//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <tuple>
// template <class... Types> class tuple;
// template<class... TTypes, class... UTypes>
// auto
// operator<=>(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
// UNSUPPORTED: c++03, c++11, c++14, c++17
#include "test_macros.h"
TEST_CLANG_DIAGNOSTIC_IGNORED("-Wsign-compare")
TEST_GCC_DIAGNOSTIC_IGNORED("-Wsign-compare")
TEST_MSVC_DIAGNOSTIC_IGNORED(4242 4244)
#include <cassert>
#include <compare>
#include <limits>
#include <tuple>
#include <type_traits> // std::is_constant_evaluated
// A custom three-way result type
struct CustomEquality {
friend constexpr bool operator==(const CustomEquality&, int) noexcept { return true; }
friend constexpr bool operator<(const CustomEquality&, int) noexcept { return false; }
friend constexpr bool operator<(int, const CustomEquality&) noexcept { return false; }
};
constexpr bool test() {
// Empty tuple
{
typedef std::tuple<> T0;
// No member types yields strong ordering (all are equal).
ASSERT_SAME_TYPE(decltype(T0() <=> T0()), std::strong_ordering);
assert((T0() <=> T0()) == std::strong_ordering::equal);
}
// Mixed types with integers, which compare strongly ordered
{
typedef std::tuple<long> T1;
typedef std::tuple<short> T2;
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
assert((T1(1) <=> T2(1)) == std::strong_ordering::equal);
assert((T1(1) <=> T2(0)) == std::strong_ordering::greater);
assert((T1(1) <=> T2(2)) == std::strong_ordering::less);
}
{
typedef std::tuple<long, unsigned int> T1;
typedef std::tuple<short, unsigned long> T2;
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
assert((T1(1, 2) <=> T2(1, 2)) == std::strong_ordering::equal);
assert((T1(1, 2) <=> T2(0, 2)) == std::strong_ordering::greater);
assert((T1(1, 2) <=> T2(2, 2)) == std::strong_ordering::less);
assert((T1(1, 2) <=> T2(1, 1)) == std::strong_ordering::greater);
assert((T1(1, 2) <=> T2(1, 3)) == std::strong_ordering::less);
}
{
typedef std::tuple<long, int, unsigned short> T1;
typedef std::tuple<short, long, unsigned int> T2;
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
assert((T1(1, 2, 3) <=> T2(1, 2, 3)) == std::strong_ordering::equal);
assert((T1(1, 2, 3) <=> T2(0, 2, 3)) == std::strong_ordering::greater);
assert((T1(1, 2, 3) <=> T2(2, 2, 3)) == std::strong_ordering::less);
assert((T1(1, 2, 3) <=> T2(1, 1, 3)) == std::strong_ordering::greater);
assert((T1(1, 2, 3) <=> T2(1, 3, 3)) == std::strong_ordering::less);
assert((T1(1, 2, 3) <=> T2(1, 2, 2)) == std::strong_ordering::greater);
assert((T1(1, 2, 3) <=> T2(1, 2, 4)) == std::strong_ordering::less);
}
// Mixed types with floating point, which compare partially ordered
{
typedef std::tuple<long> T1;
typedef std::tuple<double> T2;
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
assert((T1(1) <=> T2(1)) == std::partial_ordering::equivalent);
assert((T1(1) <=> T2(0.9)) == std::partial_ordering::greater);
assert((T1(1) <=> T2(1.1)) == std::partial_ordering::less);
}
{
typedef std::tuple<long, float> T1;
typedef std::tuple<double, unsigned int> T2;
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
assert((T1(1, 2) <=> T2(1, 2)) == std::partial_ordering::equivalent);
assert((T1(1, 2) <=> T2(0.9, 2)) == std::partial_ordering::greater);
assert((T1(1, 2) <=> T2(1.1, 2)) == std::partial_ordering::less);
assert((T1(1, 2) <=> T2(1, 1)) == std::partial_ordering::greater);
assert((T1(1, 2) <=> T2(1, 3)) == std::partial_ordering::less);
}
{
typedef std::tuple<short, float, double> T1;
typedef std::tuple<double, long, unsigned int> T2;
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
assert((T1(1, 2, 3) <=> T2(1, 2, 3)) == std::partial_ordering::equivalent);
assert((T1(1, 2, 3) <=> T2(0.9, 2, 3)) == std::partial_ordering::greater);
assert((T1(1, 2, 3) <=> T2(1.1, 2, 3)) == std::partial_ordering::less);
assert((T1(1, 2, 3) <=> T2(1, 1, 3)) == std::partial_ordering::greater);
assert((T1(1, 2, 3) <=> T2(1, 3, 3)) == std::partial_ordering::less);
assert((T1(1, 2, 3) <=> T2(1, 2, 2)) == std::partial_ordering::greater);
assert((T1(1, 2, 3) <=> T2(1, 2, 4)) == std::partial_ordering::less);
}
{
typedef std::tuple<float> T1;
typedef std::tuple<double> T2;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
// Comparisons with NaN and non-NaN are non-constexpr in GCC, so both sides must be NaN
assert((T1(nan) <=> T2(nan)) == std::partial_ordering::unordered);
}
{
typedef std::tuple<double, double> T1;
