; REQUIRES: x86-registered-target
; RUN: opt -aa-pipeline=basic-aa -passes=loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info -S \
; RUN: < %s | FileCheck %s
; RUN: opt -aa-pipeline=basic-aa -passes='loop-distribute,loop-vectorize' -enable-loop-distribute -force-vector-width=4 \
; RUN: -verify-loop-info -verify-dom-info -S < %s | \
; RUN: FileCheck --check-prefix=VECTORIZE %s
; RUN: opt -aa-pipeline=basic-aa -passes='loop-distribute,print<access-info>' -enable-loop-distribute \
; RUN: -verify-loop-info -verify-dom-info -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ANALYSIS
; The memcheck version of basic.ll. We should distribute and vectorize the
; second part of this loop with 5 memchecks (A+1 x {C, D, E} + C x {A, B})
;
; for (i = 0; i < n; i++) {
; A[i + 1] = A[i] * B[i];
; -------------------------------
; C[i] = D[i] * E[i];
; }
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
@B = common global ptr null, align 8
@A = common global ptr null, align 8
@C = common global ptr null, align 8
@D = common global ptr null, align 8
@E = common global ptr null, align 8
; CHECK-LABEL: @f(
define void @f() {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
; We have two compares for each array overlap check.
; Since the checks to A and A + 4 get merged, this will give us a
; total of 8 compares.
;
; CHECK: for.body.lver.check:
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK-NOT: = icmp
; CHECK: br i1 %conflict.rdx15, label %for.body.ph.lver.orig, label %for.body.ph.ldist1
; The non-distributed loop that the memchecks fall back on.
; CHECK: for.body.ph.lver.orig:
; CHECK: br label %for.body.lver.orig
; CHECK: for.body.lver.orig:
; CHECK: br i1 %exitcond.lver.orig, label %for.end.loopexit, label %for.body.lver.orig
; Verify the two distributed loops.
; CHECK: for.body.ph.ldist1:
; CHECK: br label %for.body.ldist1
; CHECK: for.body.ldist1:
; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1
; CHECK: br i1 %exitcond.ldist1, label %for.body.ph, label %for.body.ldist1
; CHECK: for.body.ph:
; CHECK: br label %for.body
; CHECK: for.body:
; CHECK: %mulC = mul i32 %loadD, %loadE
; CHECK: for.end:
; VECTORIZE: mul <4 x i32>
; VECTORIZE: mul <4 x i32>
; VECTORIZE-NOT: mul <4 x i32>
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%mulC = mul i32 %loadD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; Make sure there's no "Multiple reports generated" assert with a
; volatile load, and no distribution
; TODO: Distribution of volatile may be possible under some
; circumstance, but the current implementation does not touch them.
; CHECK-LABEL: @f_volatile_load(
; CHECK: br label %for.body{{$}}
; CHECK-NOT: load
; CHECK: {{^}}for.body:
; CHECK: load i32
; CHECK: load i32
; CHECK: load volatile i32
; CHECK: load i32
; CHECK: br i1 %exitcond, label %for.end, label %for.body{{$}}
; CHECK-NOT: load
; VECTORIZE-NOT: load <4 x i32>
; VECTORIZE-NOT: mul <4 x i32>
define void @f_volatile_load() {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
for.body:
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load volatile i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%mulC = mul i32 %loadD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret void
}
declare i32 @llvm.convergent(i32) #0
; This is the same as f, and would require the same bounds
; check. However, it is not OK to introduce new control dependencies
; on the convergent call.
; CHECK-LABEL: @f_with_convergent(
; CHECK: call i32 @llvm.convergent
; CHECK-NOT: call i32 @llvm.convergent
; ANALYSIS: for.body:
; ANALYSIS: Report: cannot add control dependency to convergent operation
define void @f_with_convergent() #1 {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%convergentD = call i32 @llvm.convergent(i32 %loadD)
%mulC = mul i32 %convergentD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; Make sure an explicit request for distribution is ignored if it
; requires possibly illegal checks.
; CHECK-LABEL: @f_with_convergent_forced_distribute(
; CHECK: call i32 @llvm.convergent
; CHECK-NOT: call i32 @llvm.convergent
define void @f_with_convergent_forced_distribute() #1 {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%convergentD = call i32 @llvm.convergent(i32 %loadD)
%mulC = mul i32 %convergentD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body
ret void
}
attributes #0 = { nounwind readnone convergent }
attributes #1 = { nounwind convergent }
!0 = distinct !{!0, !1}
!1 = !{!"llvm.loop.distribute.enable", i1 true}