//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
#include <random>
#include <algorithm> // for sort
#include <cassert>
#include <cmath>
#include <iterator>
#include <limits>
#include <numeric>
#include <vector>
#include "test_macros.h"
template <class T>
inline
T
sqr(T x)
{
return x*x;
}
double
f(double x, double a, double m, double b, double c)
{
return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
}
int main(int, char**)
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
const std::size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d;
P pa(b, b+Np+1, p);
const std::size_t N = 1000000;
std::vector<D::result_type> u;
for (std::size_t i = 0; i < N; ++i)
{
D::result_type v = d(g, pa);
assert(10 <= v && v < 17);
u.push_back(v);
}
std::sort(u.begin(), u.end());
std::ptrdiff_t kp = -1;
double a = std::numeric_limits<double>::quiet_NaN();
double m = std::numeric_limits<double>::quiet_NaN();
double bk = std::numeric_limits<double>::quiet_NaN();
double c = std::numeric_limits<double>::quiet_NaN();
std::vector<double> areas(Np);
double S = 0;
for (std::size_t i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (std::size_t i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (std::size_t i = 0; i < Np+1; ++i)
p[i] /= S;
for (std::size_t i = 0; i < N; ++i)
{
std::ptrdiff_t k = std::lower_bound(b, b + Np + 1, u[i]) - b - 1;
if (k != kp) {
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k + 1] - p[k]) / (b[k + 1] - b[k]);
bk = b[k];
c = (b[k + 1] * p[k] - b[k] * p[k + 1]) / (b[k + 1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i) / N) < .0013);
}
}
return 0;
}