typedef std::tuple<float, float> T2;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
assert((T1(nan, 2) <=> T2(nan, 2)) == std::partial_ordering::unordered);
assert((T1(1, nan) <=> T2(1, nan)) == std::partial_ordering::unordered);
}
{
typedef std::tuple<double, float, float> T1;
typedef std::tuple<double, double, float> T2;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
assert((T1(nan, 2, 3) <=> T2(nan, 2, 3)) == std::partial_ordering::unordered);
assert((T1(1, nan, 3) <=> T2(1, nan, 3)) == std::partial_ordering::unordered);
assert((T1(1, 2, nan) <=> T2(1, 2, nan)) == std::partial_ordering::unordered);
}
// Ordering classes and synthesized three way comparison
{
typedef std::tuple<long, int, unsigned int> T1;
typedef std::tuple<int, long, unsigned short> T2;
// All strongly ordered members yields strong ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
}
{
struct WeakSpaceship {
constexpr bool operator==(const WeakSpaceship&) const { return true; }
constexpr std::weak_ordering operator<=>(const WeakSpaceship&) const { return std::weak_ordering::equivalent; }
};
{
typedef std::tuple<int, unsigned int, WeakSpaceship> T1;
typedef std::tuple<int, unsigned long, WeakSpaceship> T2;
// Strongly ordered members and a weakly ordered member yields weak ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
}
{
typedef std::tuple<unsigned int, int, WeakSpaceship> T1;
typedef std::tuple<double, long, WeakSpaceship> T2;
// Doubles are partially ordered, so one partial, one strong, and one weak ordering
// yields partial ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
}
}
{
struct NoSpaceship {
constexpr bool operator==(const NoSpaceship&) const { return true; }
constexpr bool operator<(const NoSpaceship&) const { return false; }
};
typedef std::tuple<int, unsigned int, NoSpaceship> T1;
typedef std::tuple<int, unsigned long, NoSpaceship> T2;
// Strongly ordered members and a weakly ordered member (synthesized) yields weak ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
}
{
struct SpaceshipNoEquals {
constexpr std::strong_ordering operator<=>(const SpaceshipNoEquals&) const { return std::strong_ordering::equal; }
constexpr bool operator<(const SpaceshipNoEquals&) const { return false; }
};
typedef std::tuple<int, unsigned int, SpaceshipNoEquals> T1;
typedef std::tuple<int, unsigned long, SpaceshipNoEquals> T2;
// Spaceship operator with no == operator falls back on the < operator and weak ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
}
{
struct CustomSpaceship {
constexpr CustomEquality operator<=>(const CustomSpaceship&) const { return CustomEquality(); }
};
typedef std::tuple<int, unsigned int, CustomSpaceship> T1;
typedef std::tuple<short, unsigned long, CustomSpaceship> T2;
typedef std::tuple<CustomSpaceship> T3;
// Custom three way return types cannot be used in synthesized three way comparison,
// but they can be used for (rewritten) operator< when synthesizing a weak ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
ASSERT_SAME_TYPE(decltype(T3() <=> T3()), std::weak_ordering);
}
{
typedef std::tuple<long, int> T1;
typedef std::tuple<long, unsigned int> T2;
// Even with the warning suppressed (-Wno-sign-compare) there should still be no <=> operator
// between signed and unsigned types, so we should end up with a synthesized weak ordering.
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
}
#ifdef TEST_COMPILER_GCC
// GCC cannot evaluate NaN @ non-NaN constexpr, so test that runtime-only.
if (!std::is_constant_evaluated())
#endif
{
{
typedef std::tuple<double> T1;
typedef std::tuple<int> T2;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
assert((T1(nan) <=> T2(1)) == std::partial_ordering::unordered);
}
{
typedef std::tuple<double, double> T1;
typedef std::tuple<int, int> T2;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
assert((T1(nan, 2) <=> T2(1, 2)) == std::partial_ordering::unordered);
assert((T1(1, nan) <=> T2(1, 2)) == std::partial_ordering::unordered);
}
{
typedef std::tuple<double, double, double> T1;
typedef std::tuple<int, int, int> T2;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
assert((T1(nan, 2, 3) <=> T2(1, 2, 3)) == std::partial_ordering::unordered);
assert((T1(1, nan, 3) <=> T2(1, 2, 3)) == std::partial_ordering::unordered);
assert((T1(1, 2, nan) <=> T2(1, 2, 3)) == std::partial_ordering::unordered);
}
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}