; RUN: opt < %s -debug-only=loop-vectorize -passes=loop-vectorize -vectorizer-maximize-bandwidth -mtriple=x86_64-unknown-linux -S 2>&1 | FileCheck %s
; RUN: opt < %s -debug-only=loop-vectorize -passes=loop-vectorize -vectorizer-maximize-bandwidth -mtriple=x86_64-unknown-linux -mattr=+avx512f -S 2>&1 | FileCheck %s --check-prefix=AVX512F
; REQUIRES: asserts
@a = global [1024 x i8] zeroinitializer, align 16
@b = global [1024 x i8] zeroinitializer, align 16
define i32 @foo() {
; This function has a loop of SAD pattern. Here we check when VF = 16 the
; register usage doesn't exceed 16.
;
; CHECK-LABEL: foo
; CHECK: LV(REG): VF = 8
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
; CHECK: LV(REG): VF = 16
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
entry:
br label %for.body
for.cond.cleanup:
%add.lcssa = phi i32 [ %add, %for.body ]
ret i32 %add.lcssa
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i8], ptr @a, i64 0, i64 %indvars.iv
%0 = load i8, ptr %arrayidx, align 1
%conv = zext i8 %0 to i32
%arrayidx2 = getelementptr inbounds [1024 x i8], ptr @b, i64 0, i64 %indvars.iv
%1 = load i8, ptr %arrayidx2, align 1
%conv3 = zext i8 %1 to i32
%sub = sub nsw i32 %conv, %conv3
%ispos = icmp sgt i32 %sub, -1
%neg = sub nsw i32 0, %sub
%2 = select i1 %ispos, i32 %sub, i32 %neg
%add = add nsw i32 %2, %s.015
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
define i32 @goo() {
; For indvars.iv used in a computating chain only feeding into getelementptr or cmp,
; it will not have vector version and the vector register usage will not exceed the
; available vector register number.
; CHECK-LABEL: goo
; CHECK: LV(REG): VF = 8
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
; CHECK: LV(REG): VF = 16
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
entry:
br label %for.body
for.cond.cleanup: ; preds = %for.body
%add.lcssa = phi i32 [ %add, %for.body ]
ret i32 %add.lcssa
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
%tmp1 = add nsw i64 %indvars.iv, 3
%arrayidx = getelementptr inbounds [1024 x i8], ptr @a, i64 0, i64 %tmp1
%tmp = load i8, ptr %arrayidx, align 1
%conv = zext i8 %tmp to i32
%tmp2 = add nsw i64 %indvars.iv, 2
%arrayidx2 = getelementptr inbounds [1024 x i8], ptr @b, i64 0, i64 %tmp2
%tmp3 = load i8, ptr %arrayidx2, align 1
%conv3 = zext i8 %tmp3 to i32
%sub = sub nsw i32 %conv, %conv3
%ispos = icmp sgt i32 %sub, -1
%neg = sub nsw i32 0, %sub
%tmp4 = select i1 %ispos, i32 %sub, i32 %neg
%add = add nsw i32 %tmp4, %s.015
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
define i64 @bar(ptr nocapture %a) {
; CHECK-LABEL: bar
; CHECK: LV(REG): VF = 2
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 3 registers
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 1 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
entry:
br label %for.body
for.cond.cleanup:
%add2.lcssa = phi i64 [ %add2, %for.body ]
ret i64 %add2.lcssa
for.body:
%i.012 = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%s.011 = phi i64 [ 0, %entry ], [ %add2, %for.body ]
%arrayidx = getelementptr inbounds i64, ptr %a, i64 %i.012
%0 = load i64, ptr %arrayidx, align 8
%add = add nsw i64 %0, %i.012
store i64 %add, ptr %arrayidx, align 8
%add2 = add nsw i64 %add, %s.011
%inc = add nuw nsw i64 %i.012, 1
%exitcond = icmp eq i64 %inc, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
@d = external global [0 x i64], align 8
@e = external global [0 x i32], align 4
@c = external global [0 x i32], align 4
define void @hoo(i32 %n) {
; For c[i] = e[d[i]] in the loop, e[d[i]] is not consecutive but its index %tmp can
; be gathered into a vector. For VF == 16, the vector version of %tmp will be <16 x i64>
; so the max usage of AVX512 vector register will be 2.
; AVX512F-LABEL: bar
; AVX512F: LV(REG): VF = 16
; AVX512F-CHECK: LV(REG): Found max usage: 2 item
; AVX512F-CHECK: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
; AVX512F-CHECK: LV(REG): RegisterClass: Generic::VectorRC, 2 registers
; AVX512F-CHECK: LV(REG): Found invariant usage: 0 item
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds [0 x i64], ptr @d, i64 0, i64 %indvars.iv
%tmp = load i64, ptr %arrayidx, align 8
%arrayidx1 = getelementptr inbounds [0 x i32], ptr @e, i64 0, i64 %tmp
%tmp1 = load i32, ptr %arrayidx1, align 4
%arrayidx3 = getelementptr inbounds [0 x i32], ptr @c, i64 0, i64 %indvars.iv
store i32 %tmp1, ptr %arrayidx3, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 10000
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}