %arrayidx, align 1
%conv5 = zext i8 %0 to i32
%arrayidx1 = getelementptr inbounds i8, ptr %b, i32 %i.07
%1 = load i8, ptr %arrayidx1, align 1
%conv26 = zext i8 %1 to i32
%add = add nsw i32 %conv26, %conv5
%conv3 = trunc i32 %add to i8
%arrayidx4 = getelementptr inbounds i8, ptr %c, i32 %i.07
store i8 %conv3, ptr %arrayidx4, align 1
%inc1 = or disjoint i32 %i.07, 1
%arrayidx.1 = getelementptr inbounds i8, ptr %a, i32 %inc1
%2 = load i8, ptr %arrayidx.1, align 1
%conv5.1 = zext i8 %2 to i32
%arrayidx1.1 = getelementptr inbounds i8, ptr %b, i32 %inc1
%3 = load i8, ptr %arrayidx1.1, align 1
%conv26.1 = zext i8 %3 to i32
%add.1 = add nsw i32 %conv26.1, %conv5.1
%conv3.1 = trunc i32 %add.1 to i8
%arrayidx4.1 = getelementptr inbounds i8, ptr %c, i32 %inc1
store i8 %conv3.1, ptr %arrayidx4.1, align 1
%inc.12 = or disjoint i32 %i.07, 2
%arrayidx.2 = getelementptr inbounds i8, ptr %a, i32 %inc.12
%4 = load i8, ptr %arrayidx.2, align 1
%conv5.2 = zext i8 %4 to i32
%arrayidx1.2 = getelementptr inbounds i8, ptr %b, i32 %inc.12
%5 = load i8, ptr %arrayidx1.2, align 1
%conv26.2 = zext i8 %5 to i32
%add.2 = add nsw i32 %conv26.2, %conv5.2
%conv3.2 = trunc i32 %add.2 to i8
%arrayidx4.2 = getelementptr inbounds i8, ptr %c, i32 %inc.12
store i8 %conv3.2, ptr %arrayidx4.2, align 1
%inc.23 = or disjoint i32 %i.07, 3
%arrayidx.3 = getelementptr inbounds i8, ptr %a, i32 %inc.23
%6 = load i8, ptr %arrayidx.3, align 1
%conv5.3 = zext i8 %6 to i32
%arrayidx1.3 = getelementptr inbounds i8, ptr %b, i32 %inc.23
%7 = load i8, ptr %arrayidx1.3, align 1
%conv26.3 = zext i8 %7 to i32
%add.3 = add nsw i32 %conv26.3, %conv5.3
%conv3.3 = trunc i32 %add.3 to i8
%arrayidx4.3 = getelementptr inbounds i8, ptr %c, i32 %inc.23
store i8 %conv3.3, ptr %arrayidx4.3, align 1
%inc.3 = add nsw i32 %i.07, 4
%exitcond.3 = icmp eq i32 %inc.3, 400
br i1 %exitcond.3, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; @multioper tests instructions with multiple IV user operands. We
; should be able to chain them independent of each other.
define void @multioper(ptr %a, i32 %n) nounwind {
; X64-LABEL: multioper:
; X64: # %bb.0: # %entry
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: .p2align 4
; X64-NEXT: .LBB4_1: # %for.body
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movl %eax, (%rdi,%rax,4)
; X64-NEXT: leal 1(%rax), %ecx
; X64-NEXT: movl %ecx, 4(%rdi,%rax,4)
; X64-NEXT: leal 2(%rax), %ecx
; X64-NEXT: movl %ecx, 8(%rdi,%rax,4)
; X64-NEXT: leal 3(%rax), %ecx
; X64-NEXT: movl %ecx, 12(%rdi,%rax,4)
; X64-NEXT: addq $4, %rax
; X64-NEXT: cmpl %esi, %eax
; X64-NEXT: jl .LBB4_1
; X64-NEXT: # %bb.2: # %exit
; X64-NEXT: retq
;
; X32-LABEL: multioper:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %esi
; X32-NEXT: xorl %eax, %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
; X32-NEXT: .p2align 4
; X32-NEXT: .LBB4_1: # %for.body
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: movl %eax, (%edx,%eax,4)
; X32-NEXT: leal 1(%eax), %esi
; X32-NEXT: movl %esi, 4(%edx,%eax,4)
; X32-NEXT: leal 2(%eax), %esi
; X32-NEXT: movl %esi, 8(%edx,%eax,4)
; X32-NEXT: leal 3(%eax), %esi
; X32-NEXT: movl %esi, 12(%edx,%eax,4)
; X32-NEXT: addl $4, %eax
; X32-NEXT: cmpl %ecx, %eax
; X32-NEXT: jl .LBB4_1
; X32-NEXT: # %bb.2: # %exit
; X32-NEXT: popl %esi
; X32-NEXT: retl
entry:
br label %for.body
for.body:
%p = phi ptr [ %p.next, %for.body ], [ %a, %entry ]
%i = phi i32 [ %inc4, %for.body ], [ 0, %entry ]
store i32 %i, ptr %p, align 4
%inc1 = or disjoint i32 %i, 1
%add.ptr.i1 = getelementptr inbounds i32, ptr %p, i32 1
store i32 %inc1, ptr %add.ptr.i1, align 4
%inc2 = add nsw i32 %i, 2
%add.ptr.i2 = getelementptr inbounds i32, ptr %p, i32 2
store i32 %inc2, ptr %add.ptr.i2, align 4
%inc3 = add nsw i32 %i, 3
%add.ptr.i3 = getelementptr inbounds i32, ptr %p, i32 3
store i32 %inc3, ptr %add.ptr.i3, align 4
%p.next = getelementptr inbounds i32, ptr %p, i32 4
%inc4 = add nsw i32 %i, 4
%cmp = icmp slt i32 %inc4, %n
br i1 %cmp, label %for.body, label %exit
exit:
ret void
}
; @testCmpZero has a ICmpZero LSR use that should not be hidden from
; LSR. Profitable chains should have more than one nonzero increment
; anyway.
define void @testCmpZero(ptr %src, ptr %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp {
; X64-LABEL: testCmpZero:
; X64: # %bb.0: # %entry
; X64-NEXT: movslq %edx, %rdx
; X64-NEXT: addq %rdx, %rdi
; X64-NEXT: movslq %ecx, %rax
; X64-NEXT: addq %rsi, %rax
; X64-NEXT: addl %edx, %r8d
; X64-NEXT: movslq %r8d, %rcx
; X64-NEXT: subq %rdx, %rcx
; X64-NEXT: xorl %edx, %edx
; X64-NEXT: .p2align 4
; X64-NEXT: .LBB5_1: # %for.body82.us
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movzbl (%rax,%rdx,4), %esi
; X64-NEXT: movb %sil, (%rdi,%rdx)
; X64-NEXT: incq %rdx
; X64-NEXT: cmpq %rdx, %rcx
; X64-NEXT: jne .LBB5_1
; X64-NEXT: # %bb.2: # %return
; X64-NEXT: retq
;
; X32-LABEL: testCmpZero:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebx
; X32-NEXT: pushl %esi
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: addl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
; X32-NEXT: addl {{[0-9]+}}(%esp), %edx
; X32-NEXT: xorl %esi, %esi
; X32-NEXT: .p2align 4
; X32-NEXT: .LBB5_1: # %for.body82.us
; X32-NEXT: # =>This Inner Loop Header: Depth=1
; X32-NEXT: movzbl (%edx,%esi,4), %ebx
; X32-NEXT: movb %bl, (%ecx,%esi)
; X32-NEXT: incl %esi
; X32-NEXT: cmpl %esi, %eax
; X32-NEXT: jne .LBB5_1
; X32-NEXT: # %bb.2: # %return
; X32-NEXT: popl %esi
; X32-NEXT: popl %ebx
; X32-NEXT: retl
entry:
%dest0 = getelementptr inbounds i8, ptr %src, i32 %srcidx
%source0 = getelementptr inbounds i8, ptr %dst, i32 %dstidx
%add.ptr79.us.sum = add i32 %srcidx, %len
%lftr.limit = getelementptr i8, ptr %src, i32 %add.ptr79.us.sum
br label %for.body82.us
for.body82.us:
%dest = phi ptr [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ]
%source = phi ptr [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ]
%0 = load i32, ptr %source, align 4
%trunc = trunc i32 %0 to i8
%add.ptr83.us = getelementptr inbounds i8, ptr %source, i32 4
%incdec.ptr91.us = getelementptr inbounds i8, ptr %dest, i32 1
store i8 %trunc, ptr %dest, align 1
%exitcond = icmp eq ptr %incdec.ptr91.us, %lftr.limit
br i1 %exitcond, label %return, label %for.body82.us
return:
ret void
}